Skip to main content
Top
Published in: Peer-to-Peer Networking and Applications 1/2022

14-09-2021

MINAD: Multi-inputs Neural Network based on Application Structure for Android Malware Detection

Authors: Duc V. Nguyen, Giang L. Nguyen, Thang T. Nguyen, Anh H. Ngo, Giang T. Pham

Published in: Peer-to-Peer Networking and Applications | Issue 1/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

With the proliferation of smartphone demand, the number of malicious applications has increased exponentially with about tens of thousands per month. Among smartphone platforms, the Android operating system with high popularity has become the most target by malware. By some techniques such as employing polymorphic or encrypting payload, signature-based scanning is easily bypassed. With the support from some useful tools and sandboxes recently, the Android applications could be easy to decoded and tracked the executable behavior. It leads machine learning methods to have potential benefits to classify the malware. However, how to define the suitable model with competent features and avoid over-fitting in learning models become other challenges for researchers. In this paper, we propose MINAD (Multi-Inputs Neural network based on application structure for Android malware Detection) method. First, we collect the features of an Android application based on many aspects, and then those features are grouped into three categories: System-based, Library-based, and User-based corresponding the parts of Android application structure which are related with Android system definition, library, users’ definitions. Second, each group is reconstructed to have effective feature sets. At last, a multi-input deep neural network is designed with two phases to learn the abstract of each feature group before making the final decision for malware detection. Our performances are evaluated in various samples which are collected from Google Play Store, the Drebin, and AMD Datasets with more than 155,000 samples. The results show that the MINAD method does not only improve Android malware detection’s accuracy in comparison with other methods but also improves the stability of the model and reduces the computation costs.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Nguyen TN, Zeadally S (2020) Mobile crowd-sensing applications: Data redundancies, challenges, and solutions. ACM Transactions on Internet Technology Nguyen TN, Zeadally S (2020) Mobile crowd-sensing applications: Data redundancies, challenges, and solutions. ACM Transactions on Internet Technology
4.
go back to reference Beroual A, Al-Shaikhli IF (2020) A survey on android malwares and defense techniques. Journal of Computational and Theoretical Nanoscience 17(4):1557–1565CrossRef Beroual A, Al-Shaikhli IF (2020) A survey on android malwares and defense techniques. Journal of Computational and Theoretical Nanoscience 17(4):1557–1565CrossRef
5.
go back to reference Qiu J, Zhang J, Luo W, Pan L, Nepal S, Xiang Y (2020) A survey of android malware detection with deep neural models. ACM Comput Surv 53(6) Qiu J, Zhang J, Luo W, Pan L, Nepal S, Xiang Y (2020) A survey of android malware detection with deep neural models. ACM Comput Surv 53(6)
6.
go back to reference Dhalaria M, Gandotra E (2021) Android malware detection techniques: A literature review. Recent Patents on Engineering 15(2):225–245CrossRef Dhalaria M, Gandotra E (2021) Android malware detection techniques: A literature review. Recent Patents on Engineering 15(2):225–245CrossRef
7.
go back to reference Xie N, Wang X, Wang W, Liu J (2019) Fingerprinting android malware families. Front Comp Sci 13(3):637–646 Xie N, Wang X, Wang W, Liu J (2019) Fingerprinting android malware families. Front Comp Sci 13(3):637–646
8.
go back to reference Ghasempour A, Sani NFM, Abari OJ (2020) Permission extraction framework for android malware detection. Int J Adv Comput Sci Appl 11(11) Ghasempour A, Sani NFM, Abari OJ (2020) Permission extraction framework for android malware detection. Int J Adv Comput Sci Appl 11(11)
9.
go back to reference Wang C, Xu Q, Lin X, Liu S (2019) Research on data mining of permissions mode for android malware detection. Clust Comput 22(6):13337–13350 Wang C, Xu Q, Lin X, Liu S (2019) Research on data mining of permissions mode for android malware detection. Clust Comput 22(6):13337–13350
10.
go back to reference Fan M, Liu J, Luo X, Chen K, Tian Z, Zheng Q, Liu T (2018) Android malware familial classification and representative sample selection via frequent subgraph analysis. IEEE Transactions on Information Forensics and Security 13(8):1890–1905CrossRef Fan M, Liu J, Luo X, Chen K, Tian Z, Zheng Q, Liu T (2018) Android malware familial classification and representative sample selection via frequent subgraph analysis. IEEE Transactions on Information Forensics and Security 13(8):1890–1905CrossRef
11.
go back to reference Arp D, Spreitzenbarth M, Hübner M, Gascon H, Rieck K (2014) Drebin: Effective and explainable detection of android malware in your pocket Arp D, Spreitzenbarth M, Hübner M, Gascon H, Rieck K (2014) Drebin: Effective and explainable detection of android malware in your pocket
12.
go back to reference Fan R-E, Chang K-W, Hsieh C-J, Wang X-R, Lin C-J (2008) Liblinear: A library for large linear classification. J Mach Learn Res 9:1871–1874 Fan R-E, Chang K-W, Hsieh C-J, Wang X-R, Lin C-J (2008) Liblinear: A library for large linear classification. J Mach Learn Res 9:1871–1874
13.
go back to reference Wang X, Wang W, He Y, Liu J, Han Z, Zhang X (2017) Characterizing android apps behavior for effective detection of malapps at large scale. Future Generation Computer Systems 75:30–45CrossRef Wang X, Wang W, He Y, Liu J, Han Z, Zhang X (2017) Characterizing android apps behavior for effective detection of malapps at large scale. Future Generation Computer Systems 75:30–45CrossRef
14.
go back to reference Zhang Y, Yang Y, Wang X (2018) A novel android malware detection approach based on convolutional neural network. In Proceedings of the 2nd International Conference on Cryptography, Security and Privacy, ICCSP 2018, page 144–149, New York, NY, USA. Association for Computing Machinery Zhang Y, Yang Y, Wang X (2018) A novel android malware detection approach based on convolutional neural network. In Proceedings of the 2nd International Conference on Cryptography, Security and Privacy, ICCSP 2018, page 144–149, New York, NY, USA. Association for Computing Machinery
15.
go back to reference Karbab EB, Debbabi M, Derhab A, Mouheb D (2018) Maldozer: Automatic framework for android malware detection using deep learning. Digital Investigation 24:S48–S59CrossRef Karbab EB, Debbabi M, Derhab A, Mouheb D (2018) Maldozer: Automatic framework for android malware detection using deep learning. Digital Investigation 24:S48–S59CrossRef
16.
go back to reference Kim T, Kang B, Rho M, Sezer S, Im EG (2019) A multimodal deep learning method for android malware detection using various features. IEEE Transactions on Information Forensics and Security 14(3):773–788CrossRef Kim T, Kang B, Rho M, Sezer S, Im EG (2019) A multimodal deep learning method for android malware detection using various features. IEEE Transactions on Information Forensics and Security 14(3):773–788CrossRef
17.
go back to reference Vu D-L, Nguyen T-K, Nguyen TV, Nguyen TN, Massacci F, Phung PH (2020) Hit4mal: Hybrid image transformation for malware classification. Trans Emerg Telecommun Technol 31(11):e3789 Vu D-L, Nguyen T-K, Nguyen TV, Nguyen TN, Massacci F, Phung PH (2020) Hit4mal: Hybrid image transformation for malware classification. Trans Emerg Telecommun Technol 31(11):e3789
18.
go back to reference Blasing T, Batyuk L, Schmidt AD, Camtepe SA, Albayrak S (2010) An android application sandbox system for suspicious software detection. In 2010 5th International Conference on Malicious and Unwanted Software 55–62 Blasing T, Batyuk L, Schmidt AD, Camtepe SA, Albayrak S (2010) An android application sandbox system for suspicious software detection. In 2010 5th International Conference on Malicious and Unwanted Software 55–62
19.
go back to reference Yan LK, Yin H (2012) Droidscope: Seamlessly reconstructing the os and dalvik semantic views for dynamic android malware analysis. In Proceedings of the 21st USENIX Conference on Security Symposium, Security’12 29, USA. USENIX Association Yan LK, Yin H (2012) Droidscope: Seamlessly reconstructing the os and dalvik semantic views for dynamic android malware analysis. In Proceedings of the 21st USENIX Conference on Security Symposium, Security’12 29, USA. USENIX Association
20.
go back to reference Enck W, Gilbert P, Chun B-G, Cox LP, Jung J, McDaniel P, Sheth AN (2010) Taintdroid: An information-flow tracking system for realtime privacy monitoring on smartphones. In Proceedings of the 9th USENIX Conference on Operating Systems Design and Implementation, OSDI ’10, page 393–407, USA. USENIX Association Enck W, Gilbert P, Chun B-G, Cox LP, Jung J, McDaniel P, Sheth AN (2010) Taintdroid: An information-flow tracking system for realtime privacy monitoring on smartphones. In Proceedings of the 9th USENIX Conference on Operating Systems Design and Implementation, OSDI ’10, page 393–407, USA. USENIX Association
21.
go back to reference Lindorfer M, Neugschwandtner M, Weichselbaum L, Fratantonio Y, Veen VVD, Platzer C (2014) Andrubis – 1,000,000 apps later: A view on current android malware behaviors. In 2014 Third International Workshop on Building Analysis Datasets and Gathering Experience Returns for Security (BADGERS) 3–17 Lindorfer M, Neugschwandtner M, Weichselbaum L, Fratantonio Y, Veen VVD, Platzer C (2014) Andrubis – 1,000,000 apps later: A view on current android malware behaviors. In 2014 Third International Workshop on Building Analysis Datasets and Gathering Experience Returns for Security (BADGERS) 3–17
22.
go back to reference Alzaylaee MK, Yerima SY, Sezer S (2020) Dl-droid: Deep learning based android malware detection using real devices. Computers & Security 89:101663CrossRef Alzaylaee MK, Yerima SY, Sezer S (2020) Dl-droid: Deep learning based android malware detection using real devices. Computers & Security 89:101663CrossRef
23.
go back to reference Liang H, Song Y, Xiao D (2017) An end-to-end model for android malware detection. In 2017 IEEE International Conference on Intelligence and Security Informatics (ISI) 140–142 Liang H, Song Y, Xiao D (2017) An end-to-end model for android malware detection. In 2017 IEEE International Conference on Intelligence and Security Informatics (ISI) 140–142
24.
go back to reference Hou S, Saas A, Chen L, Ye Y (2016) Deep4maldroid: A deep learning framework for android malware detection based on linux kernel system call graphs. In 2016 IEEE/WIC/ACM International Conference on Web Intelligence Workshops (WIW) 104–111 Hou S, Saas A, Chen L, Ye Y (2016) Deep4maldroid: A deep learning framework for android malware detection based on linux kernel system call graphs. In 2016 IEEE/WIC/ACM International Conference on Web Intelligence Workshops (WIW) 104–111
25.
go back to reference Yuan Z, Lu Y, Wang Z, Xue Y (2014) Droid-sec: Deep learning in android malware detection. ACM SIGCOMM Computer Communication Review 44(4):371–372 Yuan Z, Lu Y, Wang Z, Xue Y (2014) Droid-sec: Deep learning in android malware detection. ACM SIGCOMM Computer Communication Review 44(4):371–372
26.
go back to reference Fischer A, Igel C (2012) An introduction to restricted boltzmann machines 14–36 Fischer A, Igel C (2012) An introduction to restricted boltzmann machines 14–36
27.
go back to reference Xu L, Zhang D, Jayasena N, Cavazos J (2018) Hadm: Hybrid analysis for detection of malware. In Y. Bi, S. Kapoor, and R. Bhatia (eds) Proceedings of SAI Intelligent Systems Conference (IntelliSys) 2016, pages 702–724, Cham. Springer International Publishing Xu L, Zhang D, Jayasena N, Cavazos J (2018) Hadm: Hybrid analysis for detection of malware. In Y. Bi, S. Kapoor, and R. Bhatia (eds) Proceedings of SAI Intelligent Systems Conference (IntelliSys) 2016, pages 702–724, Cham. Springer International Publishing
28.
go back to reference Alshahrani H, Mansourt H, Thorn S, Alshehri A, Alzahrani A, Fu H (2018) Ddefender: Android application threat detection using static and dynamic analysis. In 2018 IEEE Int Conf Consum Electron (ICCE) 1–6 Alshahrani H, Mansourt H, Thorn S, Alshehri A, Alzahrani A, Fu H (2018) Ddefender: Android application threat detection using static and dynamic analysis. In 2018 IEEE Int Conf Consum Electron (ICCE) 1–6
29.
go back to reference Br S (2010) Analysis of the Android Architecture. PhD thesis, Karlsruhe Institute of Technology, Am Fasanengarten 5, Bldg. 50.34 76131 Karlsruhe Br S (2010) Analysis of the Android Architecture. PhD thesis, Karlsruhe Institute of Technology, Am Fasanengarten 5, Bldg. 50.34 76131 Karlsruhe
37.
go back to reference Stahle L, Wold S (1989) Analysis of variance (anova). Chemometrics and Intelligent Laboratory Systems 6(4):259–272CrossRef Stahle L, Wold S (1989) Analysis of variance (anova). Chemometrics and Intelligent Laboratory Systems 6(4):259–272CrossRef
38.
go back to reference Glorot X, Bordes A, Bengio Y (2010) Deep sparse rectifier neural networks. 15:01 Glorot X, Bordes A, Bengio Y (2010) Deep sparse rectifier neural networks. 15:01
39.
go back to reference Han J, Moraga C (1995) The influence of the sigmoid function parameters on the speed of backpropagation learning. In Proceedings of the International Workshop on Artificial Neural Networks: From Natural to Artificial Neural Computation, IWANN ’96, page 195–201, Berlin, Heidelberg. Springer-Verlag Han J, Moraga C (1995) The influence of the sigmoid function parameters on the speed of backpropagation learning. In Proceedings of the International Workshop on Artificial Neural Networks: From Natural to Artificial Neural Computation, IWANN ’96, page 195–201, Berlin, Heidelberg. Springer-Verlag
40.
go back to reference Hahnloser RHR, Sarpeshkar R, Mahowald MA, Douglas RJ, Seung HS (2000) Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit. Nature 405(6789):947–951CrossRef Hahnloser RHR, Sarpeshkar R, Mahowald MA, Douglas RJ, Seung HS (2000) Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit. Nature 405(6789):947–951CrossRef
41.
go back to reference Duchi J, Hazan E, Singer Y (2011) Adaptive subgradient methods for online learning and stochastic optimization. Journal of Machine Learning Research 12(61):2121–2159MathSciNetMATH Duchi J, Hazan E, Singer Y (2011) Adaptive subgradient methods for online learning and stochastic optimization. Journal of Machine Learning Research 12(61):2121–2159MathSciNetMATH
43.
go back to reference Wei F, Li Y, Roy S, Ou X, Zhou W (2017) Deepground truth analysis of current android malware 252–276 Wei F, Li Y, Roy S, Ou X, Zhou W (2017) Deepground truth analysis of current android malware 252–276
44.
go back to reference Pedregosa F, Varoquaux G et al (2011) Scikit-learn: Machine learning in Python. Journal of Machine Learning Research 12:2825–2830MathSciNetMATH Pedregosa F, Varoquaux G et al (2011) Scikit-learn: Machine learning in Python. Journal of Machine Learning Research 12:2825–2830MathSciNetMATH
45.
go back to reference Abadi M, Agarwal A et al (2015) TensorFlow: Large-scale machine learning on heterogeneous systems. Software available from tensorflow.org Abadi M, Agarwal A et al (2015) TensorFlow: Large-scale machine learning on heterogeneous systems. Software available from tensorflow.org
Metadata
Title
MINAD: Multi-inputs Neural Network based on Application Structure for Android Malware Detection
Authors
Duc V. Nguyen
Giang L. Nguyen
Thang T. Nguyen
Anh H. Ngo
Giang T. Pham
Publication date
14-09-2021
Publisher
Springer US
Published in
Peer-to-Peer Networking and Applications / Issue 1/2022
Print ISSN: 1936-6442
Electronic ISSN: 1936-6450
DOI
https://doi.org/10.1007/s12083-021-01244-w

Other articles of this Issue 1/2022

Peer-to-Peer Networking and Applications 1/2022 Go to the issue

Premium Partner