Skip to main content
Top
Published in: Advances in Manufacturing 3/2022

26-03-2022

Model reconstruction for worn blades based on hybrid surface registrations

Authors: Kang Cui, Rui-Song Jiang, Lin Jing

Published in: Advances in Manufacturing | Issue 3/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Model reconstruction is crucial in blade repair because it directly determines the shape precision and finish of a repaired surface. However, owing to insufficient surface data pertaining to defective regions and the unique deformation caused by harsh environments, modeling a worn blade remains difficult. Hence, a model reconstruction method for worn blades is developed in this study. Unlike conventional methods of constructing and interpolating sectional curves, the proposed method focuses on modifying a nominal computer aided design (CAD) model to reconstruct the worn blade. Through weighted rigid registration and constraint-based non-rigid registration, the design surface extracted from the nominal CAD model can be deformed to align with the surface data of the worn blade without a significant loss of its initial shape. Verification results show that the deformed design surface exhibits sufficient smoothness and accuracy for guiding tool path generation in the subsequent blade repair.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kaierle S, Overmeyer L, Alfred I et al (2017) Single-crystal turbine blade tip repair by laser cladding and remelting. CIRP J Manuf Sci Technol 19:196–199CrossRef Kaierle S, Overmeyer L, Alfred I et al (2017) Single-crystal turbine blade tip repair by laser cladding and remelting. CIRP J Manuf Sci Technol 19:196–199CrossRef
2.
go back to reference Rottwinkel B, Nolke C, Kaierle S et al (2017) Laser cladding for crack repair of CMSX-4 single-crystalline turbine parts. Lasers Manuf Mater Process 4(1):13–23CrossRef Rottwinkel B, Nolke C, Kaierle S et al (2017) Laser cladding for crack repair of CMSX-4 single-crystalline turbine parts. Lasers Manuf Mater Process 4(1):13–23CrossRef
3.
go back to reference Qi H, Azer M, Singh P (2009) Adaptive tool path deposition method for laser net shape manufacturing and repair of turbine compressor airfoils. Int J Adv Manuf Technol 48(1):121–131 Qi H, Azer M, Singh P (2009) Adaptive tool path deposition method for laser net shape manufacturing and repair of turbine compressor airfoils. Int J Adv Manuf Technol 48(1):121–131
4.
go back to reference Nicolaus M, Rottwinkel B, Alfred I et al (2018) Future regeneration processes for high-pressure turbine blades. CEAS Aeronaut J 9(1):85–92CrossRef Nicolaus M, Rottwinkel B, Alfred I et al (2018) Future regeneration processes for high-pressure turbine blades. CEAS Aeronaut J 9(1):85–92CrossRef
5.
go back to reference Praniewicz M, Kurfess T, Saldana C (2018) Adaptive geometry transformation and repair for hybrid manufacturing. Procedia Manuf 26:228–236CrossRef Praniewicz M, Kurfess T, Saldana C (2018) Adaptive geometry transformation and repair for hybrid manufacturing. Procedia Manuf 26:228–236CrossRef
6.
go back to reference Zheng JM, Li ZG, Chen X (2006) Worn area modeling for automating the repair of turbine blades. Int J Adv Manuf Technol 29(9/10):1062–1067CrossRef Zheng JM, Li ZG, Chen X (2006) Worn area modeling for automating the repair of turbine blades. Int J Adv Manuf Technol 29(9/10):1062–1067CrossRef
7.
go back to reference Penaranda X, Moralejo S, Lamikiz A et al (2017) An adaptive laser cladding methodology for blade tip repair. Int J Adv Manuf Technol 92:4337–4343CrossRef Penaranda X, Moralejo S, Lamikiz A et al (2017) An adaptive laser cladding methodology for blade tip repair. Int J Adv Manuf Technol 92:4337–4343CrossRef
8.
go back to reference Liu WD, Ao SS, Li Y et al (2016) Elimination of the over cut from a repaired turbine blade tip post-machined by electrochemical machining. J Mater Process Technol 231:27–37CrossRef Liu WD, Ao SS, Li Y et al (2016) Elimination of the over cut from a repaired turbine blade tip post-machined by electrochemical machining. J Mater Process Technol 231:27–37CrossRef
9.
go back to reference Gao J, Chen X, Zheng DT et al (2006) Adaptive restoration of complex geometry parts through reverse engineering application. Adv Eng Softw 37(9):592–600CrossRef Gao J, Chen X, Zheng DT et al (2006) Adaptive restoration of complex geometry parts through reverse engineering application. Adv Eng Softw 37(9):592–600CrossRef
10.
go back to reference Gao J, Chen X, Yilmaz O et al (2008) An integrated adaptive repair solution for complex aerospace components through geometry reconstruction. Int J Adv Manuf Technol 36(11/12):1170–1179CrossRef Gao J, Chen X, Yilmaz O et al (2008) An integrated adaptive repair solution for complex aerospace components through geometry reconstruction. Int J Adv Manuf Technol 36(11/12):1170–1179CrossRef
11.
go back to reference Yilmaz O, Gindy N, Gao J (2010) A repair and overhaul methodology for aero engine components. Robot Computer-Integr Manuf 26(2):190–201CrossRef Yilmaz O, Gindy N, Gao J (2010) A repair and overhaul methodology for aero engine components. Robot Computer-Integr Manuf 26(2):190–201CrossRef
12.
go back to reference Bagci E (2009) Reverse engineering applications for recovery of broken or worn parts and re-manufacturing: three case studies. Adv Eng Softw 40(6):407–418CrossRef Bagci E (2009) Reverse engineering applications for recovery of broken or worn parts and re-manufacturing: three case studies. Adv Eng Softw 40(6):407–418CrossRef
13.
go back to reference Xiao GJ, Huang Y (2019) Surface reconstruction of laser-cladding remanufacturing blade using in adaptive belt grinding. Int J Adv Manuf Technol 101:3199–3211CrossRef Xiao GJ, Huang Y (2019) Surface reconstruction of laser-cladding remanufacturing blade using in adaptive belt grinding. Int J Adv Manuf Technol 101:3199–3211CrossRef
14.
go back to reference Wang T, Ding HP, Wang H et al (2015) Virtual remanufacturing: cross-section curve reconstruction for repairing a tip-defective blade. Proc Inst Mech Eng C J Mech Eng Sci 229(17):3141–3152CrossRef Wang T, Ding HP, Wang H et al (2015) Virtual remanufacturing: cross-section curve reconstruction for repairing a tip-defective blade. Proc Inst Mech Eng C J Mech Eng Sci 229(17):3141–3152CrossRef
15.
go back to reference Yu HY, Lyu XG (2018) Repair of defective 3D blade model based on deformation of adjacent non-defective cross-sectional curve. Int J Adv Manuf Technol 95(5):3045–3055CrossRef Yu HY, Lyu XG (2018) Repair of defective 3D blade model based on deformation of adjacent non-defective cross-sectional curve. Int J Adv Manuf Technol 95(5):3045–3055CrossRef
16.
go back to reference Piya C, Wilson JM, Murugappan S et al (2011) Virtual repair: geometric reconstruction for remanufacturing gas turbine blades. In: ASME international design engineering technical conferences and computers and information in engineering conference, 28–31 August, Washinton DC, USA Piya C, Wilson JM, Murugappan S et al (2011) Virtual repair: geometric reconstruction for remanufacturing gas turbine blades. In: ASME international design engineering technical conferences and computers and information in engineering conference, 28–31 August, Washinton DC, USA
17.
go back to reference Wilson JM, Piya C, Shin YC et al (2014) Remanufacturing of turbine blades by laser direct deposition with its energy and environmental impact analysis. J Clean Prod 80:170–178CrossRef Wilson JM, Piya C, Shin YC et al (2014) Remanufacturing of turbine blades by laser direct deposition with its energy and environmental impact analysis. J Clean Prod 80:170–178CrossRef
18.
go back to reference Gao J, Wen H, Lin ZY et al (2017) Geometric model reconstruction through a surface extension algorithm for remanufacturing of twist blades. Rapid Prototyp J 23(2):382–390CrossRef Gao J, Wen H, Lin ZY et al (2017) Geometric model reconstruction through a surface extension algorithm for remanufacturing of twist blades. Rapid Prototyp J 23(2):382–390CrossRef
19.
go back to reference Zhang Y, Chen ZT, Ning T (2015) Reverse modeling strategy of aero-engine blade based on design intent. Int J Adv Manuf Technol 81(9):1781–1796 Zhang Y, Chen ZT, Ning T (2015) Reverse modeling strategy of aero-engine blade based on design intent. Int J Adv Manuf Technol 81(9):1781–1796
20.
go back to reference Huang H, Gong ZM, Chen XO et al (2003) Smart robotic system for 3D profile turbine vane airfoil repair. Int J Adv Manuf Technol 21(4):275–283CrossRef Huang H, Gong ZM, Chen XO et al (2003) Smart robotic system for 3D profile turbine vane airfoil repair. Int J Adv Manuf Technol 21(4):275–283CrossRef
21.
go back to reference Wang T, Liu YL, Wang LW et al (2012) Digitally reverse modeling for the repair of blades in aero-engines. Appl Mech Mater 141:258–263CrossRef Wang T, Liu YL, Wang LW et al (2012) Digitally reverse modeling for the repair of blades in aero-engines. Appl Mech Mater 141:258–263CrossRef
22.
go back to reference Wang H, Cai ZJ, Wang LW (2012) 3D model reconstruction of the broken aeroengine blade based on multi-scale genetic algorithm. Adv Mater Res 479:2250–2254CrossRef Wang H, Cai ZJ, Wang LW (2012) 3D model reconstruction of the broken aeroengine blade based on multi-scale genetic algorithm. Adv Mater Res 479:2250–2254CrossRef
23.
go back to reference Zhang XC, Li W, Liou F (2018) Damage detection and reconstruction algorithm in repairing compressor blade by direct metal deposition. Int J Adv Manuf Technol 95(5):2393–2404CrossRef Zhang XC, Li W, Liou F (2018) Damage detection and reconstruction algorithm in repairing compressor blade by direct metal deposition. Int J Adv Manuf Technol 95(5):2393–2404CrossRef
24.
go back to reference Zhang XC, Li W, Cui WY et al (2018) Modeling of worn surface geometry for engine blade repair using laser-aided direct metal deposition process. Manuf Lett 15:1–4CrossRef Zhang XC, Li W, Cui WY et al (2018) Modeling of worn surface geometry for engine blade repair using laser-aided direct metal deposition process. Manuf Lett 15:1–4CrossRef
25.
go back to reference Zhu ZQ, Zhang Y, Chen ZT (2020) A repair strategy based on tool path modification for damaged turbine blade. Int J Adv Manuf Technol 106(7):2995–3006 Zhu ZQ, Zhang Y, Chen ZT (2020) A repair strategy based on tool path modification for damaged turbine blade. Int J Adv Manuf Technol 106(7):2995–3006
26.
go back to reference Wu BH, Zheng H, Wang J et al (2020) Geometric model reconstruction and CNC machining for damaged blade repair. Int J Comput Integr Manuf 33(10):287–301CrossRef Wu BH, Zheng H, Wang J et al (2020) Geometric model reconstruction and CNC machining for damaged blade repair. Int J Comput Integr Manuf 33(10):287–301CrossRef
27.
go back to reference Li YQ, Ni J (2009) Constraints based nonrigid registration for 2D blade profile reconstruction in reverse engineering. J Comput Inf Sci Eng 9(3):296–297CrossRef Li YQ, Ni J (2009) Constraints based nonrigid registration for 2D blade profile reconstruction in reverse engineering. J Comput Inf Sci Eng 9(3):296–297CrossRef
28.
go back to reference Zhao ZC, Xu JH, Fu YC et al (2018) An investigation on adaptively machining the leading and tailing edges of an SPF/DB titanium hollow blade using free-form deformation. Chin J Aeronaut 31(1):178–186CrossRef Zhao ZC, Xu JH, Fu YC et al (2018) An investigation on adaptively machining the leading and tailing edges of an SPF/DB titanium hollow blade using free-form deformation. Chin J Aeronaut 31(1):178–186CrossRef
29.
go back to reference Su C, Jiang X, Huo GY (2020) Accurate model construction of deformed aero-engine blades for remanufacturing. Int J Adv Manuf Technol 106:3239–3251CrossRef Su C, Jiang X, Huo GY (2020) Accurate model construction of deformed aero-engine blades for remanufacturing. Int J Adv Manuf Technol 106:3239–3251CrossRef
30.
go back to reference Rong Y, Xu JT, Sun YW (2014) A surface reconstruction strategy based on deformable template for repairing damaged turbine blades. Proc Instit Mech Eng Part G J Aerospace Eng 228(12):2358–2370CrossRef Rong Y, Xu JT, Sun YW (2014) A surface reconstruction strategy based on deformable template for repairing damaged turbine blades. Proc Instit Mech Eng Part G J Aerospace Eng 228(12):2358–2370CrossRef
31.
go back to reference Cui K, Wang WH, Jiang RS et al (2018) Model reconstruction in adaptive machining for near-net-shape rolling compressor blades. Int J Comput Integr Manuf 31(2):138–151CrossRef Cui K, Wang WH, Jiang RS et al (2018) Model reconstruction in adaptive machining for near-net-shape rolling compressor blades. Int J Comput Integr Manuf 31(2):138–151CrossRef
32.
go back to reference Hou FR, Wan N, Chang ZY et al (2018) An adaptive repair surface modeling approach for worn blades. Int J Adv Manuf Technol 94:523–532CrossRef Hou FR, Wan N, Chang ZY et al (2018) An adaptive repair surface modeling approach for worn blades. Int J Adv Manuf Technol 94:523–532CrossRef
34.
go back to reference Feng YZ, Ren JX, Liang YS (2018) Prediction and reconstruction of edge shape in adaptive machining of precision forged blade. Int J Adv Manuf Technol 96(5/8):2355–2366CrossRef Feng YZ, Ren JX, Liang YS (2018) Prediction and reconstruction of edge shape in adaptive machining of precision forged blade. Int J Adv Manuf Technol 96(5/8):2355–2366CrossRef
35.
go back to reference Yu HY, Lyu XP, Liu P (2018) Stream surface reconstruction of aero engine blade based on limited measured points. Adv Eng Softw 131:90–101CrossRef Yu HY, Lyu XP, Liu P (2018) Stream surface reconstruction of aero engine blade based on limited measured points. Adv Eng Softw 131:90–101CrossRef
36.
go back to reference Besl P, McKay N (1992) A method of registration of 3D shapes. IEEE Transaction Pattern Anal Mach Intell 14(2):239–256CrossRef Besl P, McKay N (1992) A method of registration of 3D shapes. IEEE Transaction Pattern Anal Mach Intell 14(2):239–256CrossRef
37.
go back to reference Wang CG (2014) Integrated aerodynamic design and analysis of turbine blades. Adv Eng Softw 68:9–18CrossRef Wang CG (2014) Integrated aerodynamic design and analysis of turbine blades. Adv Eng Softw 68:9–18CrossRef
38.
go back to reference Arun KS, Huang TS, Blostein SD (1987) Least-squares fitting of two 3-D point sets. IEEE Trans Pattern Anal Mach Intell 5:698–700CrossRef Arun KS, Huang TS, Blostein SD (1987) Least-squares fitting of two 3-D point sets. IEEE Trans Pattern Anal Mach Intell 5:698–700CrossRef
39.
go back to reference Sederberg TW, Parry SR (1986) Free-form deformation of solid geometric models. ACM Siggraph Computer Graph 20(4):151–160CrossRef Sederberg TW, Parry SR (1986) Free-form deformation of solid geometric models. ACM Siggraph Computer Graph 20(4):151–160CrossRef
40.
go back to reference Li L, Jiao JK, Sun SY et al (2019) Aerodynamic shape optimization of a single turbine stage based on parameterized free-form deformation with mapping design parameters. Energy 169:444–445CrossRef Li L, Jiao JK, Sun SY et al (2019) Aerodynamic shape optimization of a single turbine stage based on parameterized free-form deformation with mapping design parameters. Energy 169:444–445CrossRef
41.
go back to reference Celniker G, Gossard D (1991) Deformable curve and surface finite-elements for free-form shape design. Computer Graph 25(4):257–266CrossRef Celniker G, Gossard D (1991) Deformable curve and surface finite-elements for free-form shape design. Computer Graph 25(4):257–266CrossRef
Metadata
Title
Model reconstruction for worn blades based on hybrid surface registrations
Authors
Kang Cui
Rui-Song Jiang
Lin Jing
Publication date
26-03-2022
Publisher
Shanghai University
Published in
Advances in Manufacturing / Issue 3/2022
Print ISSN: 2095-3127
Electronic ISSN: 2195-3597
DOI
https://doi.org/10.1007/s40436-022-00390-5

Other articles of this Issue 3/2022

Advances in Manufacturing 3/2022 Go to the issue

Premium Partners