Skip to main content
Top
Published in: Metallurgical and Materials Transactions A 1/2017

24-10-2016

Microstructure, Surface Characterization, and Electrochemical Behavior of New Ti-Zr-Ta-Ag Alloy in Simulated Human Electrolyte

Authors: Cora Vasilescu, Silviu Iulian Drob, Petre Osiceanu, Jose Maria Calderon Moreno, Mariana Prodana, Daniela Ionita, Ioana Demetrescu, Maria Marcu, Ion Alexandru Popovici, Ecaterina Vasilescu

Published in: Metallurgical and Materials Transactions A | Issue 1/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A new Ti-20Zr-5Ta-2Ag alloy was elaborated and characterized regarding its microstructure, its native passive film composition and thickness, its surface wettability, its electrochemical behavior in Ringer solution of different pH values, and its ion release. The new alloy has a bi-phase, α + β, acicular, homogeneous microstructure (scanning electron microscopy (SEM)). Its native passive film (12-nm thicknesses) consists of the protective TiO2, ZrO2, and Ta2O5 oxides, Ti and Ta suboxides, and metallic Ag (X-ray photoelectron spectroscopy (XPS) data). The alloy possesses high hydrophilic properties. The main electrochemical parameters of the new alloy are superior to those of Ti as a result of the beneficial influence of Zr, Ta, and Ag alloying elements, which reinforce its native passive film. Electrochemical impedance spectroscopy (EIS) spectra in Ringer solutions for the new alloy displayed better values of impedances and phase angles, proving a more insulate passive film than that on the Ti surface. The main corrosion parameters for the new Ti-20Zr-5Ta-2Ag alloy are more favorable by about 25 to 38 times than those of Ti, confirming extremely resistant passive film. The new Ti-20Zr-5Ta-2Ag alloy releases into Ringer solution low quantities of Ti4+, Zr4+ metallic ions (inductively coupled plasma–mass spectroscopy (ICP-MS)). The Ag+ ions are released in low quantity, conferring to this alloy’s low antibacterial activity. All experimental results show that the new Ti-20Zr-5Ta-2Ag alloy fulfills the requirements for biocompatibility, corrosion resistance, and antibacterial protection.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference E. Eisenbarth, D. Velten, M. Muller, R. Thull, and J. Breme: Biomaterials, 2004, vol. 25, pp. 5705–13.CrossRef E. Eisenbarth, D. Velten, M. Muller, R. Thull, and J. Breme: Biomaterials, 2004, vol. 25, pp. 5705–13.CrossRef
2.
go back to reference K. Miura, N. Yamada, S. Hanada, T.K. Jun, and E. Itoi: Acta Biomater., 2011, vol. 7, pp. 2320–26.CrossRef K. Miura, N. Yamada, S. Hanada, T.K. Jun, and E. Itoi: Acta Biomater., 2011, vol. 7, pp. 2320–26.CrossRef
3.
go back to reference M.-K. Kang, S.-K. Moon, J.-S. Kon, K.-M. Kim, and K.-N. Kim: Mater. Res. Bull., 2012, vol. 47, pp. 2952–55.CrossRef M.-K. Kang, S.-K. Moon, J.-S. Kon, K.-M. Kim, and K.-N. Kim: Mater. Res. Bull., 2012, vol. 47, pp. 2952–55.CrossRef
4.
go back to reference G. Ciurescu, J. Izquierdo, J.J. Santana, D. Mareci, D. Sutiman, S. Gonzalez, and R.M. Souto: Int. J. Electrochem. Sci., 2012, vol. 7, pp. 7404–24. G. Ciurescu, J. Izquierdo, J.J. Santana, D. Mareci, D. Sutiman, S. Gonzalez, and R.M. Souto: Int. J. Electrochem. Sci., 2012, vol. 7, pp. 7404–24.
5.
6.
go back to reference L. Zhou, M. Niinomi, and T. Akahori: Mater. Sci. Eng. A, 2004, vol. 371, pp. 283–90.CrossRef L. Zhou, M. Niinomi, and T. Akahori: Mater. Sci. Eng. A, 2004, vol. 371, pp. 283–90.CrossRef
7.
go back to reference L. Zhou, M. Niinomi, and T. Akahori: Mater. Sci. Eng. A, 2004, vol. 384, pp. 92–101.CrossRef L. Zhou, M. Niinomi, and T. Akahori: Mater. Sci. Eng. A, 2004, vol. 384, pp. 92–101.CrossRef
8.
9.
go back to reference V. Branzoi, M. Iordoc, F. Branzoi, G. Sbarcea, and V. Marinescu: Rev. Roum. Chim., 2010, vol. 55, pp. 585–97. V. Branzoi, M. Iordoc, F. Branzoi, G. Sbarcea, and V. Marinescu: Rev. Roum. Chim., 2010, vol. 55, pp. 585–97.
10.
go back to reference I.V. Branzoi, M. Iordoc, and M. Codrescu: Surf. Interface Anal., 2008, vol. 40, pp. 167–73.CrossRef I.V. Branzoi, M. Iordoc, and M. Codrescu: Surf. Interface Anal., 2008, vol. 40, pp. 167–73.CrossRef
11.
go back to reference F.E.F. Almeida, R.A.C. Santana, S.J. Lima, S. Prasad, and R.M. Gomes: Am. J. Mater. Sci., 2012, vol. 2, pp. 77–81CrossRef F.E.F. Almeida, R.A.C. Santana, S.J. Lima, S. Prasad, and R.M. Gomes: Am. J. Mater. Sci., 2012, vol. 2, pp. 77–81CrossRef
12.
go back to reference E. Kobayashi, S. Matsumoto, H. Doi, T. Yoneyama, and H. Hamanaka: J. Biomed. Mater. Res., 1995, vol. 29, pp. 943–50.CrossRef E. Kobayashi, S. Matsumoto, H. Doi, T. Yoneyama, and H. Hamanaka: J. Biomed. Mater. Res., 1995, vol. 29, pp. 943–50.CrossRef
13.
go back to reference D. Mareci, G. Bolat, A. Cailean, J.J. Santana, J. Izquierdo, and R.M. Souto: Corros. Sci., 2014, vol. 87, pp. 334–43.CrossRef D. Mareci, G. Bolat, A. Cailean, J.J. Santana, J. Izquierdo, and R.M. Souto: Corros. Sci., 2014, vol. 87, pp. 334–43.CrossRef
14.
go back to reference B.B. Zhang, K.J. Kiu, B.L. Wang, L. Li, and Y.F. Zheng: J. Mater. Sci. Technol., 2012, vol. 28, pp. 779–84.CrossRef B.B. Zhang, K.J. Kiu, B.L. Wang, L. Li, and Y.F. Zheng: J. Mater. Sci. Technol., 2012, vol. 28, pp. 779–84.CrossRef
15.
go back to reference S.-E. Kim, S.-B. Lee, J.-J. Park, K.-M. Kim, and K.-N. Kim: Surf. Interface Anal., 2010, vol. 42, pp. 524–29.CrossRef S.-E. Kim, S.-B. Lee, J.-J. Park, K.-M. Kim, and K.-N. Kim: Surf. Interface Anal., 2010, vol. 42, pp. 524–29.CrossRef
16.
go back to reference B.B. Zhang, B.L. Wang, L. Li, and Y.F. Zheng: Mater. Corros., 2011, vol. 62, pp. 766–70.CrossRef B.B. Zhang, B.L. Wang, L. Li, and Y.F. Zheng: Mater. Corros., 2011, vol. 62, pp. 766–70.CrossRef
17.
go back to reference B.B. Zhang, B.L. Wang, Y.B. Wang, L. Li, Y.F. Zheng, and Y. Liu: J. Biomed. Mater. Res. B, 2012, vol. 100B, pp. 185–96.CrossRef B.B. Zhang, B.L. Wang, Y.B. Wang, L. Li, Y.F. Zheng, and Y. Liu: J. Biomed. Mater. Res. B, 2012, vol. 100B, pp. 185–96.CrossRef
18.
go back to reference D.-K. Kang, S.-K. Moon, K.-T. Oh, G.-S. Choi, and K.-N. Kim: J. Biomed. Mater. Res. B, 2009, vol. 90B, pp. 446–51.CrossRef D.-K. Kang, S.-K. Moon, K.-T. Oh, G.-S. Choi, and K.-N. Kim: J. Biomed. Mater. Res. B, 2009, vol. 90B, pp. 446–51.CrossRef
19.
go back to reference M. Stern and A.C. Makrides: J. Electrochem. Soc., 1960, vol. 107, pp. 782–83.CrossRef M. Stern and A.C. Makrides: J. Electrochem. Soc., 1960, vol. 107, pp. 782–83.CrossRef
20.
go back to reference E. Roth, L.C. Lax, and J.V. Maloney: Ann. Surg., 1969, vol. 169, pp. 149–64.CrossRef E. Roth, L.C. Lax, and J.V. Maloney: Ann. Surg., 1969, vol. 169, pp. 149–64.CrossRef
21.
go back to reference M.A. Baker, S.L. Assis, R. Grilli, and I. Costa: Surf. Interface Anal., 2008, vol. 40, pp. 220–24.CrossRef M.A. Baker, S.L. Assis, R. Grilli, and I. Costa: Surf. Interface Anal., 2008, vol. 40, pp. 220–24.CrossRef
23.
go back to reference R. Kumari, C. Blawert, and J.D. Majumdar: Metall. Mater. Trans. A, 2016, vol. 47, pp. 788–800.CrossRef R. Kumari, C. Blawert, and J.D. Majumdar: Metall. Mater. Trans. A, 2016, vol. 47, pp. 788–800.CrossRef
24.
go back to reference F. Rupp, R.A. Gittens, L. Schneider, A. Marmur, B.D. Boyan, Z. Schwartz, and J. Geis-Gerstofer: Acta Biomater., 2014, vol. 10, pp. 2894–2906.CrossRef F. Rupp, R.A. Gittens, L. Schneider, A. Marmur, B.D. Boyan, Z. Schwartz, and J. Geis-Gerstofer: Acta Biomater., 2014, vol. 10, pp. 2894–2906.CrossRef
25.
go back to reference E.S.N. Lopes, C.A.F. Salvador, D.R. Andrade, A. Cremasco, K.N. Camp, and R. Caram: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 3213–26.CrossRef E.S.N. Lopes, C.A.F. Salvador, D.R. Andrade, A. Cremasco, K.N. Camp, and R. Caram: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 3213–26.CrossRef
26.
go back to reference E.K. Ocran, L.E. Guenther, J.-M. Brandt, U. Wys, and O.A. Ojo: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 2696–2709.CrossRef E.K. Ocran, L.E. Guenther, J.-M. Brandt, U. Wys, and O.A. Ojo: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 2696–2709.CrossRef
27.
go back to reference N. Baca, R.D. Conner, and S.J. Garett: Mater. Sci. Eng. B, 2014, vol. 184, pp. 105–12.CrossRef N. Baca, R.D. Conner, and S.J. Garett: Mater. Sci. Eng. B, 2014, vol. 184, pp. 105–12.CrossRef
28.
go back to reference Y. Xie, Y. Wang, and H. Du: Mater. Sci. Eng. B, 2013, vol. 178, pp. 1443–51.CrossRef Y. Xie, Y. Wang, and H. Du: Mater. Sci. Eng. B, 2013, vol. 178, pp. 1443–51.CrossRef
29.
32.
go back to reference C. Vasilescu, S.I. Drob, E.I. Neacsu, and J.C. Mirza Rosca: Corros. Sci., 2012, vol. 65, pp. 431–40.CrossRef C. Vasilescu, S.I. Drob, E.I. Neacsu, and J.C. Mirza Rosca: Corros. Sci., 2012, vol. 65, pp. 431–40.CrossRef
33.
go back to reference A.V. Naumkin, A. Kraut-Vass, S.W. Gaarenstroom, and C.J. Powell: NIST X-Ray Photoelectron Spectroscopy Database. NIST Standard Reference Database 20, Version 4.1, U.S. Secretary of Commerce on behalf of the United States of America, 2012. A.V. Naumkin, A. Kraut-Vass, S.W. Gaarenstroom, and C.J. Powell: NIST X-Ray Photoelectron Spectroscopy Database. NIST Standard Reference Database 20, Version 4.1, U.S. Secretary of Commerce on behalf of the United States of America, 2012.
34.
go back to reference J.F. Moulder, W.F. Stickle, P.E. Sobol, and K.D. Bomben: Handbook of X-Ray Photoelectron Spectroscopy, Physical Electronics USA, Inc., Chamhassen, MN, 1995. J.F. Moulder, W.F. Stickle, P.E. Sobol, and K.D. Bomben: Handbook of X-Ray Photoelectron Spectroscopy, Physical Electronics USA, Inc., Chamhassen, MN, 1995.
35.
go back to reference D.R. Baer, M.H. Egelhard, A.S. Lea, P. Nachimuthu, T.C. Drobay, J. Kin, B. Lee, C. Mathews, R.L. Opila, L.V. Saraf, W.F. Stickle, R.M. Walace, and B.S. Wright: J. Vac. Sci. Technol. A, 2010, vol. 28, pp. 1060–72.CrossRef D.R. Baer, M.H. Egelhard, A.S. Lea, P. Nachimuthu, T.C. Drobay, J. Kin, B. Lee, C. Mathews, R.L. Opila, L.V. Saraf, W.F. Stickle, R.M. Walace, and B.S. Wright: J. Vac. Sci. Technol. A, 2010, vol. 28, pp. 1060–72.CrossRef
36.
go back to reference I. Milosev, G. Zerjav, J.M. Calderon Moreno, and M. Popa: Electrochim. Acta, 2013, vol. 99, pp. 176–89.CrossRef I. Milosev, G. Zerjav, J.M. Calderon Moreno, and M. Popa: Electrochim. Acta, 2013, vol. 99, pp. 176–89.CrossRef
37.
go back to reference Y. Tanaka, M. Nakai, T. Akahori, M. Niinomi, Y. Tsutsumi, H. Doi, and T. Hanawa: Corros. Sci., 2008, vol. 50, pp. 2111–16.CrossRef Y. Tanaka, M. Nakai, T. Akahori, M. Niinomi, Y. Tsutsumi, H. Doi, and T. Hanawa: Corros. Sci., 2008, vol. 50, pp. 2111–16.CrossRef
38.
go back to reference M.T. Woldemedhin, D. Raabe, and A.W. Hassel: Electrochim. Acta, 2012, vol. 82, pp. 324–32.CrossRef M.T. Woldemedhin, D. Raabe, and A.W. Hassel: Electrochim. Acta, 2012, vol. 82, pp. 324–32.CrossRef
39.
go back to reference G. Zhao, Z. Schwartz, M. Wieland, F. Rupp, J. Geis-Gerstorfer, and D.L. Cochran: J. Biomed. Mater. Res., 2005, vol. 74, pp. 49–58.CrossRef G. Zhao, Z. Schwartz, M. Wieland, F. Rupp, J. Geis-Gerstorfer, and D.L. Cochran: J. Biomed. Mater. Res., 2005, vol. 74, pp. 49–58.CrossRef
40.
go back to reference R.A. Gittens, L. Schneider, and F. Rup: Acta Biomater., 2014, vol. 10, pp. 2907–18.CrossRef R.A. Gittens, L. Schneider, and F. Rup: Acta Biomater., 2014, vol. 10, pp. 2907–18.CrossRef
41.
go back to reference S. Tamilselvi, V. Raman, and N. Rajendran: Electrochim. Acta, 2006, vol. 52, pp. 839–46.CrossRef S. Tamilselvi, V. Raman, and N. Rajendran: Electrochim. Acta, 2006, vol. 52, pp. 839–46.CrossRef
42.
go back to reference J.W. Schultze and M.M. Lohrengel: Electrochim. Acta, 2000, vol. 45, pp. 2499–2513.CrossRef J.W. Schultze and M.M. Lohrengel: Electrochim. Acta, 2000, vol. 45, pp. 2499–2513.CrossRef
43.
go back to reference J. Black: Biological Performance of Materials: Fundamentals of Biocompatibility, M. Decker Inc., New York, NY, 1992. J. Black: Biological Performance of Materials: Fundamentals of Biocompatibility, M. Decker Inc., New York, NY, 1992.
44.
go back to reference D.J. Blackwood, A.W.C. Chua, K.H.W. Seah, and R. Thampuran: Corros. Sci., 2000, vol. 42, pp. 481–503.CrossRef D.J. Blackwood, A.W.C. Chua, K.H.W. Seah, and R. Thampuran: Corros. Sci., 2000, vol. 42, pp. 481–503.CrossRef
45.
go back to reference S.L. Assis, S. Wolynec, and I. Costa: Mater. Corros., 2008, vol. 59, pp. 739–43.CrossRef S.L. Assis, S. Wolynec, and I. Costa: Mater. Corros., 2008, vol. 59, pp. 739–43.CrossRef
46.
go back to reference A. Robin, O.A.S. Carvalho, S.G. Schneider, and S. Schneider: Mater. Corros., 2008, vol. 59, pp. 929–33.CrossRef A. Robin, O.A.S. Carvalho, S.G. Schneider, and S. Schneider: Mater. Corros., 2008, vol. 59, pp. 929–33.CrossRef
47.
go back to reference A.K. Shukla and R. Balasubramaniam: Corros. Sci., 2006, vol. 48, pp. 1696–1720.CrossRef A.K. Shukla and R. Balasubramaniam: Corros. Sci., 2006, vol. 48, pp. 1696–1720.CrossRef
48.
go back to reference S.L. Assis, S. Wolynec, and I. Costa: Electrochim. Acta, 2006, vol. 51, pp. 1815–19.CrossRef S.L. Assis, S. Wolynec, and I. Costa: Electrochim. Acta, 2006, vol. 51, pp. 1815–19.CrossRef
49.
50.
go back to reference N. Figueira, T.M. Silva, M.J. Carmezim, and J.C.S. Fernandes: Electrochim. Acta, 2009, vol. 54, pp. 921–26.CrossRef N. Figueira, T.M. Silva, M.J. Carmezim, and J.C.S. Fernandes: Electrochim. Acta, 2009, vol. 54, pp. 921–26.CrossRef
51.
go back to reference B.L. Wang, Y.F. Zheng, and L.C. Zhao: Mater. Corros., 2009, vol. 60, pp. 788–94.CrossRef B.L. Wang, Y.F. Zheng, and L.C. Zhao: Mater. Corros., 2009, vol. 60, pp. 788–94.CrossRef
52.
go back to reference M. Pourbaix: Atlas of Electrochemical Equilibria in Aqueous Solutions, NACE, Houston, TX, 1974. M. Pourbaix: Atlas of Electrochemical Equilibria in Aqueous Solutions, NACE, Houston, TX, 1974.
Metadata
Title
Microstructure, Surface Characterization, and Electrochemical Behavior of New Ti-Zr-Ta-Ag Alloy in Simulated Human Electrolyte
Authors
Cora Vasilescu
Silviu Iulian Drob
Petre Osiceanu
Jose Maria Calderon Moreno
Mariana Prodana
Daniela Ionita
Ioana Demetrescu
Maria Marcu
Ion Alexandru Popovici
Ecaterina Vasilescu
Publication date
24-10-2016
Publisher
Springer US
Published in
Metallurgical and Materials Transactions A / Issue 1/2017
Print ISSN: 1073-5623
Electronic ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-016-3774-2

Other articles of this Issue 1/2017

Metallurgical and Materials Transactions A 1/2017 Go to the issue

Premium Partners