Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 10/2022

28-03-2022 | Technical Article

Microstructures and Mechanical Properties of FeNiCrMnAl High-Entropy Alloys

Authors: Xicong Ye, Weiquan Xu, Zhe Li, Dong Xu, Wen Zhang, Bo Li, Dong Fang

Published in: Journal of Materials Engineering and Performance | Issue 10/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A series of novel Co-free [FeNi]75−xCr15Mn10Alx (x = 0, 5, 10, 15, 20, 25) high-entropy alloys (HEAs) was fabricated by nonconsumable vacuum melting. The solidification structure evolution and mechanical properties were investigated. The results show that with the gradual addition of Al atoms, the metallographic structure varies from a single FCC-phase cellular structure (Al-0, Al-5) to an FCC + B2 dual-phase dendritic structure (Al-10), then to an FCC + BCC + B2 multiphase lamellar structure (Al-15), and finally to a BCC + B2 dual-phase dendritic structure (Al-20, Al-25). The distinctive presence of white approximately spherical CrFe-rich BCC precipitates distributed on the NiAl-rich B2 matrix was observed in Al-20 and Al-25 alloys. In terms of mechanical properties, with an increasing Al content, the strength of the alloy increases, and the plasticity decreases. In particular, Al-20 and Al-25 alloys exhibited desirable mechanical properties and a good combination of high compressive compressibility strengths of 1590 MPa and 1660 MPa with excellent plasticity of 45 and 42%. Furthermore, the strengthening mechanism was classified as solution strengthening, fine crystal strengthening, and precipitation strengthening.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun et al., Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6(5), p 299–303. CrossRef J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun et al., Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6(5), p 299–303. CrossRef
2.
go back to reference B. Cantor, I.T.H. Chang, P. Knight and A.J.B. Vincent, Microstructural Development in Equiatomic Multicomponent Alloys, Mater. Sci. Eng. A, 2004, 375–377, p 213–218. CrossRef B. Cantor, I.T.H. Chang, P. Knight and A.J.B. Vincent, Microstructural Development in Equiatomic Multicomponent Alloys, Mater. Sci. Eng. A, 2004, 375–377, p 213–218. CrossRef
3.
go back to reference W.R. Wang, W.L. Wang, S.C. Wang, Y.C. Tsai et al., Effects of Al Addition on the Microstructure and Mechanical Property of AlxCoCrFeNi High-Entropy Alloys, Intermetallics, 2012, 26, p 44–51. CrossRef W.R. Wang, W.L. Wang, S.C. Wang, Y.C. Tsai et al., Effects of Al Addition on the Microstructure and Mechanical Property of AlxCoCrFeNi High-Entropy Alloys, Intermetallics, 2012, 26, p 44–51. CrossRef
4.
go back to reference T.F. Yang, S.Q. Xia, S. Liu et al., Effects of AL Addition on Microstructure and Mechanical Properties of AlxCoCrFeNi High-Entropy Alloy, Mater. Sci. Eng. A, 2015, 648, p 15–22. CrossRef T.F. Yang, S.Q. Xia, S. Liu et al., Effects of AL Addition on Microstructure and Mechanical Properties of AlxCoCrFeNi High-Entropy Alloy, Mater. Sci. Eng. A, 2015, 648, p 15–22. CrossRef
5.
go back to reference J.W. Yeh, C.Y. Liang, et al., High-Entropy Alloys—A New Era of Exploitation, in Material Science Forum (2007). J.W. Yeh, C.Y. Liang, et al., High-Entropy Alloys—A New Era of Exploitation, in Material Science Forum (2007).
6.
go back to reference Y. Zhang, Y.J. Zhou, J.P. Lin et al., Solid-Solution Phase Formation Rules for Multi-component Alloys, Adv. Eng. Mater., 2008, 10(6), p 534–538. CrossRef Y. Zhang, Y.J. Zhou, J.P. Lin et al., Solid-Solution Phase Formation Rules for Multi-component Alloys, Adv. Eng. Mater., 2008, 10(6), p 534–538. CrossRef
7.
go back to reference X. Ye et al., A New Infinite Solid Solution Strategy to Design Eutectic High Entropy Alloys with B2 and BCC Structure, Scr. Mater., 2021, 199, p 113886. CrossRef X. Ye et al., A New Infinite Solid Solution Strategy to Design Eutectic High Entropy Alloys with B2 and BCC Structure, Scr. Mater., 2021, 199, p 113886. CrossRef
8.
go back to reference M. Wang, Y. Lu, T. Wang, C. Zhang, Z. Cao, T. Li and P.K. Liaw, A Novel Bulk Eutectic High-Entropy Alloy with Outstanding As-cast Specific Yield Strengths at Elevated Temperatures, Scr. Mater, 2021, 204(2021), p 114132. CrossRef M. Wang, Y. Lu, T. Wang, C. Zhang, Z. Cao, T. Li and P.K. Liaw, A Novel Bulk Eutectic High-Entropy Alloy with Outstanding As-cast Specific Yield Strengths at Elevated Temperatures, Scr. Mater, 2021, 204(2021), p 114132. CrossRef
9.
go back to reference Y. Lu, Y. Dong, H. Jiang, Z. Wang, Z. Cao, S. Guo and P.K. Liaw, Promising Properties and Future Trend of Eutectic High Entropy Alloys, Scr. Mater, 2020, 187(2021), p 202. CrossRef Y. Lu, Y. Dong, H. Jiang, Z. Wang, Z. Cao, S. Guo and P.K. Liaw, Promising Properties and Future Trend of Eutectic High Entropy Alloys, Scr. Mater, 2020, 187(2021), p 202. CrossRef
10.
go back to reference M. Wang, H. Cui, Y. Zhao, C. Wang, N. Wei, X. Gao and Q. Song, Enhanced Strength and Ductility in a Spark Plasma Sintered CoCrCu0.5NiAl0.5 High-Entropy Alloy via a Double-Step Ball Milling Approach for Processing Powders, Mater. Sci. Eng. A, 2019, 762(2019), p 138071. CrossRef M. Wang, H. Cui, Y. Zhao, C. Wang, N. Wei, X. Gao and Q. Song, Enhanced Strength and Ductility in a Spark Plasma Sintered CoCrCu0.5NiAl0.5 High-Entropy Alloy via a Double-Step Ball Milling Approach for Processing Powders, Mater. Sci. Eng. A, 2019, 762(2019), p 138071. CrossRef
11.
go back to reference R. Feng, C. Zhang, M.C. Gao et al., High-Throughput Design of High-Performance Lightweight High-Entropy Alloys, Nat. Commun, 2021, 12, p 1–10. CrossRef R. Feng, C. Zhang, M.C. Gao et al., High-Throughput Design of High-Performance Lightweight High-Entropy Alloys, Nat. Commun, 2021, 12, p 1–10. CrossRef
12.
go back to reference Z.W. Wang, I. Baker et al., The Effect of Interstitial Carbon on the Mechanical Properties and Dislocation Substructure Evolution in Fe40.4Ni11.3Mn34.8Al7.5Cr6 High Entropy Alloys, Acta Mater., 2016, 120, p 228–239. CrossRef Z.W. Wang, I. Baker et al., The Effect of Interstitial Carbon on the Mechanical Properties and Dislocation Substructure Evolution in Fe40.4Ni11.3Mn34.8Al7.5Cr6 High Entropy Alloys, Acta Mater., 2016, 120, p 228–239. CrossRef
13.
go back to reference N. Gao, D.H. Lu, Y.Y. Zhao et al., Strengthening of a CrMnFeCoNi High-Entropy Alloy by Carbide Precipitation, J. Alloys Compd., 2019, 792, p 1028–1035. CrossRef N. Gao, D.H. Lu, Y.Y. Zhao et al., Strengthening of a CrMnFeCoNi High-Entropy Alloy by Carbide Precipitation, J. Alloys Compd., 2019, 792, p 1028–1035. CrossRef
14.
go back to reference Z. Zhang, M.M. Mao, J.W. Wang et al., Nanoscale Origins of the Damage Tolerance of the High-Entropy Alloy CrMnFeCoNi, Nat. Commun., 2015, 6(1), p 10143–10143. CrossRef Z. Zhang, M.M. Mao, J.W. Wang et al., Nanoscale Origins of the Damage Tolerance of the High-Entropy Alloy CrMnFeCoNi, Nat. Commun., 2015, 6(1), p 10143–10143. CrossRef
15.
go back to reference H.T. Jeong and W.J. Kim, Microstructures and Mechanical Properties of the Non-equiatomic FeMnNiCoCr High Entropy Alloy Processed by Differential Speed Rolling, Mater. Sci. Eng. A, 2018, 727(6), p 38–42. H.T. Jeong and W.J. Kim, Microstructures and Mechanical Properties of the Non-equiatomic FeMnNiCoCr High Entropy Alloy Processed by Differential Speed Rolling, Mater. Sci. Eng. A, 2018, 727(6), p 38–42.
16.
go back to reference D.X. Wei, X.Q. Li, S. Schönecker, J. Jiang, W.M. Choi, B.J. Joo Lee, H.S. Kim, A. Chiba and H. Kato, Development of Strong and Ductile Metastable Face-Centered Cubic Single-Phase High-Entropy Alloys, Acta Mater., 2019, 181, p 318–330. CrossRef D.X. Wei, X.Q. Li, S. Schönecker, J. Jiang, W.M. Choi, B.J. Joo Lee, H.S. Kim, A. Chiba and H. Kato, Development of Strong and Ductile Metastable Face-Centered Cubic Single-Phase High-Entropy Alloys, Acta Mater., 2019, 181, p 318–330. CrossRef
17.
go back to reference Z.M. Li, K.G. Pradeep, Y. Deng, D. Raabe and C.C. Tasan, Metastable High-Entropy Dual-Phase Alloys Overcome the Strength–Ductility Trade-Off, Nature, 2016, 534, p 227–230. CrossRef Z.M. Li, K.G. Pradeep, Y. Deng, D. Raabe and C.C. Tasan, Metastable High-Entropy Dual-Phase Alloys Overcome the Strength–Ductility Trade-Off, Nature, 2016, 534, p 227–230. CrossRef
18.
go back to reference N.A.P. Kumar, C. Li, K.J. Leonard et al., Microstructural Stability and Mechanical Behavior of FeNiMnCr High Entropy Alloy under Ion Irradiation, Acta Mater., 2016, 113, p 230–244. CrossRef N.A.P. Kumar, C. Li, K.J. Leonard et al., Microstructural Stability and Mechanical Behavior of FeNiMnCr High Entropy Alloy under Ion Irradiation, Acta Mater., 2016, 113, p 230–244. CrossRef
19.
go back to reference Z. Wu and H. Bei, Microstructures and Mechanical Properties of Compositionally Complex Co-free FeNiMnCr18 FCC Solid Solution Alloy, Mater. Sci. Eng. A, 2015, 640(29), p 217–224. CrossRef Z. Wu and H. Bei, Microstructures and Mechanical Properties of Compositionally Complex Co-free FeNiMnCr18 FCC Solid Solution Alloy, Mater. Sci. Eng. A, 2015, 640(29), p 217–224. CrossRef
20.
go back to reference Y.L. Zhao, T. Yang, J.H. Zhu et al., Development of High-Strength Co-free High-Entropy Alloys Hardened by Nanosized Precipitates, Scripta. Mater., 2018, 148(15), p 51–55. CrossRef Y.L. Zhao, T. Yang, J.H. Zhu et al., Development of High-Strength Co-free High-Entropy Alloys Hardened by Nanosized Precipitates, Scripta. Mater., 2018, 148(15), p 51–55. CrossRef
21.
go back to reference M. Wang et al., A Simple Strategy for Fabrication of an FCC-Based Complex Concentrated Alloy Coating with Hierarchical Nanoprecipitates and Enhanced Mechanical Properties, Mater. Des., 2019, 180, p 107893. CrossRef M. Wang et al., A Simple Strategy for Fabrication of an FCC-Based Complex Concentrated Alloy Coating with Hierarchical Nanoprecipitates and Enhanced Mechanical Properties, Mater. Des., 2019, 180, p 107893. CrossRef
22.
go back to reference K.S. Ming, X.F. Bi and J. Wang, Microstructures and Deformation Mechanisms of Cr26Mn20Fe20Co20Ni14 Alloys, Mater. Charact., 2017, 134, p 194–201. CrossRef K.S. Ming, X.F. Bi and J. Wang, Microstructures and Deformation Mechanisms of Cr26Mn20Fe20Co20Ni14 Alloys, Mater. Charact., 2017, 134, p 194–201. CrossRef
23.
go back to reference A. Munitz, L. Meshi and M.J. Kaufman, Heat Treatments’ Effects on the Microstructure and Mechanical Properties of an Equiatomic Al-Cr-Fe-Mn-Ni High Entropy Alloy, Mater. Sci. Eng. A, 2017, 689(24), p 384–394. CrossRef A. Munitz, L. Meshi and M.J. Kaufman, Heat Treatments’ Effects on the Microstructure and Mechanical Properties of an Equiatomic Al-Cr-Fe-Mn-Ni High Entropy Alloy, Mater. Sci. Eng. A, 2017, 689(24), p 384–394. CrossRef
24.
go back to reference S. Wang, Z. Chen, L.C. Feng et al., Nano-phase Formation Accompanying Phase Separation in Undercooled CoCrCuFeNi-3 at.% Sn High Entropy Alloy, Mater. Charact., 2018, 144, p 516–521. CrossRef S. Wang, Z. Chen, L.C. Feng et al., Nano-phase Formation Accompanying Phase Separation in Undercooled CoCrCuFeNi-3 at.% Sn High Entropy Alloy, Mater. Charact., 2018, 144, p 516–521. CrossRef
25.
go back to reference Z.W. Wang and I. Baker, Interstitial Strengthening of a fcc FeNiMnAlCr High Entropy Alloy, Mater. Lett., 2016, 180(1), p 153–156. CrossRef Z.W. Wang and I. Baker, Interstitial Strengthening of a fcc FeNiMnAlCr High Entropy Alloy, Mater. Lett., 2016, 180(1), p 153–156. CrossRef
26.
go back to reference S.S. Chen, H. Oh, B. Gludovatz et al., Real-Time Observations of TRIP-Induced Ultrahigh Strain Hardening in a Dual-Phase CrMnFeCoNi High-Entropy Alloy, Nat. Commun., 2020, 11(1), p 826. CrossRef S.S. Chen, H. Oh, B. Gludovatz et al., Real-Time Observations of TRIP-Induced Ultrahigh Strain Hardening in a Dual-Phase CrMnFeCoNi High-Entropy Alloy, Nat. Commun., 2020, 11(1), p 826. CrossRef
27.
go back to reference Y. Lu et al., Directly Cast Bulk Eutectic and Near-Eutectic High Entropy Alloys with Balanced Strength and Ductility in a Wide Temperature Range, Acta Mater, 2017, 124, p 143–150. CrossRef Y. Lu et al., Directly Cast Bulk Eutectic and Near-Eutectic High Entropy Alloys with Balanced Strength and Ductility in a Wide Temperature Range, Acta Mater, 2017, 124, p 143–150. CrossRef
28.
go back to reference M. Wang et al., A Novel High-Entropy Alloy Composite Coating with Core-Shell Structures Prepared by Plasma Cladding, Vacuum, 2021, 184, p 109905. CrossRef M. Wang et al., A Novel High-Entropy Alloy Composite Coating with Core-Shell Structures Prepared by Plasma Cladding, Vacuum, 2021, 184, p 109905. CrossRef
29.
go back to reference J. Josepg, N. Stanford, P. Hodgson et al., Understanding the Mechanical Behaviour and the Large Strength/Ductility Differences Between FCC and BCC AlxCoCrFeNi High Entropy Alloys, J. Alloys Compd., 2017, 726(5), p 885–895. J. Josepg, N. Stanford, P. Hodgson et al., Understanding the Mechanical Behaviour and the Large Strength/Ductility Differences Between FCC and BCC AlxCoCrFeNi High Entropy Alloys, J. Alloys Compd., 2017, 726(5), p 885–895.
30.
go back to reference C.J. Tong, Y.L. Chen, J.W. Yeh et al., Microstructure Characterization of Al x CoCrCuFeNi High-Entropy Alloy System with Multiprincipal Elements, Metall. Mater. Trans. A, 2005, 36(4), p 881–893. CrossRef C.J. Tong, Y.L. Chen, J.W. Yeh et al., Microstructure Characterization of Al x CoCrCuFeNi High-Entropy Alloy System with Multiprincipal Elements, Metall. Mater. Trans. A, 2005, 36(4), p 881–893. CrossRef
31.
go back to reference J.Y. He, W.H. Liu et al., Effects of Al Addition on Structural Evolution and Tensile Properties of the FeCoNiCrMn High-Entropy Alloy System, Acta Mater., 2014, 62, p 105–113. CrossRef J.Y. He, W.H. Liu et al., Effects of Al Addition on Structural Evolution and Tensile Properties of the FeCoNiCrMn High-Entropy Alloy System, Acta Mater., 2014, 62, p 105–113. CrossRef
32.
go back to reference D.G. Shaysultanov, G.A. Salishchev et al., Novel Fe36Mn21Cr18Ni15Al10 High Entropy Alloy with bcc/B2 Dual-Phase Structure, J. Alloys Compd., 2017, 705(25), p 756–763. CrossRef D.G. Shaysultanov, G.A. Salishchev et al., Novel Fe36Mn21Cr18Ni15Al10 High Entropy Alloy with bcc/B2 Dual-Phase Structure, J. Alloys Compd., 2017, 705(25), p 756–763. CrossRef
33.
go back to reference M. Wu and I. Baker, High strength and high ductility in a novel Fe40.2Ni11.3Mn30Al7.5Cr11 multiphase high entropy alloy, J. Alloys Compd., 2020, 820, p 153–181. CrossRef M. Wu and I. Baker, High strength and high ductility in a novel Fe40.2Ni11.3Mn30Al7.5Cr11 multiphase high entropy alloy, J. Alloys Compd., 2020, 820, p 153–181. CrossRef
34.
go back to reference Z. Xiang, Y.Z. Min, W. Gang, H.Z. Qi. Experimental Measurement and Computer Simulation for TTT Curve of 6063 Aluminum Alloy. Alum. Fabri. 2011, 203, p 11–15. Z. Xiang, Y.Z. Min, W. Gang, H.Z. Qi. Experimental Measurement and Computer Simulation for TTT Curve of 6063 Aluminum Alloy. Alum. Fabri. 2011, 203, p 11–15.
35.
go back to reference Z.Y. Li, L.M. Fu et al., Improving Mechanical Properties of an FCC High-Entropy Alloy by γ′ and B2 Precipitates Strengthening, Mater. Charact., 2020, 159, p 109989. CrossRef Z.Y. Li, L.M. Fu et al., Improving Mechanical Properties of an FCC High-Entropy Alloy by γ′ and B2 Precipitates Strengthening, Mater. Charact., 2020, 159, p 109989. CrossRef
36.
go back to reference D.B. Miracle, Overview No. 104 The Physical and Mechanical Properties of NiAl, Acta Metal. Mater., 1993, 41(3), p 649–684. CrossRef D.B. Miracle, Overview No. 104 The Physical and Mechanical Properties of NiAl, Acta Metal. Mater., 1993, 41(3), p 649–684. CrossRef
37.
go back to reference Q.W. Tian, G.J. Zhang, K.X. Yin et al., The Strengthening Effects of Relatively Lightweight AlCoCrFeNi High Entropy Alloy, Mater. Charact., 2019, 151, p 302–309. CrossRef Q.W. Tian, G.J. Zhang, K.X. Yin et al., The Strengthening Effects of Relatively Lightweight AlCoCrFeNi High Entropy Alloy, Mater. Charact., 2019, 151, p 302–309. CrossRef
38.
go back to reference Y.Z. Shi, L. Collins, R. Feng et al., Homogenization of AlxCoCrFeNi High-Entropy Alloys with Improved Corrosion Resistance, Corros. Sci., 2018, 133(1), p 120–131. CrossRef Y.Z. Shi, L. Collins, R. Feng et al., Homogenization of AlxCoCrFeNi High-Entropy Alloys with Improved Corrosion Resistance, Corros. Sci., 2018, 133(1), p 120–131. CrossRef
39.
go back to reference J.Y. He, H. Wang et al., A Precipitation-Hardened High-Entropy Alloy with Outstanding Tensile Properties, Acta Mater., 2016, 102, p 187–196. CrossRef J.Y. He, H. Wang et al., A Precipitation-Hardened High-Entropy Alloy with Outstanding Tensile Properties, Acta Mater., 2016, 102, p 187–196. CrossRef
40.
go back to reference S.Z. Niu, H.C. Kou et al., Strengthening of Nanoprecipitations in an Annealed Al0.5CoCrFeNi High Entropy Alloy, Mater. Sci. Eng. A, 2016, 671, p 82–86. CrossRef S.Z. Niu, H.C. Kou et al., Strengthening of Nanoprecipitations in an Annealed Al0.5CoCrFeNi High Entropy Alloy, Mater. Sci. Eng. A, 2016, 671, p 82–86. CrossRef
41.
go back to reference Y. Ma, B.B. Jiang et al., The BCC/B2 Morphologies in AlxNiCoFeCr High-Entropy Alloys, Matals, 2017, 7(2), p 57. Y. Ma, B.B. Jiang et al., The BCC/B2 Morphologies in AlxNiCoFeCr High-Entropy Alloys, Matals, 2017, 7(2), p 57.
42.
go back to reference C.C. Tung, J.W. Yeh, T.T. Shun et al., On the Elemental Effect of AlCoCrCuFeNi High-Entropy Alloy System, Mater. Lett., 2007, 61(1), p 1–5. CrossRef C.C. Tung, J.W. Yeh, T.T. Shun et al., On the Elemental Effect of AlCoCrCuFeNi High-Entropy Alloy System, Mater. Lett., 2007, 61(1), p 1–5. CrossRef
43.
go back to reference R.B. Li, W.W. Zhang, Y. Zhang et al., The Effects of Phase Transformation on the Microstructure and Mechanical Behavior of FeNiMnCr.75Alx High-Entropy Alloys, Mater. Sci. Eng. A, 2018, 725(16), p 138–147. CrossRef R.B. Li, W.W. Zhang, Y. Zhang et al., The Effects of Phase Transformation on the Microstructure and Mechanical Behavior of FeNiMnCr.75Alx High-Entropy Alloys, Mater. Sci. Eng. A, 2018, 725(16), p 138–147. CrossRef
44.
go back to reference C. Liu, W.Y. Peng et al., Composition and Phase Structure Dependence of Mechanical and Magnetic Properties for AlCoCuFeNix High Entropy Alloys, J. Mater. Sci. Tech., 2019, 35(6), p 1175–1183. CrossRef C. Liu, W.Y. Peng et al., Composition and Phase Structure Dependence of Mechanical and Magnetic Properties for AlCoCuFeNix High Entropy Alloys, J. Mater. Sci. Tech., 2019, 35(6), p 1175–1183. CrossRef
45.
go back to reference S. Guo, C. Ng et al., Effect of Valence Electron Concentration on Stability of fcc or bcc Phase in High Entropy Alloys, J. App. Phys., 2011, 109(10), p 103505. CrossRef S. Guo, C. Ng et al., Effect of Valence Electron Concentration on Stability of fcc or bcc Phase in High Entropy Alloys, J. App. Phys., 2011, 109(10), p 103505. CrossRef
46.
go back to reference X. Yang and Y. Zhang, Prediction of High-Entropy Stabilized Solid-Solution in Multi-component Alloys, Mater. Chem. Phy., 2012, 132(2–3), p 233–238. CrossRef X. Yang and Y. Zhang, Prediction of High-Entropy Stabilized Solid-Solution in Multi-component Alloys, Mater. Chem. Phy., 2012, 132(2–3), p 233–238. CrossRef
47.
go back to reference M.G. Poletti and L. Battezzati, Electronic and Thermodynamic Criteria for the Occurrence of High Entropy Alloys in Metallic Systems, Acta Mater., 2014, 75, p 197–306. CrossRef M.G. Poletti and L. Battezzati, Electronic and Thermodynamic Criteria for the Occurrence of High Entropy Alloys in Metallic Systems, Acta Mater., 2014, 75, p 197–306. CrossRef
48.
go back to reference Y. Dong, Y.P. Lu et al., Effects of Electro-negativity on the Stability of Topologically Close-Packed Phase in High Entropy Alloys, Intermetallics, 2014, 52, p 105–109. CrossRef Y. Dong, Y.P. Lu et al., Effects of Electro-negativity on the Stability of Topologically Close-Packed Phase in High Entropy Alloys, Intermetallics, 2014, 52, p 105–109. CrossRef
49.
go back to reference N.D. Stepanov, D.G. Shaysultanov et al., Effect of Al on Structure and Mechanical Properties of Fe-Mn-Cr-Ni-Al Non-equiatomic High Entropy Alloys with High Fe Content, J. Alloys Compd., 2019, 770(5), p 194–203. CrossRef N.D. Stepanov, D.G. Shaysultanov et al., Effect of Al on Structure and Mechanical Properties of Fe-Mn-Cr-Ni-Al Non-equiatomic High Entropy Alloys with High Fe Content, J. Alloys Compd., 2019, 770(5), p 194–203. CrossRef
Metadata
Title
Microstructures and Mechanical Properties of FeNiCrMnAl High-Entropy Alloys
Authors
Xicong Ye
Weiquan Xu
Zhe Li
Dong Xu
Wen Zhang
Bo Li
Dong Fang
Publication date
28-03-2022
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 10/2022
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-022-06805-5

Other articles of this Issue 10/2022

Journal of Materials Engineering and Performance 10/2022 Go to the issue

Premium Partners