Skip to main content
Top
Published in: Wireless Personal Communications 2/2021

21-11-2020

Miniaturized Harmonic Suppressed Wilkinson Power Divider using Lumped Components and Resonators

Authors: Masoud Heydari, Saeed Roshani

Published in: Wireless Personal Communications | Issue 2/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this article, a miniaturized and harmonics suppressed Wilkinson power divider (WPD) is analytically designed. In the proposed divider composite transmission lines and resonator cells are utilized to eliminate unwanted harmonics and reduce circuit size. This structure has a 52% size reduction, compared to the typical WPD. According to the measured results, more than 22, 42, 45 and 40 dB suppression for 3rd, 4th, 5th and 6th harmonics are achieved. The presented WPD has lower than 0.15 dB insertion loss, more than 30 dB output ports isolation and more than 20 dB return losses in all ports at the operating frequency of 1.5 GHz is obtained.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Hong, J. S., & Lancaster, M. J. (2004). Microstrip filters for RF/microwave applications. New York: Wiley. Hong, J. S., & Lancaster, M. J. (2004). Microstrip filters for RF/microwave applications. New York: Wiley.
2.
go back to reference Melati, D., Waqas, A., Mushtaq, Z., & Melloni, A. (2017). Wideband integrated optical delay line based on a continuously tunable Mach–Zehnder interferometer. IEEE Journal of Selected Topics in Quantum Electronics, 24(1), 1–8.CrossRef Melati, D., Waqas, A., Mushtaq, Z., & Melloni, A. (2017). Wideband integrated optical delay line based on a continuously tunable Mach–Zehnder interferometer. IEEE Journal of Selected Topics in Quantum Electronics, 24(1), 1–8.CrossRef
3.
go back to reference Caloz, C., & Itoh, T. (2005). Electromagnetic metamaterials: Transmission line theory and microwave applications. New York: Wiley.CrossRef Caloz, C., & Itoh, T. (2005). Electromagnetic metamaterials: Transmission line theory and microwave applications. New York: Wiley.CrossRef
4.
go back to reference Waqas, A., Melati, D., & Melloni, A. (2018). Cascaded Mach–Zehnder architectures for photonic integrated delay lines. IEEE Photonics Technology Letters, 30(21), 1830–1833.CrossRef Waqas, A., Melati, D., & Melloni, A. (2018). Cascaded Mach–Zehnder architectures for photonic integrated delay lines. IEEE Photonics Technology Letters, 30(21), 1830–1833.CrossRef
5.
go back to reference Waqas, A., Melati, D., & Melloni, A. (2018). Wideband continuously tunable integrated delay line based on cascaded Mach–Zehnder. In: 2018 photonics in switching and computing (PSC) (pp. 1–3). IEEE, Limassol, Cyprus. Waqas, A., Melati, D., & Melloni, A. (2018). Wideband continuously tunable integrated delay line based on cascaded Mach–Zehnder. In: 2018 photonics in switching and computing (PSC) (pp. 1–3). IEEE, Limassol, Cyprus.
6.
go back to reference Pozar, D. M. (2005). Microwave engineering (3rd ed.). New York: Wiley. Pozar, D. M. (2005). Microwave engineering (3rd ed.). New York: Wiley.
7.
go back to reference Hosseini, F., Khalaj-Amir Hosseini, M., & Yazdani, M. (2009). A miniaturized Wilkinson power divider using non uniform transmission line. Journal of Electromagnetic Waves and Applications, 23(7), 917–924.CrossRef Hosseini, F., Khalaj-Amir Hosseini, M., & Yazdani, M. (2009). A miniaturized Wilkinson power divider using non uniform transmission line. Journal of Electromagnetic Waves and Applications, 23(7), 917–924.CrossRef
8.
go back to reference Wang, X., Ma, Z., Sakagami, I., Mase, A., & Yoshikawa, M. (2015). Miniaturized Wilkinson power divider with extra coupled line section for compensation. Microwave and Optical Technology Letters, 57(8), 1869–1873.CrossRef Wang, X., Ma, Z., Sakagami, I., Mase, A., & Yoshikawa, M. (2015). Miniaturized Wilkinson power divider with extra coupled line section for compensation. Microwave and Optical Technology Letters, 57(8), 1869–1873.CrossRef
9.
go back to reference Lin, C. M., Su, H. H., Chiu, J. C., & Wang, Y. H. (2007). Wilkinson power divider using microstrip EBG cells for the suppression of harmonics. IEEE Microwave and Wireless Components Letters, 17(10), 700–702.CrossRef Lin, C. M., Su, H. H., Chiu, J. C., & Wang, Y. H. (2007). Wilkinson power divider using microstrip EBG cells for the suppression of harmonics. IEEE Microwave and Wireless Components Letters, 17(10), 700–702.CrossRef
10.
go back to reference Woo, D. J., & Lee, T. K. (2005). Suppression of harmonics in Wilkinson power divider using dual-band rejection by asymmetric DGS. IEEE Transactions on Microwave Theory and Techniques, 53(6), 2139–2144.CrossRef Woo, D. J., & Lee, T. K. (2005). Suppression of harmonics in Wilkinson power divider using dual-band rejection by asymmetric DGS. IEEE Transactions on Microwave Theory and Techniques, 53(6), 2139–2144.CrossRef
11.
go back to reference Roshani, S. (2017a). A compact microstrip low-pass filter with ultra wide stopband using compact microstrip resonant cells. International Journal of Microwave and Wireless Technologies, 9(5), 1023–1027.CrossRef Roshani, S. (2017a). A compact microstrip low-pass filter with ultra wide stopband using compact microstrip resonant cells. International Journal of Microwave and Wireless Technologies, 9(5), 1023–1027.CrossRef
12.
go back to reference Hayati, M., Roshani, S., & Roshani, S. (2013). Miniaturized Wilkinson power divider with nth harmonic suppression using front coupled tapered CMRC. In: ACES (Vol. 28, No. 3, pp. 221–227). Hayati, M., Roshani, S., & Roshani, S. (2013). Miniaturized Wilkinson power divider with nth harmonic suppression using front coupled tapered CMRC. In: ACES (Vol. 28, No. 3, pp. 221–227).
13.
go back to reference Roshani, S., Siahkamari, P., & Siahkamari, H. (2017). Compact, harmonic suppressed Gysel power divider with plain structure. Frequenz, 71(5–6), 221–226. Roshani, S., Siahkamari, P., & Siahkamari, H. (2017). Compact, harmonic suppressed Gysel power divider with plain structure. Frequenz, 71(5–6), 221–226.
14.
go back to reference Roshani, S. (2017b). A Wilkinson power divider with harmonics suppression and size reduction using meandered compact microstrip resonating cells. Frequenz, 71(11–12), 517–522.CrossRef Roshani, S. (2017b). A Wilkinson power divider with harmonics suppression and size reduction using meandered compact microstrip resonating cells. Frequenz, 71(11–12), 517–522.CrossRef
15.
go back to reference Veysi, M., Ahmadi, A., Karimi, G., & Lalbakhsh, A. (2017). RFID tag design using spiral resonators and defected ground structure. Radioengineering, 26(4), 1019–1024.CrossRef Veysi, M., Ahmadi, A., Karimi, G., & Lalbakhsh, A. (2017). RFID tag design using spiral resonators and defected ground structure. Radioengineering, 26(4), 1019–1024.CrossRef
16.
go back to reference Karimi, G., Lalbakhsh, A., Dehghani, K., & Siahkamari, H. (2015). Analysis of novel approach to design of ultra-wide stopband microstrip low-pass filter using modified u-shaped resonator. ETRI Journal., 37(5), 945–950.CrossRef Karimi, G., Lalbakhsh, A., Dehghani, K., & Siahkamari, H. (2015). Analysis of novel approach to design of ultra-wide stopband microstrip low-pass filter using modified u-shaped resonator. ETRI Journal., 37(5), 945–950.CrossRef
17.
go back to reference Karimi, G., Siahkamari, H., Hamedani, F. K., & Lalbakhsh, A. (2015). Design of modified Z-shaped and T-shaped microstrip filter based on transfer function analysis. Wireless Personal Communications, 82(4), 2005–2016.CrossRef Karimi, G., Siahkamari, H., Hamedani, F. K., & Lalbakhsh, A. (2015). Design of modified Z-shaped and T-shaped microstrip filter based on transfer function analysis. Wireless Personal Communications, 82(4), 2005–2016.CrossRef
18.
go back to reference Lotfi, S., Roshani, S., Roshani, S., & Gilan, M. S. (2020). Wilkinson power divider with band-pass filtering response and harmonics suppression using open and short stubs. Frequenz, 74(5–6), 169–176.CrossRef Lotfi, S., Roshani, S., Roshani, S., & Gilan, M. S. (2020). Wilkinson power divider with band-pass filtering response and harmonics suppression using open and short stubs. Frequenz, 74(5–6), 169–176.CrossRef
19.
go back to reference Hookari, M., Roshani, S., & Roshani, S. (2020). Design of a low pass filter using rhombus-shaped resonators with an analytical LC equivalent circuit. Turkish Journal of Electrical Engineering & Computer Sciences., 28(2), 865–874.CrossRef Hookari, M., Roshani, S., & Roshani, S. (2020). Design of a low pass filter using rhombus-shaped resonators with an analytical LC equivalent circuit. Turkish Journal of Electrical Engineering & Computer Sciences., 28(2), 865–874.CrossRef
20.
go back to reference Roshani, S., & Roshani, S. (2020). Design of a compact LPF and a miniaturized Wilkinson power divider using aperiodic stubs with harmonic suppression for wireless applications. Wireless Networks., 26(2), 1493–1501.CrossRef Roshani, S., & Roshani, S. (2020). Design of a compact LPF and a miniaturized Wilkinson power divider using aperiodic stubs with harmonic suppression for wireless applications. Wireless Networks., 26(2), 1493–1501.CrossRef
21.
go back to reference Heydari, M., Rostami, P., & Roshani, S. (2019). Design of a modified Wilkinson power divider with size reduction and harmonics suppression using triangle-shaped resonators. Wireless Personal Communications, 109(3), 1571–1579.CrossRef Heydari, M., Rostami, P., & Roshani, S. (2019). Design of a modified Wilkinson power divider with size reduction and harmonics suppression using triangle-shaped resonators. Wireless Personal Communications, 109(3), 1571–1579.CrossRef
22.
go back to reference Golestanifar, A., & Roshani, S. (2019). Design of an ultra-sharp composite low-pass filter using analytical method. Analog Integrated Circuits and Signal Processing., 100(2), 249–255.CrossRef Golestanifar, A., & Roshani, S. (2019). Design of an ultra-sharp composite low-pass filter using analytical method. Analog Integrated Circuits and Signal Processing., 100(2), 249–255.CrossRef
23.
go back to reference Lalbakhsh, A., Ghaderi, A., Mohyuddin, W., Simorangkir, R. B., Bayat-Makou, N., Ahmad, M. S., et al. (2020). A compact C-B and bandpass filter with an adjustable dual-band suitable for satellite communication systems. Electronics, 9(7), 1088.CrossRef Lalbakhsh, A., Ghaderi, A., Mohyuddin, W., Simorangkir, R. B., Bayat-Makou, N., Ahmad, M. S., et al. (2020). A compact C-B and bandpass filter with an adjustable dual-band suitable for satellite communication systems. Electronics, 9(7), 1088.CrossRef
24.
go back to reference Karimi, G., Amirian, M., Lalbakhsh, A., & Ranjbar, M. (2019). A new microstrip coupling system for realization of a differential dual-band bandpass filter. AEU-International Journal of Electronics and Communications, 99, 186–192.CrossRef Karimi, G., Amirian, M., Lalbakhsh, A., & Ranjbar, M. (2019). A new microstrip coupling system for realization of a differential dual-band bandpass filter. AEU-International Journal of Electronics and Communications, 99, 186–192.CrossRef
25.
go back to reference Amirian, M., Karimi, G., Lalbakhsh, A., & Bayati, M. S. (2015). Compact differential bandpass filter with a narrow notched band using APCL structure suitable for UWB application. Microelectronics Journal, 46(9), 869–874.CrossRef Amirian, M., Karimi, G., Lalbakhsh, A., & Bayati, M. S. (2015). Compact differential bandpass filter with a narrow notched band using APCL structure suitable for UWB application. Microelectronics Journal, 46(9), 869–874.CrossRef
26.
go back to reference Zhan, W. L., & Zhao, X. L. (2017). Compact filtering power divider with harmonic suppression. Journal of Electromagnetic Waves and Applications, 31(3), 243–249.CrossRef Zhan, W. L., & Zhao, X. L. (2017). Compact filtering power divider with harmonic suppression. Journal of Electromagnetic Waves and Applications, 31(3), 243–249.CrossRef
27.
go back to reference Wang, Y., Zhang, X. Y., Liu, F. X., & Lee, J. C. (2017). A compact bandpass Wilkinson power divider with ultra-wide band harmonic suppression. IEEE Microwave and Wireless Components Letters, 27(10), 888–890.CrossRef Wang, Y., Zhang, X. Y., Liu, F. X., & Lee, J. C. (2017). A compact bandpass Wilkinson power divider with ultra-wide band harmonic suppression. IEEE Microwave and Wireless Components Letters, 27(10), 888–890.CrossRef
28.
go back to reference Jamshidi, M., Lalbakhsh, A., Lotfi, S., Siahkamari, H., Mohamadzade, B., & Jalilian, J. (2020). A neuro-based approach to designing a Wilkinson power divider. International Journal of RF and Microwave Computer-Aided Engineering, 30(3), e22091.CrossRef Jamshidi, M., Lalbakhsh, A., Lotfi, S., Siahkamari, H., Mohamadzade, B., & Jalilian, J. (2020). A neuro-based approach to designing a Wilkinson power divider. International Journal of RF and Microwave Computer-Aided Engineering, 30(3), e22091.CrossRef
29.
go back to reference Jamshidi, M., Lalbakhsh, A., Talla, J., Peroutka, Z., Hadjilooei, F., Lalbakhsh, P., et al. (2020). Artificial intelligence and COVID-19: Deep learning approaches for diagnosis and treatment. IEEE Access, 8, 109581–109585.CrossRef Jamshidi, M., Lalbakhsh, A., Talla, J., Peroutka, Z., Hadjilooei, F., Lalbakhsh, P., et al. (2020). Artificial intelligence and COVID-19: Deep learning approaches for diagnosis and treatment. IEEE Access, 8, 109581–109585.CrossRef
30.
go back to reference Zirak, A. R., & Roshani, S. (2016). Design and modeling of RF power amplifiers with radial basis function artificial neural networks. International Journal of Advanced Computer Science and Applications, 7(6), 227–231. Zirak, A. R., & Roshani, S. (2016). Design and modeling of RF power amplifiers with radial basis function artificial neural networks. International Journal of Advanced Computer Science and Applications, 7(6), 227–231.
31.
go back to reference Du, Z. X., Zhang, X. Y., Wang, K. X., Kao, H. L., Zhao, X. L., & Li, X. H. (2016). Unequal Wilkinson power divider with reduced arm length for size miniaturization. IEEE Transactions on Components, Packaging and Manufacturing Technology, 6(2), 282–289.CrossRef Du, Z. X., Zhang, X. Y., Wang, K. X., Kao, H. L., Zhao, X. L., & Li, X. H. (2016). Unequal Wilkinson power divider with reduced arm length for size miniaturization. IEEE Transactions on Components, Packaging and Manufacturing Technology, 6(2), 282–289.CrossRef
32.
go back to reference Li, J. L., Wang, H. Z., Wang, J. P., Gao, S. S., Yang, X. S., & Shao, W. (2016). Miniaturized Wilkinson power dividers with harmonic suppressions. Electromagnetics, 36(3), 157–166.CrossRef Li, J. L., Wang, H. Z., Wang, J. P., Gao, S. S., Yang, X. S., & Shao, W. (2016). Miniaturized Wilkinson power dividers with harmonic suppressions. Electromagnetics, 36(3), 157–166.CrossRef
33.
go back to reference Mirzavand, R., Honari, M. M., Abdipour, A., & Moradi, G. (2013). Compact microstrip Wilkinson power dividers with harmonic suppression and arbitrary power division ratios. IEEE Transactions on Microwave Theory and Techniques, 61(13), 61–68.CrossRef Mirzavand, R., Honari, M. M., Abdipour, A., & Moradi, G. (2013). Compact microstrip Wilkinson power dividers with harmonic suppression and arbitrary power division ratios. IEEE Transactions on Microwave Theory and Techniques, 61(13), 61–68.CrossRef
34.
go back to reference Hayati, M., & Roshani, S. (2013) A novel Wilkinson power divider using open stubs for the suppression of harmonics. In: ACES (Vol. 28, No. 6). Hayati, M., & Roshani, S. (2013) A novel Wilkinson power divider using open stubs for the suppression of harmonics. In: ACES (Vol. 28, No. 6).
Metadata
Title
Miniaturized Harmonic Suppressed Wilkinson Power Divider using Lumped Components and Resonators
Authors
Masoud Heydari
Saeed Roshani
Publication date
21-11-2020
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 2/2021
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07933-8

Other articles of this Issue 2/2021

Wireless Personal Communications 2/2021 Go to the issue