Skip to main content
Top
Published in: Physics of Metals and Metallography 11/2021

01-11-2021 | THEORY OF METALS

Model of Decomposition of Alloy with Two Magnetic Components: the BCC FeCr System

Authors: I. K. Razumov, Yu. N. Gornostyrev

Published in: Physics of Metals and Metallography | Issue 11/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A sequential model of the decomposition of the bcc FeCr binary alloy is formulated that takes into account the configurational and magnetic contributions to the free energy. Using the results of ab initio calculations, the theory of regular solutions is generalized by considering the contributions of the magnetic entropy, the concentration dependence of the exchange interactions, and the mixing energies. The resulting expression for the free energy makes it possible to construct the boundaries of the two-phase region of the bcc FeCr alloy in good agreement with the experimental data, as well as to predict the position of the spinodal, below which the formation of highly dispersed states should be expected when starting from a homogeneous state.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference S. I. Porollo, A. M. Dvoriashin, A. N. Vorobyev, and Yu. V. Konobeev, “The microstructure and tensile properties of Fe–Cr alloys after neutron irradiation at 400°C to 5.5–7.1 dpa,” J. Nucl. Mater. 256, 247–253 (1998).CrossRef S. I. Porollo, A. M. Dvoriashin, A. N. Vorobyev, and Yu. V. Konobeev, “The microstructure and tensile properties of Fe–Cr alloys after neutron irradiation at 400°C to 5.5–7.1 dpa,” J. Nucl. Mater. 256, 247–253 (1998).CrossRef
2.
go back to reference F. Garner, M. B. Toloczko, and B. H. Sencer, “Comparison of swelling and irradiation creep behavior of fcc-austenitic and bcc-ferritic/martensitic alloys at high neutron exposure,” J. Nucl. Mater. 276, 123–142 (2000).CrossRef F. Garner, M. B. Toloczko, and B. H. Sencer, “Comparison of swelling and irradiation creep behavior of fcc-austenitic and bcc-ferritic/martensitic alloys at high neutron exposure,” J. Nucl. Mater. 276, 123–142 (2000).CrossRef
3.
go back to reference R. O. Williams and H. W. Paxton, “The nature of aging of binary iron–chromium alloys around 500°C,” J. Iron Steel Institute, 358–374 (1957). R. O. Williams and H. W. Paxton, “The nature of aging of binary iron–chromium alloys around 500°C,” J. Iron Steel Institute, 358–374 (1957).
4.
go back to reference P. Olsson, I. A. Abrikosov, and J. Wallenius, “Electronic origin of the anomalous stability of Fe-rich bcc Fe–Cr alloys,” Phys. Rev. B 73, 104416 (2006).CrossRef P. Olsson, I. A. Abrikosov, and J. Wallenius, “Electronic origin of the anomalous stability of Fe-rich bcc Fe–Cr alloys,” Phys. Rev. B 73, 104416 (2006).CrossRef
5.
go back to reference T. P. C. Klaver, R. Drautz, and M. W. Finnis, “Magnetism and thermodynamics of defect-free Fe–Cr alloys,” Phys. Rev. B 74, 094435 (2006).CrossRef T. P. C. Klaver, R. Drautz, and M. W. Finnis, “Magnetism and thermodynamics of defect-free Fe–Cr alloys,” Phys. Rev. B 74, 094435 (2006).CrossRef
6.
go back to reference A. V. Ruban, P. A. Korzhavyi, and B. Johansson, “First-principles theory of magnetically driven anomalous ordering in bcc Fe–Cr alloys,“ Phys. Rev. B 77, 094436 (2008).CrossRef A. V. Ruban, P. A. Korzhavyi, and B. Johansson, “First-principles theory of magnetically driven anomalous ordering in bcc Fe–Cr alloys,“ Phys. Rev. B 77, 094436 (2008).CrossRef
7.
go back to reference W. Xiong, P. Hedström, M. Selleby, J. Odqvist, M. Thuvander, and Q. Chen, “An improved thermodynamic modeling of the Fe–Cr system down to zero Kelvin coupled with key experiments,” Calphad 35, 355–366 (2011).CrossRef W. Xiong, P. Hedström, M. Selleby, J. Odqvist, M. Thuvander, and Q. Chen, “An improved thermodynamic modeling of the Fe–Cr system down to zero Kelvin coupled with key experiments,” Calphad 35, 355–366 (2011).CrossRef
8.
go back to reference M. I. Gol’dshtein, S. V. Grachev, Yu. G. Veksler, Special Steels (Mosk. Inst. Stali i Splavov, Moscow, 1999). M. I. Gol’dshtein, S. V. Grachev, Yu. G. Veksler, Special Steels (Mosk. Inst. Stali i Splavov, Moscow, 1999).
9.
go back to reference E. C. Stoner and C. P. Wohlfarth, “A mechanism of magnetic hysteresis in heterogeneous alloys,“ Philos. Trans. Roy. Soc. A 240, 599–642 (1948). E. C. Stoner and C. P. Wohlfarth, “A mechanism of magnetic hysteresis in heterogeneous alloys,“ Philos. Trans. Roy. Soc. A 240, 599–642 (1948).
10.
go back to reference B. O. Mukhamedov, A. V. Ponomareva, and I. A. Abri-kosov, “Spinodal decomposition in ternary Fe–Cr–Co system,“ J. Alloys Compd. 695, 250–256 (2017).CrossRef B. O. Mukhamedov, A. V. Ponomareva, and I. A. Abri-kosov, “Spinodal decomposition in ternary Fe–Cr–Co system,“ J. Alloys Compd. 695, 250–256 (2017).CrossRef
11.
go back to reference A. A. Mirzoev, M. M. Yalalov, and D. A. Mirzaev, “Calculation of the energy of mixing for the Fe–Cr alloys by the first-principles methods of computer simulation,“ Phys. Met. Metall. 103, 83–87 (2007).CrossRef A. A. Mirzoev, M. M. Yalalov, and D. A. Mirzaev, “Calculation of the energy of mixing for the Fe–Cr alloys by the first-principles methods of computer simulation,“ Phys. Met. Metall. 103, 83–87 (2007).CrossRef
12.
go back to reference D. A. Mirzaev and A. A. Mirzoev, “Magnetic component of mixing enthalpy for bcc Fe–Cr alloys: ab initio based model,” J. Phys.: Conf. Ser. 1389, 012007 (2019). D. A. Mirzaev and A. A. Mirzoev, “Magnetic component of mixing enthalpy for bcc Fe–Cr alloys: ab initio based model,” J. Phys.: Conf. Ser. 1389, 012007 (2019).
13.
go back to reference I. K. Razumov and I. G. Shmakov, " The model of decomposition of a Fe–Cu alloy with concentration-depending interatomic interactions,“ Phys. Solid State 61, 952–961 (2019).CrossRef I. K. Razumov and I. G. Shmakov, " The model of decomposition of a Fe–Cu alloy with concentration-depending interatomic interactions,“ Phys. Solid State 61, 952–961 (2019).CrossRef
14.
go back to reference I. K. Razumov, Yu. N. Gornostyrev, and M. I. Katsnelson, “Towards the ab initio based theory of phase transformations in iron and steel,“ Phys. Met. Metallogr. 118, 362–388 (2017).CrossRef I. K. Razumov, Yu. N. Gornostyrev, and M. I. Katsnelson, “Towards the ab initio based theory of phase transformations in iron and steel,“ Phys. Met. Metallogr. 118, 362–388 (2017).CrossRef
15.
go back to reference G. Inden, “The mutual influence of magnetic and chemical ordering,“ MRS Proc. 19, 175–188 (1982). G. Inden, “The mutual influence of magnetic and chemical ordering,“ MRS Proc. 19, 175–188 (1982).
16.
go back to reference A. Kuronen, S. Granroth, M. H. Heinonen, R. E. Perälä, T. Kilpi, P. Laukkanen, J. Lång, J. Dahl, M. P. J. Punkkinen, K. Kokko, M. Ropo, B. Johansson, and L. Vitos, “Segregation, precipitation, and α–α' phase separation in Fe–Cr alloys,“ Phys. Rev. B 92, 214113 (2015).CrossRef A. Kuronen, S. Granroth, M. H. Heinonen, R. E. Perälä, T. Kilpi, P. Laukkanen, J. Lång, J. Dahl, M. P. J. Punkkinen, K. Kokko, M. Ropo, B. Johansson, and L. Vitos, “Segregation, precipitation, and α–α' phase separation in Fe–Cr alloys,“ Phys. Rev. B 92, 214113 (2015).CrossRef
17.
go back to reference D. Nguyen-Manh, M. Yu. Lavrentiev, and S. L. Dudarev, “The Fe–Cr system: atomistic modelling of thermodynamics and kinetics of phase transformations,“ C. R. Phys. 9, 379–388 (2008).CrossRef D. Nguyen-Manh, M. Yu. Lavrentiev, and S. L. Dudarev, “The Fe–Cr system: atomistic modelling of thermodynamics and kinetics of phase transformations,“ C. R. Phys. 9, 379–388 (2008).CrossRef
18.
go back to reference J. B. J. Chapman, P. W. Ma, and S. L. Dudarev, “Dynamics of magnetism in Fe–Cr alloys with Cr clustering,“ Phys. Rev. B 99, 184413 (2019).CrossRef J. B. J. Chapman, P. W. Ma, and S. L. Dudarev, “Dynamics of magnetism in Fe–Cr alloys with Cr clustering,“ Phys. Rev. B 99, 184413 (2019).CrossRef
19.
go back to reference M. Levesque, E. Martinez, C.-C. Fu, M. Nastar, and F. Soisson, “Simple concentration-dependent pair interaction model for large-scale simulations of Fe–Cr alloys,“ Phys. Rev. B 84, 184205 (2011).CrossRef M. Levesque, E. Martinez, C.-C. Fu, M. Nastar, and F. Soisson, “Simple concentration-dependent pair interaction model for large-scale simulations of Fe–Cr alloys,“ Phys. Rev. B 84, 184205 (2011).CrossRef
20.
go back to reference W. Xiong, M. Selleby, Q. Chen, J. Odqvist, and Y. Du, “Evaluation of phase equilibria and thermochemical properties in the Fe–Cr system,” Crit. Rev. Solid State Mater. Sci. 35, 125–152 (2010).CrossRef W. Xiong, M. Selleby, Q. Chen, J. Odqvist, and Y. Du, “Evaluation of phase equilibria and thermochemical properties in the Fe–Cr system,” Crit. Rev. Solid State Mater. Sci. 35, 125–152 (2010).CrossRef
21.
go back to reference W. Xiong, J. Odqvist, P. Hedström, M. Selleby, M. Thuvander, and Q. Chen, “An improved thermodynamic modeling of the Fe–Cr system down to zero kelvin coupled with key experiments,“ CALPHAD 35, 355–366 (2011).CrossRef W. Xiong, J. Odqvist, P. Hedström, M. Selleby, M. Thuvander, and Q. Chen, “An improved thermodynamic modeling of the Fe–Cr system down to zero kelvin coupled with key experiments,“ CALPHAD 35, 355–366 (2011).CrossRef
22.
go back to reference J. W. Christian, The Theory of Transformations in Metals and Alloys (Pergamon, New York, 2002). 806 c. J. W. Christian, The Theory of Transformations in Metals and Alloys (Pergamon, New York, 2002). 806 c.
23.
go back to reference J. Strečka and M. Jaščur, “A brief account of the Ising and Ising-like models: mean-field, effective-field and exact results,” Acta Phys. Slovaca 65, No. 4, 235–367 (2015). J. Strečka and M. Jaščur, “A brief account of the Ising and Ising-like models: mean-field, effective-field and exact results,” Acta Phys. Slovaca 65, No. 4, 235–367 (2015).
24.
go back to reference J. M. Sanchez, “Generalized cluster description of multicomponent systems,” Physica A 128, 334–350 (1984).CrossRef J. M. Sanchez, “Generalized cluster description of multicomponent systems,” Physica A 128, 334–350 (1984).CrossRef
25.
go back to reference M. Yu. Lavrentiev, S. L. Dudarev, and D. Nguyen-Manh, J. Nucl. Mater. 386–388, 22–25 (2009).CrossRef M. Yu. Lavrentiev, S. L. Dudarev, and D. Nguyen-Manh, J. Nucl. Mater. 386388, 22–25 (2009).CrossRef
26.
go back to reference M. Yu. Lavrentiev, J. S. Wrobel, D. Nguyen-Manh, S. L. Dudarev, and M. G. Ganchenkova, “Magnetic cluster expansion model for random and ordered magnetic face-centered cubic Fe–Ni–Cr alloys,” J. Appl. Phys. 120, 043902 (2016).CrossRef M. Yu. Lavrentiev, J. S. Wrobel, D. Nguyen-Manh, S. L. Dudarev, and M. G. Ganchenkova, “Magnetic cluster expansion model for random and ordered magnetic face-centered cubic Fe–Ni–Cr alloys,” J. Appl. Phys. 120, 043902 (2016).CrossRef
27.
go back to reference J. S. Smart, Effective Field Theories of Magnetism (Saunders, 1968). J. S. Smart, Effective Field Theories of Magnetism (Saunders, 1968).
28.
go back to reference I. K. Razumov, Yu. N. Gornostyrev, and M. I. Katsnelson, “Effect of magnetism on kinetics of γ–α transformation and pattern formation in iron,” J. Physics: Condens. Matter 25, No. 13. 135401 (2013). I. K. Razumov, Yu. N. Gornostyrev, and M. I. Katsnelson, “Effect of magnetism on kinetics of γ–α transformation and pattern formation in iron,” J. Physics: Condens. Matter 25, No. 13. 135401 (2013).
29.
go back to reference Dzh. Zaiman, Models of Disorder (Mir, Moscow, 1982) [in Russian] Dzh. Zaiman, Models of Disorder (Mir, Moscow, 1982) [in Russian]
30.
go back to reference Y. Wang, H. Hou, J. Yin, S. Hu, X. Liu, F. Xue, C. H. Jr. Henager, and J. Wang, “The magnetic effects on the energetic landscape of Fe–Cu alloy: A model Hamiltonian approach,” Comp. Mater. Sci. 145, 163–173 (2018).CrossRef Y. Wang, H. Hou, J. Yin, S. Hu, X. Liu, F. Xue, C. H. Jr. Henager, and J. Wang, “The magnetic effects on the energetic landscape of Fe–Cu alloy: A model Hamiltonian approach,” Comp. Mater. Sci. 145, 163–173 (2018).CrossRef
31.
go back to reference G. Kirchner, T. Nishizawa, and B. Uhrenius, “The distribution of chromium between ferrite and austenite and the thermodynamics of the α/γ equilibrium in the Fe–Cr and Fe–Mn Systems,” Metall. Trans. 4, 167–174 (1973).CrossRef G. Kirchner, T. Nishizawa, and B. Uhrenius, “The distribution of chromium between ferrite and austenite and the thermodynamics of the α/γ equilibrium in the Fe–Cr and Fe–Mn Systems,” Metall. Trans. 4, 167–174 (1973).CrossRef
32.
go back to reference H. Kaneko, M. Homma, and K. Nakamura, “Phase diagram of Fe–Cr–Co permanent magnet system,” IEEE Trans. Magn., No. 5, 1325–1327 (1977). H. Kaneko, M. Homma, and K. Nakamura, “Phase diagram of Fe–Cr–Co permanent magnet system,” IEEE Trans. Magn., No. 5, 1325–1327 (1977).
33.
go back to reference A. V. Ponomareva, A. V. Ruban, B. O. Mukhamedov, and I. A. Abrikosov, “Effect of multicomponent alloying with Ni, Mn and Mo on phase stability of bcc Fe–Cr alloys,” Acta Mater. 150, 117–129 (2018).CrossRef A. V. Ponomareva, A. V. Ruban, B. O. Mukhamedov, and I. A. Abrikosov, “Effect of multicomponent alloying with Ni, Mn and Mo on phase stability of bcc Fe–Cr alloys,” Acta Mater. 150, 117–129 (2018).CrossRef
34.
go back to reference M. L. Bernshtein et al. Metal Science and Heat Treatment of Steel and Cast Iron, Ed. by A. G. Rakhshtadt (Intermet Inzheniring, Moscow, 2005), vol. 2. M. L. Bernshtein et al. Metal Science and Heat Treatment of Steel and Cast Iron, Ed. by A. G. Rakhshtadt (Intermet Inzheniring, Moscow, 2005), vol. 2.
35.
go back to reference K. Binder, “Nucleation barriers, spinodals, and the Ginzburg criterion,” Phys. Rev. A 29, 341–349 (1984).CrossRef K. Binder, “Nucleation barriers, spinodals, and the Ginzburg criterion,” Phys. Rev. A 29, 341–349 (1984).CrossRef
36.
go back to reference D. Chandra and L. Schwartz, “Mössbauer effect study on the 475°C decomposition of Fe–Cr,” Metall. Trans. 2, No. 9, 511–519 (1971).CrossRef D. Chandra and L. Schwartz, “Mössbauer effect study on the 475°C decomposition of Fe–Cr,” Metall. Trans. 2, No. 9, 511–519 (1971).CrossRef
37.
go back to reference B. Fultz, “Vibrational thermodynamics of materials,” Prog. Mater. Sci. 55, 247–352 (2010).CrossRef B. Fultz, “Vibrational thermodynamics of materials,” Prog. Mater. Sci. 55, 247–352 (2010).CrossRef
Metadata
Title
Model of Decomposition of Alloy with Two Magnetic Components: the BCC FeCr System
Authors
I. K. Razumov
Yu. N. Gornostyrev
Publication date
01-11-2021
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 11/2021
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X21110120

Other articles of this Issue 11/2021

Physics of Metals and Metallography 11/2021 Go to the issue