Skip to main content
Top

2020 | OriginalPaper | Chapter

6. Microsystems Material Properties

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Chapter 6 reviews some of the important properties of the most commonly used materials in microsystems manufacturing. It is explained that the material properties are dependent on the processing conditions, and since many process sequences are customized, there is often insufficient knowledge of the properties during development. Most attention is given to two specific material properties, namely, Young’s modulus and residual stress, due to the fact that these usually have an important impact on the behavior of MEMS devices and the fact that these properties can vary quite significantly depending on the processing conditions. The use of test structures, including both mechanical and electrical, for measuring various material properties is explained. A review of the material properties for some of the most commonly used materials in microsystems manufacturing is then provided including semiconductors; dielectrics; and metals. The purpose of providing information about reported values of Young’s modulus and residual stress in deposited thin-film layers is to give an appreciation of the amount that these properties can vary with processing conditions and some guidance about the ranges that these properties may span.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
It should be noted that many bulk semiconductor materials exhibit anisotropic material properties whereby the material properties vary depending on the orientation of the crystal lattice of the semiconductor. However, this is different from what is being discussed in this chapter.
 
2
It should be noted that this may not be true over any temperature. For example, silicon when loaded at elevated temperatures, typically above 600 °C, can display plastic deformation.
 
3
This assumes the dopants are substitutional in the silicon lattice. Interstitial doping may result in films with different stress states [4].
 
Literature
1.
go back to reference R. Ghodsi, P. Lin (eds.), MEMS Materials and Process Handbook (Springer, New York, 2011) R. Ghodsi, P. Lin (eds.), MEMS Materials and Process Handbook (Springer, New York, 2011)
2.
go back to reference E.P. Popov, Introduction to the Mechanics of Solids (Prentice-Hall, Englewood Cliffs, 1968) E.P. Popov, Introduction to the Mechanics of Solids (Prentice-Hall, Englewood Cliffs, 1968)
3.
go back to reference M. Ohring, The Materials Science of Thin Films (Academic Press, London, 1992)MATH M. Ohring, The Materials Science of Thin Films (Academic Press, London, 1992)MATH
4.
go back to reference M. Huff, A thermally isolated microstructure suitable for gas sensing applications, S.M. Thesis, MIT, 1988 M. Huff, A thermally isolated microstructure suitable for gas sensing applications, S.M. Thesis, MIT, 1988
5.
go back to reference S. Senturia, Can we design microrobotic devices without knowing the mechanical properties of the materials? Micro robots and teleoperators workshop, Hyannis, 1987 S. Senturia, Can we design microrobotic devices without knowing the mechanical properties of the materials? Micro robots and teleoperators workshop, Hyannis, 1987
6.
go back to reference W.C.K. Tang, Ph.D. thesis, University of California at Berkeley, 1990 W.C.K. Tang, Ph.D. thesis, University of California at Berkeley, 1990
7.
go back to reference L. Lin, Ph.D. thesis, University of California at Berkeley, 1993 L. Lin, Ph.D. thesis, University of California at Berkeley, 1993
8.
go back to reference H. Guckel, T. Randazzo, D.W. Burns, A simple technique for the determination of mechanical strain in thin films with application to polysilicon. J. Appl. Phys. 57, 1671 (1985)CrossRef H. Guckel, T. Randazzo, D.W. Burns, A simple technique for the determination of mechanical strain in thin films with application to polysilicon. J. Appl. Phys. 57, 1671 (1985)CrossRef
9.
go back to reference W.H. Chu, M. Mehregany, X. Ning, P. Pirouz, Measurement of residual stress-induced bending moment of p+ silicon films. Mater. Res. Soc. Symp. 239, 169 (1992)CrossRef W.H. Chu, M. Mehregany, X. Ning, P. Pirouz, Measurement of residual stress-induced bending moment of p+ silicon films. Mater. Res. Soc. Symp. 239, 169 (1992)CrossRef
10.
go back to reference W.C. Oliver, G.M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 3 (2004)CrossRef W.C. Oliver, G.M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 3 (2004)CrossRef
11.
go back to reference S. Wolf, R.N. Tauber, Silicon Processing for the VLSI Era, Volume 1-Process Technology (Lattice Press, Sunset Beach, 1986) S. Wolf, R.N. Tauber, Silicon Processing for the VLSI Era, Volume 1-Process Technology (Lattice Press, Sunset Beach, 1986)
12.
go back to reference E.H. Nicollian, J.R. Brews, MOS Physics and Technology (Wiley, New York, 2002) E.H. Nicollian, J.R. Brews, MOS Physics and Technology (Wiley, New York, 2002)
14.
go back to reference J. Leconte, F. Iker, S. Jorez, N. Andre, J. Proost, T. Pardoen, D. Flandre, J.P. Raskin, Thin films stress extraction using micromachined structures and wafer curvature measurements. Microelectron. Eng. 76, 219–226 (2004)CrossRef J. Leconte, F. Iker, S. Jorez, N. Andre, J. Proost, T. Pardoen, D. Flandre, J.P. Raskin, Thin films stress extraction using micromachined structures and wafer curvature measurements. Microelectron. Eng. 76, 219–226 (2004)CrossRef
15.
go back to reference J. Yang, J. Gaspar, O. Paul, Fracture properties of LPCVD silicon nitride and thermally grown silicon oxide thin films from the load-deflection of long Si3N4 and SiO2/Si3N4 diaphragms. J. Microelectromech. Syst. 17, 1120–1134 (2008)CrossRef J. Yang, J. Gaspar, O. Paul, Fracture properties of LPCVD silicon nitride and thermally grown silicon oxide thin films from the load-deflection of long Si3N4 and SiO2/Si3N4 diaphragms. J. Microelectromech. Syst. 17, 1120–1134 (2008)CrossRef
16.
go back to reference T. Kamins, Polycrystalline Silicon for Integrated Circuits and Displays, 2nd edn. (Kluwer, Boston, 1998)CrossRef T. Kamins, Polycrystalline Silicon for Integrated Circuits and Displays, 2nd edn. (Kluwer, Boston, 1998)CrossRef
17.
go back to reference G. Fresquet, C. Azzaro, J.P. Couderc, Analysis and modeling of in situ boron-doped polysilicon deposition by LPCVD. J. Electrochem. Soc. 142, 538 (1995)CrossRef G. Fresquet, C. Azzaro, J.P. Couderc, Analysis and modeling of in situ boron-doped polysilicon deposition by LPCVD. J. Electrochem. Soc. 142, 538 (1995)CrossRef
18.
go back to reference M. Biebl, G.T. Mulhern, R.T. Howe, In situ phosphorus-doped polysilicon for integrated MEMS, technical digest, in 8th International Conference on Solid-State Sensors and Actuators, Eurosensors IX, Stockholm, Sweden, pp. 198–201, 1995 M. Biebl, G.T. Mulhern, R.T. Howe, In situ phosphorus-doped polysilicon for integrated MEMS, technical digest, in 8th International Conference on Solid-State Sensors and Actuators, Eurosensors IX, Stockholm, Sweden, pp. 198–201, 1995
19.
go back to reference J.G.M. Mulder, P. Eppenga, M. Hendriks, J.E. Tong, An industrial LPCVD process for in situ phosphorus-doped polysilicon. J. Electrochem. Soc. 137, 273 (1990)CrossRef J.G.M. Mulder, P. Eppenga, M. Hendriks, J.E. Tong, An industrial LPCVD process for in situ phosphorus-doped polysilicon. J. Electrochem. Soc. 137, 273 (1990)CrossRef
20.
go back to reference S. Bouwstra, E.L. de Weerd, M.C. Elwenspoek, In situ phosphorus-doped polysilicon for excitation and detection in micromechanical resonators. Sens. Actuators A 24, 227–235 (1990)CrossRef S. Bouwstra, E.L. de Weerd, M.C. Elwenspoek, In situ phosphorus-doped polysilicon for excitation and detection in micromechanical resonators. Sens. Actuators A 24, 227–235 (1990)CrossRef
21.
go back to reference R.C. Anderson, R.S. Muller, C.W. Tobias, Porous polycrystalline silicon: A new material for MEMS. J. Microelectromech. Syst. 3, 10–18 (1994)CrossRef R.C. Anderson, R.S. Muller, C.W. Tobias, Porous polycrystalline silicon: A new material for MEMS. J. Microelectromech. Syst. 3, 10–18 (1994)CrossRef
22.
go back to reference L. Elbrecht, R. Catanescu, J. Zacheja, J. Binder, Highly phosphorus-doped polysilicon films with low tensile stress for surface micromachining using POCl3 diffusion doping. Sens. Actuators A 61, 374–378 (1997)CrossRef L. Elbrecht, R. Catanescu, J. Zacheja, J. Binder, Highly phosphorus-doped polysilicon films with low tensile stress for surface micromachining using POCl3 diffusion doping. Sens. Actuators A 61, 374–378 (1997)CrossRef
23.
go back to reference J.J. McMahon, J.M. Melzak, C.A. Zorman, J. Chung, M. Mehregany, Deposition and characterization of in-situ boron doped polycrystalline silicon films for microelectromechanical systems applications. Mater. Res. Symp. Proc. 605, 31–36 (2000)CrossRef J.J. McMahon, J.M. Melzak, C.A. Zorman, J. Chung, M. Mehregany, Deposition and characterization of in-situ boron doped polycrystalline silicon films for microelectromechanical systems applications. Mater. Res. Symp. Proc. 605, 31–36 (2000)CrossRef
24.
go back to reference L. Chen, J. Miao, L. Guo, R. Lin, Control of stress in highly doped polysilicon multi-layer diaphragm structure. Surf. Coat. Technol. 141, 96–102 (2001)CrossRef L. Chen, J. Miao, L. Guo, R. Lin, Control of stress in highly doped polysilicon multi-layer diaphragm structure. Surf. Coat. Technol. 141, 96–102 (2001)CrossRef
25.
go back to reference Y.B. Gianchandani, M. Shinn, K. Najafi, Impact of high-thermal budget anneals on polysilicon as a micromechanical material. J. Microelectromech. Syst. 7, 102–105 (1998)CrossRef Y.B. Gianchandani, M. Shinn, K. Najafi, Impact of high-thermal budget anneals on polysilicon as a micromechanical material. J. Microelectromech. Syst. 7, 102–105 (1998)CrossRef
26.
go back to reference J. Yang, H. Kahn, A.Q. He, S.M. Phillips, A.H. Heuer, A new technique for producing large-area as-deposited zero-stress LPCVD polysilicon films: The multipoly process. J. Microelectromech. Syst. 9, 485–494 (2000)CrossRef J. Yang, H. Kahn, A.Q. He, S.M. Phillips, A.H. Heuer, A new technique for producing large-area as-deposited zero-stress LPCVD polysilicon films: The multipoly process. J. Microelectromech. Syst. 9, 485–494 (2000)CrossRef
27.
go back to reference G.M. Dougherty, A.P. Pisano, T.D. Sands, Processing and morphology of permeable polycrystalline silicon thin films. J. Mater. Res. 17, 2235–2242 (2002)CrossRef G.M. Dougherty, A.P. Pisano, T.D. Sands, Processing and morphology of permeable polycrystalline silicon thin films. J. Mater. Res. 17, 2235–2242 (2002)CrossRef
28.
go back to reference G.M. Dougherty, T.D. Sands, A.P. Pisano, Microfabrication using one-step LPCVD porous polysilicon films. J. Microelectromech. Syst. 12, 418–424 (2003)CrossRef G.M. Dougherty, T.D. Sands, A.P. Pisano, Microfabrication using one-step LPCVD porous polysilicon films. J. Microelectromech. Syst. 12, 418–424 (2003)CrossRef
29.
go back to reference D. Maier-Schneider, J. Maibach, E. Obermeier, D. Schneider, Variations in Young’s modulus and intrinsic stress of LPCVD-polysilicon due to high-temperature annealing. J. Micromech. Microeng. 5, 121–124 (1995)CrossRef D. Maier-Schneider, J. Maibach, E. Obermeier, D. Schneider, Variations in Young’s modulus and intrinsic stress of LPCVD-polysilicon due to high-temperature annealing. J. Micromech. Microeng. 5, 121–124 (1995)CrossRef
30.
go back to reference O. Tabata, K. Kawahata, S. Sugiyama, I. Igarashi, Mechanical property measurements of thin films using load-deflection of composite rectangular membrane, in Proceedings of Micro Electro Mechanical Systems, Salt Lake City, pp. 152–156, 1989 O. Tabata, K. Kawahata, S. Sugiyama, I. Igarashi, Mechanical property measurements of thin films using load-deflection of composite rectangular membrane, in Proceedings of Micro Electro Mechanical Systems, Salt Lake City, pp. 152–156, 1989
31.
go back to reference H. Guckel, T. Randazzo, D.W. Burns, A simple technique for the determination of mechanical strain in thin films with application to polysilicon. J. Appl. Phys. 57, 1671–1675 (1983)CrossRef H. Guckel, T. Randazzo, D.W. Burns, A simple technique for the determination of mechanical strain in thin films with application to polysilicon. J. Appl. Phys. 57, 1671–1675 (1983)CrossRef
32.
go back to reference R.T. Howe, R.S. Muller, Stress in polysilicon and amorphous silicon thin films. J. Appl. Phys. 54, 4674–4675 (1983)CrossRef R.T. Howe, R.S. Muller, Stress in polysilicon and amorphous silicon thin films. J. Appl. Phys. 54, 4674–4675 (1983)CrossRef
33.
go back to reference X. Zhang, T.Y. Zhang, M. Wong, Y. Zohar, Rapid thermal annealing of polysilicon thin films. J. Microelectromech. Syst. 7, 356–364 (1998)CrossRef X. Zhang, T.Y. Zhang, M. Wong, Y. Zohar, Rapid thermal annealing of polysilicon thin films. J. Microelectromech. Syst. 7, 356–364 (1998)CrossRef
34.
go back to reference M. Biebl, H. von Philipsborn, Fracture strength of doped and undoped polysilicon, technical digest, in 8th International Conference on Solid-State Sensors and Actuators, Eurosensors IX, Stockholm, Sweden, pp. 72–75, 1995 M. Biebl, H. von Philipsborn, Fracture strength of doped and undoped polysilicon, technical digest, in 8th International Conference on Solid-State Sensors and Actuators, Eurosensors IX, Stockholm, Sweden, pp. 72–75, 1995
35.
go back to reference H. Kahn, N. Tayebi, R. Ballarini, R.L. Mullen, A.H. Heuer, Fracture toughness of polysilicon MEMS devices. Sens. Actuators A 82, 274–280 (2000)CrossRef H. Kahn, N. Tayebi, R. Ballarini, R.L. Mullen, A.H. Heuer, Fracture toughness of polysilicon MEMS devices. Sens. Actuators A 82, 274–280 (2000)CrossRef
36.
go back to reference J.A. Walker, K.J. Gabriel, M. Mehregany, Mechanical integrity of polysilicon films exposed to hydrofluoric acid solutions. J. Electron. Mater. 20, 665–670 (1991)CrossRef J.A. Walker, K.J. Gabriel, M. Mehregany, Mechanical integrity of polysilicon films exposed to hydrofluoric acid solutions. J. Electron. Mater. 20, 665–670 (1991)CrossRef
37.
go back to reference F. Ericson, S. Greek, J. Soderkvist, J. Schweitz, High sensitive internal film stress measurement by an improved micromachined indicator structure, technical digest, in 8th International Conference on Solid-State Sensors and Actuators, Eurosensors IX, Stockholm, Sweden, pp. 84–87, 1995 F. Ericson, S. Greek, J. Soderkvist, J. Schweitz, High sensitive internal film stress measurement by an improved micromachined indicator structure, technical digest, in 8th International Conference on Solid-State Sensors and Actuators, Eurosensors IX, Stockholm, Sweden, pp. 84–87, 1995
38.
go back to reference M.A. Benitez, L. Fonseca, J. Esteve, M.S. Benrakkad, J.R. Morante, J. Samitier, J.A. Schweitz, Stress-profile characterization and test-structure analysis of single and double ion-implanted LPCVD polycrystalline silicon. Sens. Actuators A 54, 718–723 (1996)CrossRef M.A. Benitez, L. Fonseca, J. Esteve, M.S. Benrakkad, J.R. Morante, J. Samitier, J.A. Schweitz, Stress-profile characterization and test-structure analysis of single and double ion-implanted LPCVD polycrystalline silicon. Sens. Actuators A 54, 718–723 (1996)CrossRef
39.
go back to reference H. Guckel, D.W. Burns, H.A.C. Tilmans, D.W. DeRoo, C.R. Rutigliano, Mechanical properties of fine grained polysilicon-the repeatability issue, technical digest, Solid-State Sensor Actuator Workshop, Hilton Head, pp. 96–99, 1988 H. Guckel, D.W. Burns, H.A.C. Tilmans, D.W. DeRoo, C.R. Rutigliano, Mechanical properties of fine grained polysilicon-the repeatability issue, technical digest, Solid-State Sensor Actuator Workshop, Hilton Head, pp. 96–99, 1988
40.
go back to reference J. Koskinen, J.E. Steinwall, R. Soave, H.H. Johnson, Microtensile testing of free-standing polysilicon fibers of various grain sizes. J. Micromech. Microeng. 3, 13–17 (1993)CrossRef J. Koskinen, J.E. Steinwall, R. Soave, H.H. Johnson, Microtensile testing of free-standing polysilicon fibers of various grain sizes. J. Micromech. Microeng. 3, 13–17 (1993)CrossRef
41.
go back to reference D. Maier-Schneider, A. Kprll, S.B. Holm, E. Obermeier, Elastic properties and microstructure of LPCVD polysilicon films. J. Micromech. Microeng. 6, 436–446 (1996)CrossRef D. Maier-Schneider, A. Kprll, S.B. Holm, E. Obermeier, Elastic properties and microstructure of LPCVD polysilicon films. J. Micromech. Microeng. 6, 436–446 (1996)CrossRef
42.
go back to reference Y. Shioya, M. Mamoru, Comparison of phosphosilicate glass films deposited by three different chemical vapor deposition methods. J. Electrochem. Soc. 133, 1943–1950 (1986)CrossRef Y. Shioya, M. Mamoru, Comparison of phosphosilicate glass films deposited by three different chemical vapor deposition methods. J. Electrochem. Soc. 133, 1943–1950 (1986)CrossRef
43.
go back to reference R.M. Levin, A.C. Adams, Low pressure deposition of phosphosilicate glass films. J. Electrochem. Soc. 129, 1588–1592 (1982)CrossRef R.M. Levin, A.C. Adams, Low pressure deposition of phosphosilicate glass films. J. Electrochem. Soc. 129, 1588–1592 (1982)CrossRef
44.
go back to reference S.K. Ghandhi, VLSI Fabrication Principles – Silicon and Gallium Arsenide (Wiley, New York, 1983) S.K. Ghandhi, VLSI Fabrication Principles – Silicon and Gallium Arsenide (Wiley, New York, 1983)
45.
go back to reference J. Yang, O. Paul, Fracture properties of LPCVD silicon nitride thin films from the load deflection of long membranes. Sens. Actuators A 97–98, 520–526 (2002)CrossRef J. Yang, O. Paul, Fracture properties of LPCVD silicon nitride thin films from the load deflection of long membranes. Sens. Actuators A 97–98, 520–526 (2002)CrossRef
46.
go back to reference M. Sekimoto, H. Yoshihara, T. Ohkubo, Silicon nitride single-layer x-ray mask. J. Vac. Sci. Technol. 21, 1017–1021 (1982)CrossRef M. Sekimoto, H. Yoshihara, T. Ohkubo, Silicon nitride single-layer x-ray mask. J. Vac. Sci. Technol. 21, 1017–1021 (1982)CrossRef
47.
go back to reference J.G.E. Gardeniers, H.A.C. Tilmans, C.C.G. Visser, LPCVD silicon-rich silicon nitride films for applications in micromechanics studied with statistical experimental design. J. Vac. Sci. Technol. A 14, 2879–2892 (1996)CrossRef J.G.E. Gardeniers, H.A.C. Tilmans, C.C.G. Visser, LPCVD silicon-rich silicon nitride films for applications in micromechanics studied with statistical experimental design. J. Vac. Sci. Technol. A 14, 2879–2892 (1996)CrossRef
48.
go back to reference P. Temple-Boyer, C. Rossi, E. Saint-Etienne, E. Scheid, Residual stress in low pressure chemical vapor deposition SiNx films deposited from silane and ammonia. J. Vac. Sci. Technol. A 16, 2003–2007 (1998)CrossRef P. Temple-Boyer, C. Rossi, E. Saint-Etienne, E. Scheid, Residual stress in low pressure chemical vapor deposition SiNx films deposited from silane and ammonia. J. Vac. Sci. Technol. A 16, 2003–2007 (1998)CrossRef
49.
go back to reference C. Mastrangelo, Y.-C. Tai, R. Muller, Thermophysical properties of low-residual stress, silicon-rich, LPCVD silicon nitride films. Sens. Actuators 856–860, A21–A23 (1990) C. Mastrangelo, Y.-C. Tai, R. Muller, Thermophysical properties of low-residual stress, silicon-rich, LPCVD silicon nitride films. Sens. Actuators 856–860, A21–A23 (1990)
50.
go back to reference P.P. Tsai, I.-C. Chen, C.J. Ho, Ultralow power carbon monoxide microsensor by micromachining techniques. Sens. Actuators B 76, 380–387 (2001)CrossRef P.P. Tsai, I.-C. Chen, C.J. Ho, Ultralow power carbon monoxide microsensor by micromachining techniques. Sens. Actuators B 76, 380–387 (2001)CrossRef
51.
go back to reference P.J. French, P.M. Sarro, R. Mallee, E.J.M. Fakkeldij, R.F. Wolffenbuttel, Optimization of a low-stress silicon nitride process for surface micromachining applications. Sens. Actuators A 58, 149–157 (1997)CrossRef P.J. French, P.M. Sarro, R. Mallee, E.J.M. Fakkeldij, R.F. Wolffenbuttel, Optimization of a low-stress silicon nitride process for surface micromachining applications. Sens. Actuators A 58, 149–157 (1997)CrossRef
52.
go back to reference S. Hong, T.P. Weihs, J.C. Bravman, W.D. Nix, Measuring stiffness and residual stresses of silicon nitride thin films. J. Electron. Mater. 19, 903–909 (1990)CrossRef S. Hong, T.P. Weihs, J.C. Bravman, W.D. Nix, Measuring stiffness and residual stresses of silicon nitride thin films. J. Electron. Mater. 19, 903–909 (1990)CrossRef
53.
go back to reference A. Kaushik, H. Kahn, A.H. Heuer, Wafer-level mechanical characterization of silicon nitride MEMS. J. Microelectromech. Syst. 14, 359–367 (2005)CrossRef A. Kaushik, H. Kahn, A.H. Heuer, Wafer-level mechanical characterization of silicon nitride MEMS. J. Microelectromech. Syst. 14, 359–367 (2005)CrossRef
54.
go back to reference E.I. Bromley, J.N. Randall, D.C. Flanders, R.W. Mountain, A technique for the determination of stress in thin films. J. Vac. Sci. Technol. B 1, 1364–1366 (1983)CrossRef E.I. Bromley, J.N. Randall, D.C. Flanders, R.W. Mountain, A technique for the determination of stress in thin films. J. Vac. Sci. Technol. B 1, 1364–1366 (1983)CrossRef
55.
go back to reference J.M. Olson, Analysis of LPCVD process conditions for the deposition of low stress silicon nitride. Part 1: Preliminary LPCVD experiments. Mater. Sci. Semicond. Process. 5, 51–60 (2002)CrossRef J.M. Olson, Analysis of LPCVD process conditions for the deposition of low stress silicon nitride. Part 1: Preliminary LPCVD experiments. Mater. Sci. Semicond. Process. 5, 51–60 (2002)CrossRef
56.
go back to reference T.Y. Zhang, Y.J. Su, C.F. Qian, M.H. Zhao, L.Q. Chen, Microbridge testing of silicon nitride thin films deposited on silicon wafers. Acta Mater. 48, 2843–2857 (2000)CrossRef T.Y. Zhang, Y.J. Su, C.F. Qian, M.H. Zhao, L.Q. Chen, Microbridge testing of silicon nitride thin films deposited on silicon wafers. Acta Mater. 48, 2843–2857 (2000)CrossRef
57.
go back to reference Y. Ren, D.C.C. Lam, Characterization of elastic behaviors of silicon nitride films with varying thicknesses. Mater. Sci. Eng. A 467, 93–96 (2007)CrossRef Y. Ren, D.C.C. Lam, Characterization of elastic behaviors of silicon nitride films with varying thicknesses. Mater. Sci. Eng. A 467, 93–96 (2007)CrossRef
58.
go back to reference B.C.S. Chou, J.S. Shie, C.N. Chen, Fabrication of low stress dielectric thin film for microsensor applications. IEEE Electron Device Lett. 18, 599–601 (1997)CrossRef B.C.S. Chou, J.S. Shie, C.N. Chen, Fabrication of low stress dielectric thin film for microsensor applications. IEEE Electron Device Lett. 18, 599–601 (1997)CrossRef
59.
go back to reference L.S. Fan, R.T. Howe, R.S. Muller, Fracture toughness of brittle thin films. Sens. Actuators 872–874, A21–A23 (1990) L.S. Fan, R.T. Howe, R.S. Muller, Fracture toughness of brittle thin films. Sens. Actuators 872–874, A21–A23 (1990)
60.
go back to reference X. Zhang, K.-S. Chen, R. Ghodssi, A.A. Ayon, S.M. Spearing, Residual stress and fracture in thick tetraethylorthosilicate (TEOS) and silane-based PECVD oxide films. Sens. Actuators A 91, 373–380 (2001)CrossRef X. Zhang, K.-S. Chen, R. Ghodssi, A.A. Ayon, S.M. Spearing, Residual stress and fracture in thick tetraethylorthosilicate (TEOS) and silane-based PECVD oxide films. Sens. Actuators A 91, 373–380 (2001)CrossRef
61.
go back to reference B.A. Walmsley, Y.L. Liu, X.Z. Hu, M.B. Bush, J.M. Dell, L. Faraone, Poisson’s ratio of low-temperature PECVD silicon nitride thin films. J. Microelectromech. Syst. 16, 622–627 (2007)CrossRef B.A. Walmsley, Y.L. Liu, X.Z. Hu, M.B. Bush, J.M. Dell, L. Faraone, Poisson’s ratio of low-temperature PECVD silicon nitride thin films. J. Microelectromech. Syst. 16, 622–627 (2007)CrossRef
62.
go back to reference M. Martyniuk, J. Antoszewski, C.A. Musca, J.M. Dell, L. Faraone, Dielectric thin films for MEMS-based optical sensors. Microelectron. Reliab. 47, 733–738 (2007)CrossRef M. Martyniuk, J. Antoszewski, C.A. Musca, J.M. Dell, L. Faraone, Dielectric thin films for MEMS-based optical sensors. Microelectron. Reliab. 47, 733–738 (2007)CrossRef
63.
go back to reference H. Huang, K.J. Winchester, A. Suvorova, B.R. Lawne, Y. Liud, X.Z. Hud, J.M. Dell, L. Faraone, Effect of deposition conditions on mechanical properties of low-temperature PECVD silicon nitride films. Mater. Sci. Eng. A 435–436, 453–459 (2006)CrossRef H. Huang, K.J. Winchester, A. Suvorova, B.R. Lawne, Y. Liud, X.Z. Hud, J.M. Dell, L. Faraone, Effect of deposition conditions on mechanical properties of low-temperature PECVD silicon nitride films. Mater. Sci. Eng. A 435–436, 453–459 (2006)CrossRef
64.
go back to reference W. Zhou, J. Yang, Y. Li, A. Ji, F. Yang, Y. Yu, Bulge testing and fracture properties of plasma-enhanced chemical vapor deposited silicon nitride thin films. Thin Solid Films 517, 1989–1994 (2009)CrossRef W. Zhou, J. Yang, Y. Li, A. Ji, F. Yang, Y. Yu, Bulge testing and fracture properties of plasma-enhanced chemical vapor deposited silicon nitride thin films. Thin Solid Films 517, 1989–1994 (2009)CrossRef
65.
go back to reference J. Gaspar, T. Adrega, V. Chu, J.P. Conde, Thin-film paddle microresonators with high quality factors fabricated at temperatures below 110°C, in Proceedings of the 18th International Conference on Microelectromechanical Systems, Miami, pp. 125–128, 2005 J. Gaspar, T. Adrega, V. Chu, J.P. Conde, Thin-film paddle microresonators with high quality factors fabricated at temperatures below 110°C, in Proceedings of the 18th International Conference on Microelectromechanical Systems, Miami, pp. 125–128, 2005
66.
go back to reference S. Chang, S. Sivoththaman, Development of a low temperature MEMS process with a PECVD amorphous silicon structural layer. J. Micromech. Microeng. 16, 1307 1313 (2006) S. Chang, S. Sivoththaman, Development of a low temperature MEMS process with a PECVD amorphous silicon structural layer. J. Micromech. Microeng. 16, 1307 1313 (2006)
67.
go back to reference S. Chang, W. Eaton, J. Fulmer, C. Gonzalez, B. Underwood, Micromechanical structures in amorphous silicon, technical digest, in International Conference on Solid State Sensors and Actuators, San Francisco, pp. 751–754, 1991 S. Chang, W. Eaton, J. Fulmer, C. Gonzalez, B. Underwood, Micromechanical structures in amorphous silicon, technical digest, in International Conference on Solid State Sensors and Actuators, San Francisco, pp. 751–754, 1991
68.
go back to reference S.B. Patil, V. Chu, J.P. Conde, Surface micromachining of a thin film microresonator using dry decomposition of a polymer sacrificial layer. J. Vac. Sci. Technol. B 25, 455–458 (2007)CrossRef S.B. Patil, V. Chu, J.P. Conde, Surface micromachining of a thin film microresonator using dry decomposition of a polymer sacrificial layer. J. Vac. Sci. Technol. B 25, 455–458 (2007)CrossRef
69.
go back to reference S. Chang, S. Sivoththaman, A tunable RFMEMS inductor on silicon incorporating an amorphous silicon bimorph in a low-temperature process. IEEE Electron Device Lett. 27, 905–907 (2006)CrossRef S. Chang, S. Sivoththaman, A tunable RFMEMS inductor on silicon incorporating an amorphous silicon bimorph in a low-temperature process. IEEE Electron Device Lett. 27, 905–907 (2006)CrossRef
70.
go back to reference P. Alpuim, V. Chu, J.P. Conde, Amorphous and microcrystalline silicon films grown at low temperatures by radio-frequency and hot-wire chemical vapor deposition. J. Appl. Phys. 86, 3812–3821 (1999)CrossRef P. Alpuim, V. Chu, J.P. Conde, Amorphous and microcrystalline silicon films grown at low temperatures by radio-frequency and hot-wire chemical vapor deposition. J. Appl. Phys. 86, 3812–3821 (1999)CrossRef
71.
go back to reference C.-K. Chung, M.-Q. Tsai, P.-H. Tsai, C. Lee, Fabrication and characterization of amorphous Si films by PECVD for MEMS. J. Micromech. Microeng. 15, 136–142 (2005)CrossRef C.-K. Chung, M.-Q. Tsai, P.-H. Tsai, C. Lee, Fabrication and characterization of amorphous Si films by PECVD for MEMS. J. Micromech. Microeng. 15, 136–142 (2005)CrossRef
72.
73.
go back to reference T. Abe, M.L. Reed, Low strain sputtered polysilicon for micromechanical structures, in Proceedings of the 9th International Workshop on Micro Electro Mechanical Systems, San Diego, pp. 258–262, 1996 T. Abe, M.L. Reed, Low strain sputtered polysilicon for micromechanical structures, in Proceedings of the 9th International Workshop on Micro Electro Mechanical Systems, San Diego, pp. 258–262, 1996
74.
go back to reference P. Pal, S. Chandra, RF sputtered silicon for MEMS. J. Micromech. Microeng. 15, 1536–1546 (2005)CrossRef P. Pal, S. Chandra, RF sputtered silicon for MEMS. J. Micromech. Microeng. 15, 1536–1546 (2005)CrossRef
75.
go back to reference K.A. Honer, G.T.A. Kovacs, Integration of sputtered silicon microstructures with prefabricated CMOS circuitry. Sens. Actuators A 91, 392–403 (2001)CrossRef K.A. Honer, G.T.A. Kovacs, Integration of sputtered silicon microstructures with prefabricated CMOS circuitry. Sens. Actuators A 91, 392–403 (2001)CrossRef
76.
go back to reference J.K. Luo, M. Pritschow, A.J. Flewitt, S.M. Spearing, N.A. Fleck, W.I. Milne, Effects of process conditions on properties of electroplated Ni thin films for microsystem applications. J. Electrochem. Soc. 153(10), D155–D161 (2006)CrossRef J.K. Luo, M. Pritschow, A.J. Flewitt, S.M. Spearing, N.A. Fleck, W.I. Milne, Effects of process conditions on properties of electroplated Ni thin films for microsystem applications. J. Electrochem. Soc. 153(10), D155–D161 (2006)CrossRef
77.
go back to reference A.A. Volinsky, M. Hauschildt, J.B. Vella, N.V. Edwards, R. Gregory, W.W. Gerberich, Residual stress and microstructure of electroplated Cu films on different barrier films. Mater. Res. Soc. Symp. 695., Materials Research Soc., L1.11.1 (2002)CrossRef A.A. Volinsky, M. Hauschildt, J.B. Vella, N.V. Edwards, R. Gregory, W.W. Gerberich, Residual stress and microstructure of electroplated Cu films on different barrier films. Mater. Res. Soc. Symp. 695., Materials Research Soc., L1.11.1 (2002)CrossRef
78.
go back to reference Y. Xiang, X. Chen, J.J. Vlassak, The mechanical properties of electroplated Cu thin films measured by means of the bulge test technique. Mater. Res. Soc. Symp. Proc. 695., Materials Research Soc., L4.9.1 (2002)CrossRef Y. Xiang, X. Chen, J.J. Vlassak, The mechanical properties of electroplated Cu thin films measured by means of the bulge test technique. Mater. Res. Soc. Symp. Proc. 695., Materials Research Soc., L4.9.1 (2002)CrossRef
79.
go back to reference P.H. Lawyer, C.H. Fields, Film stress versus plating rate for pulse-plated gold, HRL Laboratories Report, 2001 P.H. Lawyer, C.H. Fields, Film stress versus plating rate for pulse-plated gold, HRL Laboratories Report, 2001
80.
go back to reference S.H. Pu, A.S. Holmes, E.M. Yeatman, Stress in electroplated gold on silicon substrates and its dependence on cathode agitation. Microelectron. Eng. 112, 21 (2013)CrossRef S.H. Pu, A.S. Holmes, E.M. Yeatman, Stress in electroplated gold on silicon substrates and its dependence on cathode agitation. Microelectron. Eng. 112, 21 (2013)CrossRef
Metadata
Title
Microsystems Material Properties
Author
Michael Huff
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-40560-1_6