Skip to main content
Top

2018 | OriginalPaper | Chapter

Modeling and Simulation of Biomass Drying Using Artificial Neural Networks

Authors : Sławomir Francik, Bogusława Łapczyńska-Kordon, Renata Francik, Artur Wójcik

Published in: Renewable Energy Sources: Engineering, Technology, Innovation

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Willow (Salix viminalis) is a moist material after the crops. Therefore, the content of water in this type of material has to be lowered by drying before any further mechanical or thermal processing, in order to increase its calorific value. The process of drying is energy-intensive. Thus it is advisable to search for optimal methods and parameters of drying. The optimisation requires evolving a model that is based on the crucial parameters of the process. One of the possible solutions is to apply models of Artificial Neural Networks. Artificial Neural Networks belong to the group of methods of artificial computational intelligence and are often used in modelling various phenomena and processes. The aim of this work was to develop models using Artificial Neural Networks to describe the process of convective drying of the willow woodchips. As a result of presented work we obtained neural models describing alterations of water content, changes of the temperature and the mass of the chips. The presented models are highly accurate. We used experimentally obtained data in order to validate the models. It is important to underline that the data were not applied while the artificial neural networks were being developed. Subsequently, the models were used to simulate the process of drying what allowed us to define the optimal parameters of drying willow woodchips characterised by different moisture content.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ellabban, O., Abu-Rub, H., Blaabjerg, F.: Renewable energy resources: current status, future prospects and their enabling technology. Renew. Sustain. Energy Rev. 39, 748–764 (2014)CrossRef Ellabban, O., Abu-Rub, H., Blaabjerg, F.: Renewable energy resources: current status, future prospects and their enabling technology. Renew. Sustain. Energy Rev. 39, 748–764 (2014)CrossRef
2.
go back to reference Kubica, K., Jewiarz, M., Kubica, R., Szlȩk, A.: Straw combustion: pilot and laboratory studies on a straw-fired grate boiler. Energy Fuels 30(6), 4405–4410 (2016)CrossRef Kubica, K., Jewiarz, M., Kubica, R., Szlȩk, A.: Straw combustion: pilot and laboratory studies on a straw-fired grate boiler. Energy Fuels 30(6), 4405–4410 (2016)CrossRef
3.
go back to reference Wrobel, M., Fraczek, J., Francik, S., Slipek, Z., Mudryk, K.: Influence of degree of fragmentation on chosen quality parameters of briquette made from biomass of cup plant Silphium perfoliatum L. In: Engineering for Rural Development (2013), pp. 653–657 Wrobel, M., Fraczek, J., Francik, S., Slipek, Z., Mudryk, K.: Influence of degree of fragmentation on chosen quality parameters of briquette made from biomass of cup plant Silphium perfoliatum L. In: Engineering for Rural Development (2013), pp. 653–657
4.
go back to reference Mudryk, K., Fraczek, J., Slipek, Z., Francik, S., Wrobel, M.: Chosen physico-mechanical properties of cutleaf coneflower (Rudbeckia laciniata L.) shoots. In: Engineering for Rural Development (2013), pp. 658–662 Mudryk, K., Fraczek, J., Slipek, Z., Francik, S., Wrobel, M.: Chosen physico-mechanical properties of cutleaf coneflower (Rudbeckia laciniata L.) shoots. In: Engineering for Rural Development (2013), pp. 658–662
5.
go back to reference Ivanova, T., Kolarikova, M., Havrland, B., Passian, L.: Mechanical durability of briquettes made of energy crops and wood residues. In: Engineering for Rural Development, vol. 13 (2014), pp. 131–136 Ivanova, T., Kolarikova, M., Havrland, B., Passian, L.: Mechanical durability of briquettes made of energy crops and wood residues. In: Engineering for Rural Development, vol. 13 (2014), pp. 131–136
6.
go back to reference Kolarikova, M., Ivanova, T., Havrland, B.: Energy balance of briquettes made of hemp (Cannabis sativa L.) cultivars (Ferimon, Bialobrzeskie) from autumn harvest to produce heat for household use. In: Engineering for Rural Development, vol. 2 (2013), pp. 504–508 Kolarikova, M., Ivanova, T., Havrland, B.: Energy balance of briquettes made of hemp (Cannabis sativa L.) cultivars (Ferimon, Bialobrzeskie) from autumn harvest to produce heat for household use. In: Engineering for Rural Development, vol. 2 (2013), pp. 504–508
7.
go back to reference Swietochowski, A., Lisowski, A., Dabrowska-Salwin, M.: Strength of briquettes and pellets from energy crops. In: Engineering for Rural Development (2016), pp. 547–551 Swietochowski, A., Lisowski, A., Dabrowska-Salwin, M.: Strength of briquettes and pellets from energy crops. In: Engineering for Rural Development (2016), pp. 547–551
8.
go back to reference Gigler, J.K., van Loon, W.K.P., Seres, I., Meerdink, G., Coumans, W.J.: Drying characteristics of willow chips and stems. J. Agric. Eng. Res. 77(4), 391–400 (2000)CrossRef Gigler, J.K., van Loon, W.K.P., Seres, I., Meerdink, G., Coumans, W.J.: Drying characteristics of willow chips and stems. J. Agric. Eng. Res. 77(4), 391–400 (2000)CrossRef
9.
go back to reference Gigler, J.K., Van Loon, W.K.P., Vissers, M.M., Bot, G.P.A.: Forced convective drying of willow chips. Biomass Bioenerg. 19(4), 259–270 (2000)CrossRef Gigler, J.K., Van Loon, W.K.P., Vissers, M.M., Bot, G.P.A.: Forced convective drying of willow chips. Biomass Bioenerg. 19(4), 259–270 (2000)CrossRef
10.
go back to reference De Fusco, L., Jeanmart, H., Blondeau, J.: A modelling approach for the assessment of an air-dryer economic feasibility for small-scale biomass steam boilers. Fuel Process. Technol. 134, 251–258 (2015)CrossRef De Fusco, L., Jeanmart, H., Blondeau, J.: A modelling approach for the assessment of an air-dryer economic feasibility for small-scale biomass steam boilers. Fuel Process. Technol. 134, 251–258 (2015)CrossRef
11.
go back to reference Iqbal, M., Azam, M., Naeem, M., Khwaja, A.S., Anpalagan, A.: Optimization classification, algorithms and tools for renewable energy: a review. Renew. Sustain. Energy Rev. 39, 640–654 (2014)CrossRef Iqbal, M., Azam, M., Naeem, M., Khwaja, A.S., Anpalagan, A.: Optimization classification, algorithms and tools for renewable energy: a review. Renew. Sustain. Energy Rev. 39, 640–654 (2014)CrossRef
12.
go back to reference Jirjis, R.: Storage and drying of woodfuel. Biomass Bioenerg. 9(1–5), 181–190 (1995)CrossRef Jirjis, R.: Storage and drying of woodfuel. Biomass Bioenerg. 9(1–5), 181–190 (1995)CrossRef
13.
go back to reference Johansson, A., Fyhr, C., Rasmuson, A.: High temperature convective drying of wood chips with air and superheated steam. Int. J. Heat Mass Transf. 40(12), 2843–2858 (1997)CrossRef Johansson, A., Fyhr, C., Rasmuson, A.: High temperature convective drying of wood chips with air and superheated steam. Int. J. Heat Mass Transf. 40(12), 2843–2858 (1997)CrossRef
14.
go back to reference Le Lostec, B., Galanis, N., Baribeault, J., Millette, J.: Wood chip drying with an absorption heat pump. Energy 33(3), 500–512 (2008)CrossRef Le Lostec, B., Galanis, N., Baribeault, J., Millette, J.: Wood chip drying with an absorption heat pump. Energy 33(3), 500–512 (2008)CrossRef
15.
go back to reference Peters, B., Bruch, C.: Drying and pyrolysis of wood particles: experiments and simulation. J. Anal. Appl. Pyrol. 70, 233–250 (2003)CrossRef Peters, B., Bruch, C.: Drying and pyrolysis of wood particles: experiments and simulation. J. Anal. Appl. Pyrol. 70, 233–250 (2003)CrossRef
16.
go back to reference Gebreegziabher, T., Oyedun, A.O., Hui, C.W.: Optimum biomass drying for combustion—a modeling approach. Energy 53, 67–73 (2013)CrossRef Gebreegziabher, T., Oyedun, A.O., Hui, C.W.: Optimum biomass drying for combustion—a modeling approach. Energy 53, 67–73 (2013)CrossRef
17.
go back to reference Sridhar, D., Madhu, G.M.: Drying kinetics and mathematical modeling of Casuarina equisetifolia wood chips at various temperatures. Periodica Polytech. Chem. Eng. 59(4), 288–295 (2015)CrossRef Sridhar, D., Madhu, G.M.: Drying kinetics and mathematical modeling of Casuarina equisetifolia wood chips at various temperatures. Periodica Polytech. Chem. Eng. 59(4), 288–295 (2015)CrossRef
18.
go back to reference Gigler, J.K., Van Loon, W.K.P., Sonneveld, C.: Experiment and modelling of parameters influencing natural wind drying of willow chunks. Biomass Bioenerg. 26(6), 507–514 (2004)CrossRef Gigler, J.K., Van Loon, W.K.P., Sonneveld, C.: Experiment and modelling of parameters influencing natural wind drying of willow chunks. Biomass Bioenerg. 26(6), 507–514 (2004)CrossRef
19.
go back to reference Pakowski, Z., Adamski, R., Kokocinska, M.: Cross-fiber dry wood darcy permeability of energetic willow Salix viminalis v. Orm. Drying Technol. 27(12), 1379–1383 (2009)CrossRef Pakowski, Z., Adamski, R., Kokocinska, M.: Cross-fiber dry wood darcy permeability of energetic willow Salix viminalis v. Orm. Drying Technol. 27(12), 1379–1383 (2009)CrossRef
20.
go back to reference Pakowski, Z., Krupinska, B., Adamski, R.: Prediction of sorption equilibrium both in air and superheated steam drying of energetic variety of willow Salix viminalis in a wide temperature range. Fuel 86(12–13), 1749–1757 (2007)CrossRef Pakowski, Z., Krupinska, B., Adamski, R.: Prediction of sorption equilibrium both in air and superheated steam drying of energetic variety of willow Salix viminalis in a wide temperature range. Fuel 86(12–13), 1749–1757 (2007)CrossRef
21.
go back to reference Francik, S., Ślipek, Z., Frączek, J., Knapczyk, A.: Present trends in research on application of artificial neural networks in agricultural engineering. Agric. Eng. 20(4), 15–25 (2016) Francik, S., Ślipek, Z., Frączek, J., Knapczyk, A.: Present trends in research on application of artificial neural networks in agricultural engineering. Agric. Eng. 20(4), 15–25 (2016)
22.
go back to reference Farkas, I., Reményi, P., Biró, A.: A neural network topology for modelling grain drying. Comput. Electron. Agric. 26(2), 147–158 (2000)CrossRef Farkas, I., Reményi, P., Biró, A.: A neural network topology for modelling grain drying. Comput. Electron. Agric. 26(2), 147–158 (2000)CrossRef
23.
go back to reference Khazaei, J., Daneshmandi, S.: Modeling of thin-layer drying kinetics of sesame seeds: mathematical and neural networks modeling. Int. Agrophys. 21, 335–348 (2007) Khazaei, J., Daneshmandi, S.: Modeling of thin-layer drying kinetics of sesame seeds: mathematical and neural networks modeling. Int. Agrophys. 21, 335–348 (2007)
24.
go back to reference Gorjian, S., Tavakkoli Hashjin, T., Khoshtaghaza, M.H.: Designing and optimizing a back propagation neural network to model a thin-layer drying process. Int. Agrophys. 25, 13–19 (2011) Gorjian, S., Tavakkoli Hashjin, T., Khoshtaghaza, M.H.: Designing and optimizing a back propagation neural network to model a thin-layer drying process. Int. Agrophys. 25, 13–19 (2011)
25.
go back to reference Khoshhal, A., Dakhel, A.A., Etemadi, A., Zereshki, S.: Artificial neural network modeling of apple drying process. J. Food Process Eng. 33(Suppl. 1), 298–313 (2010)CrossRef Khoshhal, A., Dakhel, A.A., Etemadi, A., Zereshki, S.: Artificial neural network modeling of apple drying process. J. Food Process Eng. 33(Suppl. 1), 298–313 (2010)CrossRef
26.
go back to reference Jafari, S.M., Ganje, M., Dehnad, D., Ghanbari, V.: Mathematical, fuzzy logic and artificial neural network modeling techniques to predict drying kinetics of onion. J. Food Process. Preserv. 40(2), 329–339 (2016)CrossRef Jafari, S.M., Ganje, M., Dehnad, D., Ghanbari, V.: Mathematical, fuzzy logic and artificial neural network modeling techniques to predict drying kinetics of onion. J. Food Process. Preserv. 40(2), 329–339 (2016)CrossRef
27.
go back to reference Assidjo, E., Yao, B., Kisselmina, K., Amané, D.: Modeling of an industrial drying process by artificial neural networks. Braz. J. Chem. Eng. 25(3), 515–522 (2008)CrossRef Assidjo, E., Yao, B., Kisselmina, K., Amané, D.: Modeling of an industrial drying process by artificial neural networks. Braz. J. Chem. Eng. 25(3), 515–522 (2008)CrossRef
28.
go back to reference Ge, L., Chen, G.S.: Control modeling of ash wood drying using process neural networks. Optik 125(22), 6770–6774 (2014)CrossRef Ge, L., Chen, G.S.: Control modeling of ash wood drying using process neural networks. Optik 125(22), 6770–6774 (2014)CrossRef
29.
go back to reference Ozsahin, S., Aydin, I.: Prediction of the optimum veneer drying temperature for good bonding in plywood manufacturing by means of artificial neural network. Wood Sci. Technol. 48(1), 59–70 (2014)CrossRef Ozsahin, S., Aydin, I.: Prediction of the optimum veneer drying temperature for good bonding in plywood manufacturing by means of artificial neural network. Wood Sci. Technol. 48(1), 59–70 (2014)CrossRef
30.
go back to reference Watanabe, K., Matsushita, Y., Kobayashi, I., Kuroda, N.: Artificial neural network modeling for predicting final moisture content of individual Sugi (Cryptomeria japonica) samples during air-drying. J. Wood Sci. 59(2), 112–118 (2013)CrossRef Watanabe, K., Matsushita, Y., Kobayashi, I., Kuroda, N.: Artificial neural network modeling for predicting final moisture content of individual Sugi (Cryptomeria japonica) samples during air-drying. J. Wood Sci. 59(2), 112–118 (2013)CrossRef
31.
go back to reference Mudryk, K., Francik, S., Fraczek, J., Slipek, Z., Wrobel, M.: Model of actual contact area of rye and wheat grains with flat surface. In: Renewable and Sustainable Energy Reviews (2013), pp. 292–296 Mudryk, K., Francik, S., Fraczek, J., Slipek, Z., Wrobel, M.: Model of actual contact area of rye and wheat grains with flat surface. In: Renewable and Sustainable Energy Reviews (2013), pp. 292–296
32.
go back to reference Fraczek, J., Francik, S., Slipek, Z., Knapczyk, A.: Application of artificial neural networks in modelling the contact area of grain seeds. Agric. Eng. 20(4), 27–37 (2016) Fraczek, J., Francik, S., Slipek, Z., Knapczyk, A.: Application of artificial neural networks in modelling the contact area of grain seeds. Agric. Eng. 20(4), 27–37 (2016)
33.
go back to reference Łapczyńska-Kordon, B., Francik, S., Frączek, J., Ślipek, Z.: Modeling drying shrinkage for selected root vegetables using neural networks (in Polish). Inżynieria Rolnicza/Agric. Eng. 13, 303–311 (2006) Łapczyńska-Kordon, B., Francik, S., Frączek, J., Ślipek, Z.: Modeling drying shrinkage for selected root vegetables using neural networks (in Polish). Inżynieria Rolnicza/Agric. Eng. 13, 303–311 (2006)
34.
go back to reference Łapczyńska-Kordon, B., Francik, S.: Neural model of changes in water content in willow chips during convection drying (in Polish). Inżynieria Rolnicza/Agric. Eng. 11(109), 143–148 (2008) Łapczyńska-Kordon, B., Francik, S.: Neural model of changes in water content in willow chips during convection drying (in Polish). Inżynieria Rolnicza/Agric. Eng. 11(109), 143–148 (2008)
35.
go back to reference Łapczyńska-Kordon, B., Francik, S., Ślipek, Z.: Neural model of temperature changes during convection drying of energy willow chips (in Polish). Inżynieria Rolnicza/Agric. Eng. 11(109), 149–155 (2008) Łapczyńska-Kordon, B., Francik, S., Ślipek, Z.: Neural model of temperature changes during convection drying of energy willow chips (in Polish). Inżynieria Rolnicza/Agric. Eng. 11(109), 149–155 (2008)
36.
go back to reference Zlobecki, A., Francik, S.: Defining the damaging process of cereal grains on the basis of artificial neural network. Int. Agrophys. 15, 219–223 (2001) Zlobecki, A., Francik, S.: Defining the damaging process of cereal grains on the basis of artificial neural network. Int. Agrophys. 15, 219–223 (2001)
37.
go back to reference Francik, S., Fraczek, J.: Model development of the external friction of granular vegetable materials on the basis of artificial neural networks. Int. Agrophys. 15, 231–236 (2001) Francik, S., Fraczek, J.: Model development of the external friction of granular vegetable materials on the basis of artificial neural networks. Int. Agrophys. 15, 231–236 (2001)
38.
go back to reference Wrobel, M., Fraczek, J., Francik, S., Slipek, Z., Krzysztof, M.: Modelling of unit contact surface of bean seeds using Artificial Neural Networks. In: Renewable and Sustainable Energy Reviews (2013), pp. 287–291 Wrobel, M., Fraczek, J., Francik, S., Slipek, Z., Krzysztof, M.: Modelling of unit contact surface of bean seeds using Artificial Neural Networks. In: Renewable and Sustainable Energy Reviews (2013), pp. 287–291
Metadata
Title
Modeling and Simulation of Biomass Drying Using Artificial Neural Networks
Authors
Sławomir Francik
Bogusława Łapczyńska-Kordon
Renata Francik
Artur Wójcik
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-72371-6_56