Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 7/2014

01-07-2014

Modeling and Simulation of SMA Medical Devices Undergoing complex Thermo-mechanical Loadings

Authors: Masood Taheri Andani, Mohammad Elahinia

Published in: Journal of Materials Engineering and Performance | Issue 7/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

There are SMA medical applications which undergo complex thermo-mechanical loading paths to meet specific and accurate requirements. In this work, a 3D model and its implementation techniques are presented. This model is currently deployed to design and model SMA medical devices subjected to multi-axial loading in both isothermal and dynamic regimes. Some of these devices are introduced and studied as examples to show the efficiency of the proposed platform.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M.H. Elahinia, M. Hashemi, M. Tabesh, and S.B. Bhaduri, Manufacturing and Processing of NiTi Implants: A Review, Prog. Mater Sci., 2012, 57(5), p 911–946CrossRef M.H. Elahinia, M. Hashemi, M. Tabesh, and S.B. Bhaduri, Manufacturing and Processing of NiTi Implants: A Review, Prog. Mater Sci., 2012, 57(5), p 911–946CrossRef
2.
go back to reference C. Lexcellent, B.C. Goo, Q.P. Sun, and J. Bernardini, Characterization, Thermomechanical Behaviour and Micromechanical-Based Constitutive Model of Shape-Memory Cu-Zn-Al Single Crystals, Acta Mater., 1996, 44(9), p 3773–3780 C. Lexcellent, B.C. Goo, Q.P. Sun, and J. Bernardini, Characterization, Thermomechanical Behaviour and Micromechanical-Based Constitutive Model of Shape-Memory Cu-Zn-Al Single Crystals, Acta Mater., 1996, 44(9), p 3773–3780
3.
go back to reference V. Levitas and E. Stein, Simple Micromechanical Model of Thermoelastic Martensitic Transformations, Mech. Res. Commun., 1997, 24(3), p 309–318CrossRef V. Levitas and E. Stein, Simple Micromechanical Model of Thermoelastic Martensitic Transformations, Mech. Res. Commun., 1997, 24(3), p 309–318CrossRef
4.
go back to reference V. Levitas and I. Ozsoy, Micromechanical Modeling of Stress-Induced Phase Transformations: Part 1. Thermodynamics and Kinetics of Coupled Interface Propagation and Reorientation, Int. J. Plast., 2009, 25(2), p 239–280CrossRef V. Levitas and I. Ozsoy, Micromechanical Modeling of Stress-Induced Phase Transformations: Part 1. Thermodynamics and Kinetics of Coupled Interface Propagation and Reorientation, Int. J. Plast., 2009, 25(2), p 239–280CrossRef
5.
go back to reference S. Stupkiewicz and H. Petryk, Finite-Strain Micromechanical Model of Stress-Induced Martensitic Transformations in Shape Memory Alloys, Mater. Sci. Eng. A, 2006, 438(440), p 126–130CrossRef S. Stupkiewicz and H. Petryk, Finite-Strain Micromechanical Model of Stress-Induced Martensitic Transformations in Shape Memory Alloys, Mater. Sci. Eng. A, 2006, 438(440), p 126–130CrossRef
6.
go back to reference K. Tanaka, S. Kobayashi, and Y. Sato, Thermomechanics of Transformation Pseudoelasticity and Shape Memory Effect in Alloys”, Int. J. Plast., 1986, 1(2), p 207–234 K. Tanaka, S. Kobayashi, and Y. Sato, Thermomechanics of Transformation Pseudoelasticity and Shape Memory Effect in Alloys”, Int. J. Plast., 1986, 1(2), p 207–234
7.
go back to reference C. Liang and C. Rogers, One-Dimensional Thermomechanical Constitutive Relations for Shape Memory Materials, J. Intell. Mater. Syst., 1990, 1(2), p 207–234CrossRef C. Liang and C. Rogers, One-Dimensional Thermomechanical Constitutive Relations for Shape Memory Materials, J. Intell. Mater. Syst., 1990, 1(2), p 207–234CrossRef
8.
go back to reference L. Brinson, One-Dimensional Constitutive Behavior of Shape Memory Alloys: Thermomechanical Derivation with Non-constant Material Functions and Redefined Martensite Internal Variable, J. Intell. Mater. Syst. Struct., 1993, 4(2), p 229–242CrossRef L. Brinson, One-Dimensional Constitutive Behavior of Shape Memory Alloys: Thermomechanical Derivation with Non-constant Material Functions and Redefined Martensite Internal Variable, J. Intell. Mater. Syst. Struct., 1993, 4(2), p 229–242CrossRef
9.
go back to reference J.G. Boyd and D.C. Lagoudas, A Thermodynamical Constitutive Model for Shape Memory Materials: Part I. The Monolithic Shape Memory Alloy, Int. J. Plast., 1996, 12(6), p 805–842CrossRef J.G. Boyd and D.C. Lagoudas, A Thermodynamical Constitutive Model for Shape Memory Materials: Part I. The Monolithic Shape Memory Alloy, Int. J. Plast., 1996, 12(6), p 805–842CrossRef
10.
go back to reference M. Panico and L. Brinson, A Three-Dimensional Phenomenological Model for Martensite Reorientation in Shape Memory Alloys, J. Mech. Phys. Solids, 2007, 55(11), p 2491–2511CrossRef M. Panico and L. Brinson, A Three-Dimensional Phenomenological Model for Martensite Reorientation in Shape Memory Alloys, J. Mech. Phys. Solids, 2007, 55(11), p 2491–2511CrossRef
11.
go back to reference J. Arghavani, F. Aurucchio, R. Naghdabadi, A. Reali, and S. Sohrabpour, A 3-D Phenomenological Constitutive Model for Shape Memory Alloys Under Multiaxial Loadings, Int. J. Plast., 2010, 26(7), p 976–991CrossRef J. Arghavani, F. Aurucchio, R. Naghdabadi, A. Reali, and S. Sohrabpour, A 3-D Phenomenological Constitutive Model for Shape Memory Alloys Under Multiaxial Loadings, Int. J. Plast., 2010, 26(7), p 976–991CrossRef
12.
go back to reference A. Saleeb, S. Padula, II, and A. Kumar, A Multi-axial, Multimechanism Based Constitutive Model for the Comprehensive Representation of the Evolutionary Response of SMAs Under General Thermomechanical Loading Conditions, Int. J. Plast., 2011, 27(5), p 655–687CrossRef A. Saleeb, S. Padula, II, and A. Kumar, A Multi-axial, Multimechanism Based Constitutive Model for the Comprehensive Representation of the Evolutionary Response of SMAs Under General Thermomechanical Loading Conditions, Int. J. Plast., 2011, 27(5), p 655–687CrossRef
13.
go back to reference R. Mehrabi and M. Kadkhodaei, 3D Phenomenological Constitutive Modeling of Shape Memory Alloys Based on Microplane Theory, Smart Mater. Struct., 2013, 22(2), p 025017CrossRef R. Mehrabi and M. Kadkhodaei, 3D Phenomenological Constitutive Modeling of Shape Memory Alloys Based on Microplane Theory, Smart Mater. Struct., 2013, 22(2), p 025017CrossRef
14.
go back to reference R. Mehrabi, M. Kadkhodaei, and A. Ghaei, Numerical Implementation of a Thermomechanical Constitutive Model for Shape Memory Alloys Using Return Mapping Algorithm and Microplane Theory, Adv. Mater. Res., 2012, 516, p 351–354CrossRef R. Mehrabi, M. Kadkhodaei, and A. Ghaei, Numerical Implementation of a Thermomechanical Constitutive Model for Shape Memory Alloys Using Return Mapping Algorithm and Microplane Theory, Adv. Mater. Res., 2012, 516, p 351–354CrossRef
15.
go back to reference M.H. Elahinia and M. Ahmadian, An Enhanced SMA Phenomenological Model: I. The Shortcomings of the Existing Models, Smart Mater. Struct., 2005, 14(6), p 1297CrossRef M.H. Elahinia and M. Ahmadian, An Enhanced SMA Phenomenological Model: I. The Shortcomings of the Existing Models, Smart Mater. Struct., 2005, 14(6), p 1297CrossRef
16.
go back to reference W. Zaki and Z. Moumni, A Three-Dimensional Model Of the Thermomechanical Behavior of Shape Memory Alloys, J. Mech. Phys. Solids, 2007, 550(11), p 2455–2490CrossRef W. Zaki and Z. Moumni, A Three-Dimensional Model Of the Thermomechanical Behavior of Shape Memory Alloys, J. Mech. Phys. Solids, 2007, 550(11), p 2455–2490CrossRef
17.
go back to reference Y. Chemisky et al., Constitutive Model for Shape Memory Alloys Including Phase Transformation, Martensitic Reorientation and Twins Accommodation, Mech. Mater., 2011, 43(7), p 361–376CrossRef Y. Chemisky et al., Constitutive Model for Shape Memory Alloys Including Phase Transformation, Martensitic Reorientation and Twins Accommodation, Mech. Mater., 2011, 43(7), p 361–376CrossRef
18.
go back to reference M.A. Qidwai and D. Lagoudas, Numerical Implementation of a Shape Memory Alloy Thermomechanical Constitutive Model Using Return Mapping Algorithms, Int. J. Numer. Methods Eng., 2000, 47(6), p 1123–1168CrossRef M.A. Qidwai and D. Lagoudas, Numerical Implementation of a Shape Memory Alloy Thermomechanical Constitutive Model Using Return Mapping Algorithms, Int. J. Numer. Methods Eng., 2000, 47(6), p 1123–1168CrossRef
19.
go back to reference L.C. Brinson and R. Lammering, Finite element analysis of the behavior of shape memory alloys and their applications, Int. J. Solid Struct., 1993, 30(23), p 3261–3280CrossRef L.C. Brinson and R. Lammering, Finite element analysis of the behavior of shape memory alloys and their applications, Int. J. Solid Struct., 1993, 30(23), p 3261–3280CrossRef
20.
go back to reference F. Auricchio, R.L. Taylor, and J. Lubliner, Shape-Memory Alloys: Macromodelling and Numerical Simulations of the Superelastic Behavior, Comput. Methods Appl. Mech. Eng., 1997, 146(3), p 281–312CrossRef F. Auricchio, R.L. Taylor, and J. Lubliner, Shape-Memory Alloys: Macromodelling and Numerical Simulations of the Superelastic Behavior, Comput. Methods Appl. Mech. Eng., 1997, 146(3), p 281–312CrossRef
21.
go back to reference F. Thiebaud, M. Collet, E. Foltete, and C. Lexcellent, Implementation of a Multi-axial Pseudoelastic Model to Predict the Dynamic Behavior of Shape Memory Alloys, Smart Mater. Struct., 2007, 16(4), p 935CrossRef F. Thiebaud, M. Collet, E. Foltete, and C. Lexcellent, Implementation of a Multi-axial Pseudoelastic Model to Predict the Dynamic Behavior of Shape Memory Alloys, Smart Mater. Struct., 2007, 16(4), p 935CrossRef
22.
go back to reference R. Mirzaeifar, R. DesRoches, and A. Yavari, Exact Solutions for Pure Torsion of Shape Memory Alloy Circular Bars, Mech. Mater., 2010, 42(8), p 797–806CrossRef R. Mirzaeifar, R. DesRoches, and A. Yavari, Exact Solutions for Pure Torsion of Shape Memory Alloy Circular Bars, Mech. Mater., 2010, 42(8), p 797–806CrossRef
23.
go back to reference R. Mirzaeifar, M. Shakeri, R. DesRoches, and A. Yavari, A Semi-analytic Analysis of Shape Memory Alloy Thick-Walled Cylinders Under Internal Pressure, Arch. Appl. Mech., 2011, 81(8), p 1093–1116CrossRef R. Mirzaeifar, M. Shakeri, R. DesRoches, and A. Yavari, A Semi-analytic Analysis of Shape Memory Alloy Thick-Walled Cylinders Under Internal Pressure, Arch. Appl. Mech., 2011, 81(8), p 1093–1116CrossRef
24.
go back to reference T. Atanackovic and M. Achenbach, Moment-Curvature Relations for a Pseudoelastic Beam, Contin. Mech. Thermodyn., 1989, 1(1), p 73–80CrossRef T. Atanackovic and M. Achenbach, Moment-Curvature Relations for a Pseudoelastic Beam, Contin. Mech. Thermodyn., 1989, 1(1), p 73–80CrossRef
25.
go back to reference F. Auricchio and E. Sacco, A Superelastic Shape-Memory-Alloy Beam Model, J. Intell. Mater. Syst. Struct., 1997, 8(6), p 489–501CrossRef F. Auricchio and E. Sacco, A Superelastic Shape-Memory-Alloy Beam Model, J. Intell. Mater. Syst. Struct., 1997, 8(6), p 489–501CrossRef
26.
go back to reference A. Eshghinejad and M. Elahinia, Exact Solution for Bending of Shape Memory Alloy Superelastic Beams, ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems (American Society of Mechanical Engineers, 2011) A. Eshghinejad and M. Elahinia, Exact Solution for Bending of Shape Memory Alloy Superelastic Beams, ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems (American Society of Mechanical Engineers, 2011)
27.
go back to reference P. Sittner, Y. Hara, and M. Tokuda, Experimental Study on the Thermoelastic Martensitic Transformation in Shape Memory Alloy Polycrystal Induced by Combined External Forces, Metall. Mater. Trans. A, 1995, 26(11), p 2923–2935CrossRef P. Sittner, Y. Hara, and M. Tokuda, Experimental Study on the Thermoelastic Martensitic Transformation in Shape Memory Alloy Polycrystal Induced by Combined External Forces, Metall. Mater. Trans. A, 1995, 26(11), p 2923–2935CrossRef
28.
go back to reference X. Peng, Y. Yang, and S. Huang, A Comprehensive Description for Shape Memory Alloys with a Two-Phase Constitutive Model, Int. J. Solids Struct., 2001, 38(38), p 6925–6940CrossRef X. Peng, Y. Yang, and S. Huang, A Comprehensive Description for Shape Memory Alloys with a Two-Phase Constitutive Model, Int. J. Solids Struct., 2001, 38(38), p 6925–6940CrossRef
29.
go back to reference C. Grabe and O. Bruhns, Path Dependence and Multiaxial Behavior of a Polycrystalline NiTi Alloy Within the Pseudoelastic and Pseudoplastic Temperature Regimes, Int. J. Plast., 2009, 25(3), p 513–545CrossRef C. Grabe and O. Bruhns, Path Dependence and Multiaxial Behavior of a Polycrystalline NiTi Alloy Within the Pseudoelastic and Pseudoplastic Temperature Regimes, Int. J. Plast., 2009, 25(3), p 513–545CrossRef
30.
go back to reference D. Lagoudas, Shape Memory Alloys: Modeling and Engineering Applications, Springer, Berlin, 2008 D. Lagoudas, Shape Memory Alloys: Modeling and Engineering Applications, Springer, Berlin, 2008
31.
go back to reference R. Mirzaeifar, R. DesRoches, and A. Yavari, Analysis of the Rate-Dependent Coupled Thermo-mechanical Response of Shape Memory Alloy Bars and Wires in Tension, Contin. Mech. Thermodyn., 2011, 23(4), p 363–385CrossRef R. Mirzaeifar, R. DesRoches, and A. Yavari, Analysis of the Rate-Dependent Coupled Thermo-mechanical Response of Shape Memory Alloy Bars and Wires in Tension, Contin. Mech. Thermodyn., 2011, 23(4), p 363–385CrossRef
32.
go back to reference M.T. Andani, A. Alipour, A. Eshghinejad, and M. Elahinia, Modifying the Torque-Angle Behavior of Rotary Shape Memory Alloy Actuators Through Axial Loading: A Semi-analytical Study of Combined Tension-Torsion Behavior, J. Intell. Mater. Syst. Struct., 2013, 24(12), p 1524–1535CrossRef M.T. Andani, A. Alipour, A. Eshghinejad, and M. Elahinia, Modifying the Torque-Angle Behavior of Rotary Shape Memory Alloy Actuators Through Axial Loading: A Semi-analytical Study of Combined Tension-Torsion Behavior, J. Intell. Mater. Syst. Struct., 2013, 24(12), p 1524–1535CrossRef
33.
go back to reference M.T. Andani, A. Alipour, and M. Elahinia, Coupled Rate-Dependent Superelastic Behavior of Shape Memory Alloy Bars Induced by Combined Axial-Torsional Loading: A Semi-analytic Modeling, J. Intell. Mater. Syst. Struct., 2013, 24(6), p 1995–2007CrossRef M.T. Andani, A. Alipour, and M. Elahinia, Coupled Rate-Dependent Superelastic Behavior of Shape Memory Alloy Bars Induced by Combined Axial-Torsional Loading: A Semi-analytic Modeling, J. Intell. Mater. Syst. Struct., 2013, 24(6), p 1995–2007CrossRef
34.
go back to reference C. Chapman, A. Eshghinejad, and M. Elahinia, Torsional Behavior of NiTi Wires and Tubes: Modeling and Experimentation, J. Intell. Mater. Syst. Struct., 2011, 22(11), p 1239–1248CrossRef C. Chapman, A. Eshghinejad, and M. Elahinia, Torsional Behavior of NiTi Wires and Tubes: Modeling and Experimentation, J. Intell. Mater. Syst. Struct., 2011, 22(11), p 1239–1248CrossRef
35.
go back to reference A. Eshghinejad, M. Elahinia, and V. K. Goel, Functionality Evaluation of a Novel Smart Expandable Pedicle Screw to Mitigate Osteoporosis Effect in Bone Fixation: Modeling and Experimentation, Smart Mater. Res., 2013. doi:10.1155/2013/840413 A. Eshghinejad, M. Elahinia, and V. K. Goel, Functionality Evaluation of a Novel Smart Expandable Pedicle Screw to Mitigate Osteoporosis Effect in Bone Fixation: Modeling and Experimentation, Smart Mater. Res., 2013. doi:10.​1155/​2013/​840413
36.
go back to reference E.T. Esfahani and M.H. Elahinia, Developing an Adaptive Controller for a Shape Memory Alloy Walking Assistive Device, J. Vib. Control, 2010, 16(13), p 1897–1914CrossRef E.T. Esfahani and M.H. Elahinia, Developing an Adaptive Controller for a Shape Memory Alloy Walking Assistive Device, J. Vib. Control, 2010, 16(13), p 1897–1914CrossRef
37.
go back to reference M. Gorzin, M.T. Andani, and M. Elahinia, A Compliant Ankle Foot Orthoses Based on Multi-axial Loading of Superelastic Shape Memory Alloys, ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems M. Gorzin, M.T. Andani, and M. Elahinia, A Compliant Ankle Foot Orthoses Based on Multi-axial Loading of Superelastic Shape Memory Alloys, ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
38.
go back to reference A.H. Hansen, D.S. Childress, S.C. Miff, S.A. Gard, and K.P. Mesplay, The Human Ankle During Walking: Implications for Design of Biomimetic Ankle Prostheses, J. Biomech., 2004, 37(10), p 1467–1474CrossRef A.H. Hansen, D.S. Childress, S.C. Miff, S.A. Gard, and K.P. Mesplay, The Human Ankle During Walking: Implications for Design of Biomimetic Ankle Prostheses, J. Biomech., 2004, 37(10), p 1467–1474CrossRef
39.
go back to reference W. Anderson, Development of an Intervertebral Cage Using Additive Manufacturing with Embedded NiTi Hinges for a Minimally Invasive Deployment. Ph.D. Thesis, University of Toledo, 2013 W. Anderson, Development of an Intervertebral Cage Using Additive Manufacturing with Embedded NiTi Hinges for a Minimally Invasive Deployment. Ph.D. Thesis, University of Toledo, 2013
40.
go back to reference Anderson, W., Chapman, C., Karbaschi, Z., and Elahinia, M, A Minimally Invasive Cage for Spinal Fusion Surgery Utilizing Superelastic Hinges, ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems (American Society of Mechanical Engineers, 2012), p 363–372 Anderson, W., Chapman, C., Karbaschi, Z., and Elahinia, M, A Minimally Invasive Cage for Spinal Fusion Surgery Utilizing Superelastic Hinges, ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems (American Society of Mechanical Engineers, 2012), p 363–372
Metadata
Title
Modeling and Simulation of SMA Medical Devices Undergoing complex Thermo-mechanical Loadings
Authors
Masood Taheri Andani
Mohammad Elahinia
Publication date
01-07-2014
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 7/2014
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-014-1079-4

Other articles of this Issue 7/2014

Journal of Materials Engineering and Performance 7/2014 Go to the issue

Premium Partners