Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 17/2018

11-07-2018

Microwave-assisted hydrothermal synthesis of SnO2/reduced graphene-oxide nanocomposite as anode material for high performance lithium-ion batteries

Authors: N. Naresh, D. Narsimulu, Paramananda Jena, E. S. Srinadhu, N. Satyanarayana

Published in: Journal of Materials Science: Materials in Electronics | Issue 17/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Surfactant and organic solvents free SnO2 nanospheres and SnO2/reduced graphene oxide (SnO2/rGO) nanocomposite were prepared by microwave assisted hydrothermal method. X-ray diffraction (XRD) and Raman spectroscopy results confirm the formation of pure nanocrystalline rutile phase of SnO2 and nanostructured rutile phase of SnO2 over the amorphous structured rGO. FE-SEM, EDX and HR-TEM results showed the formation of spherical shape SnO2 nanoparticles and the formation of spherical shape SnO2 nanoparticles over the crumpled nanosheets like morphology of rGO. The electrochemical measurements of lithium-ion batteries fabricated using pure spherical shape SnO2 nanoparticles and crumpled nanosheets like morphology of SnO2/rGO nanocomposite as an anode material showed the good initial discharge–charge capacity of 2128 and 1718 mA h g−1 respectively. The capacity retention after 50 cycles is found to be 349 mAh g−1 at a current density of 500 mA g−1 for the lithium-ion battery fabricated using pure spherical shape SnO2 nanoparticles and the capacity retention after 300 cycles is found to be 318 mAh g−1 at a current density of 500 mA g−1 for the lithium-ion battery fabricated using SnO2/rGO nanocomposite, which is much better than the reported values. The observed better electrochemical performance of the lithium-ion battery is attributed to the formation of spherical shape SnO2 nanoparticles over the crumpled nanosheets like morphology of highly porous graphene and also increased electronic conductivity of SnO2/rGO nanocomposite. Hence, the crumpled nanosheets like morphology of highly porous of SnO2/rGO nanocomposite prepared by microwave hydrothermal method can be a high-performance anode material for a lithium-ion battery application.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
3.
go back to reference P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, Nature 407, 496 (2000)CrossRef P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, Nature 407, 496 (2000)CrossRef
4.
go back to reference X. Wu, Z. Wang, M. Yu, L. Xiu, J. Qiu, Adv. Mater. 29, 1 (2017) X. Wu, Z. Wang, M. Yu, L. Xiu, J. Qiu, Adv. Mater. 29, 1 (2017)
5.
go back to reference Y. Dong, M. Yu, Z. Wang, Y. Liu, X. Wang, Z. Zhao, J. Qiu, Adv. Funct. Mater. 26, 7590 (2016)CrossRef Y. Dong, M. Yu, Z. Wang, Y. Liu, X. Wang, Z. Zhao, J. Qiu, Adv. Funct. Mater. 26, 7590 (2016)CrossRef
6.
go back to reference Z.H. Li, T.P. Zhao, X.Y. Zhan, D.S. Gao, Q.Z. Xiao, G.T. Lei, Electrochim. Acta 55, 4594 (2010)CrossRef Z.H. Li, T.P. Zhao, X.Y. Zhan, D.S. Gao, Q.Z. Xiao, G.T. Lei, Electrochim. Acta 55, 4594 (2010)CrossRef
7.
8.
go back to reference D. Narsimulu, B.N. Rao, M. Venkateswarlu, E.S. Srinadhu, N. Satyanarayana, Ceram. Int. 42, 16789 (2016)CrossRef D. Narsimulu, B.N. Rao, M. Venkateswarlu, E.S. Srinadhu, N. Satyanarayana, Ceram. Int. 42, 16789 (2016)CrossRef
9.
10.
go back to reference H.J. Wang, J.M. Wang, W. Bin Fang, H. Wan, L. Liu, H.Q. Lian, H.B. Shao, W.X. Chen, J.Q. Zhang, C.N. Cao, Electrochem. Commun. 12, 194 (2010)CrossRef H.J. Wang, J.M. Wang, W. Bin Fang, H. Wan, L. Liu, H.Q. Lian, H.B. Shao, W.X. Chen, J.Q. Zhang, C.N. Cao, Electrochem. Commun. 12, 194 (2010)CrossRef
11.
go back to reference L. Li, X. Yin, S. Liu, Y. Wang, L. Chen, T. Wang, Electrochem. Commun. 12, 1383 (2010)CrossRef L. Li, X. Yin, S. Liu, Y. Wang, L. Chen, T. Wang, Electrochem. Commun. 12, 1383 (2010)CrossRef
12.
go back to reference A.S. Hassan, K. Moyer, B.R. Ramachandran, C.D. Wick, J. Phys. Chem. 120, 2036 (2016) A.S. Hassan, K. Moyer, B.R. Ramachandran, C.D. Wick, J. Phys. Chem. 120, 2036 (2016)
13.
14.
go back to reference Z. Li, G. Wu, S. Deng, S. Wang, Y. Wang, J. Zhou, S. Liu, W. Wu, M. Wu, Chem. Eng. J. 283, 1435 (2016)CrossRef Z. Li, G. Wu, S. Deng, S. Wang, Y. Wang, J. Zhou, S. Liu, W. Wu, M. Wu, Chem. Eng. J. 283, 1435 (2016)CrossRef
15.
go back to reference J. Ning, T. Jiang, K. Men, Q. Dai, D. Li, Y. Wei, B. Liu, G. Chen, B. Zou, G. Zou, J. Phys. Chem. C 113, 14140 (2009)CrossRef J. Ning, T. Jiang, K. Men, Q. Dai, D. Li, Y. Wei, B. Liu, G. Chen, B. Zou, G. Zou, J. Phys. Chem. C 113, 14140 (2009)CrossRef
16.
go back to reference X. Ye, W. Zhang, Q. Liu, S. Wang, Y. Yang, H. Wei, New J. Chem. 39, 130 (2014)CrossRef X. Ye, W. Zhang, Q. Liu, S. Wang, Y. Yang, H. Wei, New J. Chem. 39, 130 (2014)CrossRef
17.
go back to reference D.V. Szabó, G. Kilibarda, S. Schlabach, V. Trouillet, M. Bruns, J. Mater. Sci. 47, 4383 (2012)CrossRef D.V. Szabó, G. Kilibarda, S. Schlabach, V. Trouillet, M. Bruns, J. Mater. Sci. 47, 4383 (2012)CrossRef
19.
go back to reference J. Lin, Z. Peng, C. Xiang, G. Ruan, Z. Yan, D. Natelson, J.M. Tour, ACS NANO 7, 6001–6006 (2013)CrossRef J. Lin, Z. Peng, C. Xiang, G. Ruan, Z. Yan, D. Natelson, J.M. Tour, ACS NANO 7, 6001–6006 (2013)CrossRef
20.
go back to reference J. Chao Zhong, Z. Wang, H. Chen, Liu, J. Phys. Chem. C 115, 25115–25120 (2011)CrossRef J. Chao Zhong, Z. Wang, H. Chen, Liu, J. Phys. Chem. C 115, 25115–25120 (2011)CrossRef
21.
go back to reference J. Cui, S. Yao, J.-Q. Huang, L. Qin, W.G. Chong, Z. Sadighi, J. Huang, Z. Wang, J.-K. Kim, Energy Storage Mater. 17, 30174 (2017) J. Cui, S. Yao, J.-Q. Huang, L. Qin, W.G. Chong, Z. Sadighi, J. Huang, Z. Wang, J.-K. Kim, Energy Storage Mater. 17, 30174 (2017)
22.
go back to reference X.L. Huang, R.Z. Wang, D. Xu, Z.L. Wang, H.G. Wang, J.J. Xu, Z. Wu, Q.C. Liu, Y. Zhang, X.B. Zhang, Adv. Funct. Mater. 23, 4345 (2013)CrossRef X.L. Huang, R.Z. Wang, D. Xu, Z.L. Wang, H.G. Wang, J.J. Xu, Z. Wu, Q.C. Liu, Y. Zhang, X.B. Zhang, Adv. Funct. Mater. 23, 4345 (2013)CrossRef
23.
go back to reference Y. Dong, S. Liu, Y. Liu, Y. Tang, T. Yang, X. Wang, Z. Wang, Z. Zhao, J. Qiu, J. Mater. Chem. A 4, 17718 (2016)CrossRef Y. Dong, S. Liu, Y. Liu, Y. Tang, T. Yang, X. Wang, Z. Wang, Z. Zhao, J. Qiu, J. Mater. Chem. A 4, 17718 (2016)CrossRef
24.
go back to reference X. Jiang, X. Yang, Y. Zhu, K. Fan, P. Zhao, C. Li, New J Chem. 37, 3671 (2013)CrossRef X. Jiang, X. Yang, Y. Zhu, K. Fan, P. Zhao, C. Li, New J Chem. 37, 3671 (2013)CrossRef
26.
go back to reference S. Jiang, W. Yue, Z. Gao, Y. Ren, H. Ma, X. Zhao, Y. Liu, X. Yang, J. Mater. Sci. 48, 3870 (2013)CrossRef S. Jiang, W. Yue, Z. Gao, Y. Ren, H. Ma, X. Zhao, Y. Liu, X. Yang, J. Mater. Sci. 48, 3870 (2013)CrossRef
28.
go back to reference O. Lupan, L. Chow, G. Chai, H. Heinrich, S. Park, A. Schulte, J. Cryst. Growth 311, 152 (2008)CrossRef O. Lupan, L. Chow, G. Chai, H. Heinrich, S. Park, A. Schulte, J. Cryst. Growth 311, 152 (2008)CrossRef
29.
go back to reference Z. Liu, D. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. Liu, B. Lei, C. Zhou, Adv. Mater. 15, 1754 (2003)CrossRef Z. Liu, D. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. Liu, B. Lei, C. Zhou, Adv. Mater. 15, 1754 (2003)CrossRef
30.
go back to reference O. Lupan, L. Chow, G. Chai, A. Schulte, S. Park, H. Heinrich, Mater. Sci. Eng. B 157, 101 (2009)CrossRef O. Lupan, L. Chow, G. Chai, A. Schulte, S. Park, H. Heinrich, Mater. Sci. Eng. B 157, 101 (2009)CrossRef
31.
go back to reference X. Xia, S. Li, X. Wang, J. Liu, Q. Wei, X. Zhang, J. Mater. Sci. 48, 3378 (2013)CrossRef X. Xia, S. Li, X. Wang, J. Liu, Q. Wei, X. Zhang, J. Mater. Sci. 48, 3378 (2013)CrossRef
32.
go back to reference C.C. Wu, C.Y. Shiau, D.W. Ayele, W.N. Su, M.Y. Cheng, C.Y. Chiu, B.J. Hwang, Chem. Mater. 22, 4185 (2010)CrossRef C.C. Wu, C.Y. Shiau, D.W. Ayele, W.N. Su, M.Y. Cheng, C.Y. Chiu, B.J. Hwang, Chem. Mater. 22, 4185 (2010)CrossRef
33.
go back to reference V. Subramanian, W.W. Burke, Z. Hongwei, W. Bingqing, J. Phys. Chem. C 112, 4550 (2008)CrossRef V. Subramanian, W.W. Burke, Z. Hongwei, W. Bingqing, J. Phys. Chem. C 112, 4550 (2008)CrossRef
34.
go back to reference Y. Zhu, H. Guo, H. Zhai, C. Cao, ACS Appl. Mater. Interfaces 7, 2745 (2015)CrossRef Y. Zhu, H. Guo, H. Zhai, C. Cao, ACS Appl. Mater. Interfaces 7, 2745 (2015)CrossRef
36.
go back to reference Y. Liu, Y. Jiao, Z. Zhang, F. Qu, A. Umar, X. Wu, ACS Appl. Mater. Interfaces 6, 2174–2184 (2014)CrossRef Y. Liu, Y. Jiao, Z. Zhang, F. Qu, A. Umar, X. Wu, ACS Appl. Mater. Interfaces 6, 2174–2184 (2014)CrossRef
38.
go back to reference D. Narsimulu, S. Vinoth, E.S. Srinadhu, N. Satyanarayana, Ceram. Int. 44, 201 (2018)CrossRef D. Narsimulu, S. Vinoth, E.S. Srinadhu, N. Satyanarayana, Ceram. Int. 44, 201 (2018)CrossRef
39.
go back to reference N.R. Srinivasan, S. Mitra, R. Bandyopadhyaya, Phys. Chem. Chem. Phys. 16, 6630 (2014)CrossRef N.R. Srinivasan, S. Mitra, R. Bandyopadhyaya, Phys. Chem. Chem. Phys. 16, 6630 (2014)CrossRef
40.
go back to reference R. Demir-cakan, Y. Hu, M. Antonietti, J. Maier, M. Titirici, Chem. Mater. 20, 1227 (2008)CrossRef R. Demir-cakan, Y. Hu, M. Antonietti, J. Maier, M. Titirici, Chem. Mater. 20, 1227 (2008)CrossRef
41.
go back to reference V. Renman, M. Valvo, C. Tai, I. Zimmermann, M. Johnsson, K. Edstro, J. Phys. Chem. C 121, 5949 (2017)CrossRef V. Renman, M. Valvo, C. Tai, I. Zimmermann, M. Johnsson, K. Edstro, J. Phys. Chem. C 121, 5949 (2017)CrossRef
42.
43.
go back to reference G.Z. Xing, Y. Wang, J.I. Wong, Y.M. Shi, Z.X. Huang, S. Li, H.Y. Yang, Appl. Phys. Lett. 105, 143905 (2014)CrossRef G.Z. Xing, Y. Wang, J.I. Wong, Y.M. Shi, Z.X. Huang, S. Li, H.Y. Yang, Appl. Phys. Lett. 105, 143905 (2014)CrossRef
44.
45.
47.
go back to reference C. Li, W. Wei, S. Fang, H. Wang, Y. Zhang, Y. Gui, R. Chen, J. Power Sources 195, 2939 (2010)CrossRef C. Li, W. Wei, S. Fang, H. Wang, Y. Zhang, Y. Gui, R. Chen, J. Power Sources 195, 2939 (2010)CrossRef
48.
go back to reference M. Zhang, D. Lei, Z. Du, X. Yin, L. Chen, Q. Li, Y. Wang, T. Wang, J. Mater. Chem. 21, 1673 (2011)CrossRef M. Zhang, D. Lei, Z. Du, X. Yin, L. Chen, Q. Li, Y. Wang, T. Wang, J. Mater. Chem. 21, 1673 (2011)CrossRef
49.
go back to reference D. Wang, X. Li, J. Wang, J. Yang, D. Geng, R. Li, M. Cai, T. Sham, X. Sun, J. Phys. Chem. C 116, 22149 (2012)CrossRef D. Wang, X. Li, J. Wang, J. Yang, D. Geng, R. Li, M. Cai, T. Sham, X. Sun, J. Phys. Chem. C 116, 22149 (2012)CrossRef
50.
51.
Metadata
Title
Microwave-assisted hydrothermal synthesis of SnO2/reduced graphene-oxide nanocomposite as anode material for high performance lithium-ion batteries
Authors
N. Naresh
D. Narsimulu
Paramananda Jena
E. S. Srinadhu
N. Satyanarayana
Publication date
11-07-2018
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 17/2018
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-018-9609-8

Other articles of this Issue 17/2018

Journal of Materials Science: Materials in Electronics 17/2018 Go to the issue