Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 8/2020

27-02-2020

Microstructure, Thermal Stability during Creep and Fractography Study of Friction-Stir-Processed AA2024-T3 Aluminum Alloy

Authors: Michael Regev, Stefano Spigarelli

Published in: Journal of Materials Engineering and Performance | Issue 8/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Friction stir processing (FSP) makes it possible to obtain a stir zone with very fine grain size with the aid of severe plastic deformation. Yet using FSP, it is impossible to obtain a uniform cross section as far as the microstructure and mechanical properties are concerned. To reduce the effect of this limitation, in the current study, the material was processed on both sides, thus yielding a wider, rectangular and more homogenous stir zone. In a recent publication, the authors focused on the mechanical properties, thermal stability and transmission electron microscopy (TEM) study of friction-stir-processed AA2024-T3, comparing this alloy to the parent material. While the previous study mentioned focused on the parent and on the as friction-stir-processed material, the current study focuses on post-creep specimens and hence completes the previous one with microstructural processes occurring during creep. The current paper completes the above precipitate analysis using electron-dispersive x-ray spectroscopy (EDS) mapping of the various precipitates reported after exposure to creep temperatures. The TEM study reported in the current paper revealed the formation of dislocation structures during creep, in parallel to the dynamic recrystallization (DRX) reported by the authors in the past. In addition, fractography study indicated premature cracking as the prevailing failure mechanism as well as in the case of friction stir welded creep specimens.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference R.S. Mishra, M.W. Mahoney, S.X. McFadden, N.A. Mara, and A.K. Mukherjee, High Strain Rate Superplasticity in a Friction Stir Processed 7070 Al Alloy, Scr. Mater., 2000, 42(2), p 163–168CrossRef R.S. Mishra, M.W. Mahoney, S.X. McFadden, N.A. Mara, and A.K. Mukherjee, High Strain Rate Superplasticity in a Friction Stir Processed 7070 Al Alloy, Scr. Mater., 2000, 42(2), p 163–168CrossRef
2.
go back to reference N. Nadammal, S.V. Kailas, and S. Suwash, A Bottom-Up Approach for Optimization of Friction Stir Processing Parameters; a Study on Aluminium 2024-T3 Alloy, Mater. Des., 2015, 65, p 127–138CrossRef N. Nadammal, S.V. Kailas, and S. Suwash, A Bottom-Up Approach for Optimization of Friction Stir Processing Parameters; a Study on Aluminium 2024-T3 Alloy, Mater. Des., 2015, 65, p 127–138CrossRef
3.
go back to reference I. Charit and R.S. Mishra, High Strain Rate Superplasticity in a Commercial 2024 Al Alloy Via Friction Stir Processing, Mater. Sci. Eng. A, 2003, 359(1–2), p 290–296CrossRef I. Charit and R.S. Mishra, High Strain Rate Superplasticity in a Commercial 2024 Al Alloy Via Friction Stir Processing, Mater. Sci. Eng. A, 2003, 359(1–2), p 290–296CrossRef
4.
go back to reference A. Suri, A. Sahai, K.H. Raj, and N.K. Gupta, Impact and Tensile Testing of Al2024 Alloy Processed by Friction Stir Processing, Procedia Eng., 2017, 173, p 679–685CrossRef A. Suri, A. Sahai, K.H. Raj, and N.K. Gupta, Impact and Tensile Testing of Al2024 Alloy Processed by Friction Stir Processing, Procedia Eng., 2017, 173, p 679–685CrossRef
5.
go back to reference P. Cavaliere, Effect of Minor Sc and Zr Addition on the Mechanical Properties of Friction Stir Processed 2024 Aluminium Alloy, J. Mater. Sci., 2006, 41(13), p 4299–4302CrossRef P. Cavaliere, Effect of Minor Sc and Zr Addition on the Mechanical Properties of Friction Stir Processed 2024 Aluminium Alloy, J. Mater. Sci., 2006, 41(13), p 4299–4302CrossRef
6.
go back to reference N. Nadammal, S.V. Kailas, J. Szpunar, and S. Suwas, Microstructure and Texture Evolution during Single and Multiple-Pass Friction Stir Processing of Heat-Treatable Aluminum Alloy 2024, Metall. Mater. Trans. A, 2017, 48(9), p 4247–4261CrossRef N. Nadammal, S.V. Kailas, J. Szpunar, and S. Suwas, Microstructure and Texture Evolution during Single and Multiple-Pass Friction Stir Processing of Heat-Treatable Aluminum Alloy 2024, Metall. Mater. Trans. A, 2017, 48(9), p 4247–4261CrossRef
7.
go back to reference J.G. Ren, L. Wang, D.K. Xu, L.Y. Xie, and Z.C. Zhang, Analysis and Modeling of Friction Stir Processing-Based Crack Repairing in 2024 Aluminum Alloy, Acta Metall. Sin. (Engl. Lett.), 2017, 30(3), p 228–237CrossRef J.G. Ren, L. Wang, D.K. Xu, L.Y. Xie, and Z.C. Zhang, Analysis and Modeling of Friction Stir Processing-Based Crack Repairing in 2024 Aluminum Alloy, Acta Metall. Sin. (Engl. Lett.), 2017, 30(3), p 228–237CrossRef
8.
go back to reference D. Ghanbari, M. Kasiri Asgharani, and K. Amini, Investigating the Effect of Passes Number on Microstructural and Mechanical Properties of the Al2024/SiC Composite Produced by Friction Stir Processing, Mechanika, 2015, 21(6), p 430–436 D. Ghanbari, M. Kasiri Asgharani, and K. Amini, Investigating the Effect of Passes Number on Microstructural and Mechanical Properties of the Al2024/SiC Composite Produced by Friction Stir Processing, Mechanika, 2015, 21(6), p 430–436
9.
go back to reference I. El-Mahallawi, M.M.Z. Ahmed, A.A. Mahdy, A.M.M. Abdelmotagaly, W. Hoziefa, and M. Refat, Effect of Heat Treatment on Friction-Stir-Processed Nanodispersed AA7075 and 2024 Al Alloys, Friction Stir Welding and Processing IX, Friction Stir Welding and Processing IX, The Minerals, Metals & Materials Society, 1st ed., Y. Hovanski, R. Mishra, Y. Sato, P. Upadhyay, and D. Yan, Ed., Springer International Publishing, San Diego, 2017, p 297–309 I. El-Mahallawi, M.M.Z. Ahmed, A.A. Mahdy, A.M.M. Abdelmotagaly, W. Hoziefa, and M. Refat, Effect of Heat Treatment on Friction-Stir-Processed Nanodispersed AA7075 and 2024 Al Alloys, Friction Stir Welding and Processing IX, Friction Stir Welding and Processing IX, The Minerals, Metals & Materials Society, 1st ed., Y. Hovanski, R. Mishra, Y. Sato, P. Upadhyay, and D. Yan, Ed., Springer International Publishing, San Diego, 2017, p 297–309
10.
go back to reference N. Nadammal, S.V. Kailas, J. Szpunar, and S. Suwas, Restoration Mechanisms During the Friction Stir Processing, Metall. Mater. Trans. A, 2015, 46(7), p 2823–2828CrossRef N. Nadammal, S.V. Kailas, J. Szpunar, and S. Suwas, Restoration Mechanisms During the Friction Stir Processing, Metall. Mater. Trans. A, 2015, 46(7), p 2823–2828CrossRef
11.
go back to reference M. Regev and S. Spigarelli, Study of Mechanical, Microstructural and Thermal Stability Properties of Friction Stir Processed Aluminum 2024-T3 Alloy, Kovove Mater., 2019, 57(4), p 229–236 M. Regev and S. Spigarelli, Study of Mechanical, Microstructural and Thermal Stability Properties of Friction Stir Processed Aluminum 2024-T3 Alloy, Kovove Mater., 2019, 57(4), p 229–236
12.
go back to reference M. Regev, T. Rashkovsky, M. Cabibbo, and S. Spigarelli, Microstructure Stability During Creep of Friction Stir Welded AA2024-T3 Alloy, J. Mater. Eng. Perform., 2018, 27(10), p 5054–5063CrossRef M. Regev, T. Rashkovsky, M. Cabibbo, and S. Spigarelli, Microstructure Stability During Creep of Friction Stir Welded AA2024-T3 Alloy, J. Mater. Eng. Perform., 2018, 27(10), p 5054–5063CrossRef
13.
go back to reference E. Santecchia, M. Cabibbo, M. Ghat, M. Regev, and S. Spigarelli, Physical Modeling of the Creep Response of an Al-Cu-Mg Alloy With a Fine Microstructure Transformed by Friction Stir Processing, Mater. Sci. Eng. A, 2020, 769, p Article 138521CrossRef E. Santecchia, M. Cabibbo, M. Ghat, M. Regev, and S. Spigarelli, Physical Modeling of the Creep Response of an Al-Cu-Mg Alloy With a Fine Microstructure Transformed by Friction Stir Processing, Mater. Sci. Eng. A, 2020, 769, p Article 138521CrossRef
14.
go back to reference C. Paoletti, M. Regev, and S. Spigarelli, Modelling of Creep in Alloys Strengthened by Rod-Shaped Particles: Al-Cu-Mg Age-Hardenable Alloys, Metals, 2018, 8(11), p 930-1–930-18CrossRef C. Paoletti, M. Regev, and S. Spigarelli, Modelling of Creep in Alloys Strengthened by Rod-Shaped Particles: Al-Cu-Mg Age-Hardenable Alloys, Metals, 2018, 8(11), p 930-1–930-18CrossRef
Metadata
Title
Microstructure, Thermal Stability during Creep and Fractography Study of Friction-Stir-Processed AA2024-T3 Aluminum Alloy
Authors
Michael Regev
Stefano Spigarelli
Publication date
27-02-2020
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 8/2020
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-020-04696-y

Other articles of this Issue 8/2020

Journal of Materials Engineering and Performance 8/2020 Go to the issue

Premium Partners