Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Dynamic Games and Applications 4/2021

24-03-2021

Modeling COVID-19 Pandemic with Hierarchical Quarantine and Time Delay

Author: Wei Yang

Published in: Dynamic Games and Applications | Issue 4/2021

Login to get access
share
SHARE

Abstract

COVID-19 comes out as a sudden pandemic disease within human population. The pandemic dynamics of COVID-19 needs to be studied in detail. A pandemic model with hierarchical quarantine and time delay is proposed in this paper. In the COVID-19 case, the virus incubation period and the antibody failure will cause the time delay and reinfection, respectively, and the hierarchical quarantine strategy includes home isolation and quarantine in hospital. These factors that affect the spread of COVID-19 are well considered and analyzed in the model. The stability of the equilibrium and the nonlinear dynamics is studied as well. The threshold value \(\tau_{k}\) of the bifurcation is deduced and quantitatively analyzed. Numerical simulations are performed to establish the analytical results with suitable examples. The research reveals that the COVID-19 outbreak may recur over a period of time, which can be helpful to increase the number of tested people with or without symptoms in order to be able to early identify the clusters of infection. And before the effective vaccine is successfully developed, the hierarchical quarantine strategy is currently the best way to prevent the spread of this pandemic.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 15 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 15 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 15 Tage kostenlos.

Literature
1.
go back to reference Tyrrell DA, Bynoe ML (1966) Cultivation of viruses from a high proportion of patients with colds. Lancet 287(7248):76–77 CrossRef Tyrrell DA, Bynoe ML (1966) Cultivation of viruses from a high proportion of patients with colds. Lancet 287(7248):76–77 CrossRef
3.
go back to reference Hamer WH (1906) Epidemic disease in England—the evidence of variety and of persistency of type. Lancet 1(4305):733–739 Hamer WH (1906) Epidemic disease in England—the evidence of variety and of persistency of type. Lancet 1(4305):733–739
4.
go back to reference Ross R (1911) The prevention of malaria. Murray, London Ross R (1911) The prevention of malaria. Murray, London
5.
go back to reference Kermack WO, McKendrick AG (1927) Contributions to the mathematical theory of epidemics. Proc R Soc London Series A 115(772):700–721 CrossRef Kermack WO, McKendrick AG (1927) Contributions to the mathematical theory of epidemics. Proc R Soc London Series A 115(772):700–721 CrossRef
6.
7.
go back to reference Gray A, Greenhalgh D, Hu L, Mao X, Pan J (2011) A stochastic differential equation SIS epidemic model. SIAM J Appl Math 71(3):876–902 MathSciNetCrossRef Gray A, Greenhalgh D, Hu L, Mao X, Pan J (2011) A stochastic differential equation SIS epidemic model. SIAM J Appl Math 71(3):876–902 MathSciNetCrossRef
8.
go back to reference Lahrouz A, Omari L, Kiouach D (2011) Global analysis of a deterministic and stochastic nonlinear SIRS epidemic model. Nonlinear Anal Model Control 16:59–76 MathSciNetCrossRef Lahrouz A, Omari L, Kiouach D (2011) Global analysis of a deterministic and stochastic nonlinear SIRS epidemic model. Nonlinear Anal Model Control 16:59–76 MathSciNetCrossRef
9.
go back to reference Tornatore E, Buccellato SM, Vetro P (2005) Stability of a stochastic SIR system. Phys A 354:111–126 CrossRef Tornatore E, Buccellato SM, Vetro P (2005) Stability of a stochastic SIR system. Phys A 354:111–126 CrossRef
10.
go back to reference Chowell G, Sattenspiel L, Bansal S, Viboud C (2016) Mathematical models to characterize early epidemic growth: a Review. Phys Life Rev 18:66–97 CrossRef Chowell G, Sattenspiel L, Bansal S, Viboud C (2016) Mathematical models to characterize early epidemic growth: a Review. Phys Life Rev 18:66–97 CrossRef
11.
go back to reference Stehle J, Voirin N, Barrat A et al (2011) Simulation of an SEIR infectious disease model on the dynamic contact network of conference attendees. BMC Med 9:87 CrossRef Stehle J, Voirin N, Barrat A et al (2011) Simulation of an SEIR infectious disease model on the dynamic contact network of conference attendees. BMC Med 9:87 CrossRef
13.
go back to reference Tian J, Wu J, Bao Y et al (2020) Modeling analysis of COVID-19 based on morbidity data in Anhui, China. Math Biosci Eng 17:2842–2852 MathSciNetCrossRef Tian J, Wu J, Bao Y et al (2020) Modeling analysis of COVID-19 based on morbidity data in Anhui, China. Math Biosci Eng 17:2842–2852 MathSciNetCrossRef
14.
go back to reference Dai C, Yang J, Wang K (2020) Evaluation of prevention and control interventions and its impact on the epidemic of coronavirus disease 2019 in Chongqing and Guizhou Provinces. Math Biosci Eng 17(4):2781–2791 MathSciNetCrossRef Dai C, Yang J, Wang K (2020) Evaluation of prevention and control interventions and its impact on the epidemic of coronavirus disease 2019 in Chongqing and Guizhou Provinces. Math Biosci Eng 17(4):2781–2791 MathSciNetCrossRef
16.
go back to reference Zhao S, Chen H (2020) Modeling the epidemic dynamics and control of COVID-19 outbreak in China. Quant Biol 8:11–19 CrossRef Zhao S, Chen H (2020) Modeling the epidemic dynamics and control of COVID-19 outbreak in China. Quant Biol 8:11–19 CrossRef
17.
go back to reference Tang B, Bragazzi NL, Li Q, Tang S, Xiao Y, Wu J (2020) An updated estimation of the risk of transmission of the novel coronavirus (2019-nCov). Infect Dis Model 5:248–255 Tang B, Bragazzi NL, Li Q, Tang S, Xiao Y, Wu J (2020) An updated estimation of the risk of transmission of the novel coronavirus (2019-nCov). Infect Dis Model 5:248–255
18.
go back to reference Chen TM, Rui J, Wang QP, Zhao ZY, Cui JA, Yin L (2020) A mathematical model for simulating the phase-based transmissibility of a novel coronavirus. Infect Dis Poverty 9(1):24–24 CrossRef Chen TM, Rui J, Wang QP, Zhao ZY, Cui JA, Yin L (2020) A mathematical model for simulating the phase-based transmissibility of a novel coronavirus. Infect Dis Poverty 9(1):24–24 CrossRef
20.
go back to reference Sun T, Weng D (2020) Estimating the effects of asymptomatic and imported patients on COVID-19 epidemic using mathematical modeling. J Med Virol 92(10):1995–2003 CrossRef Sun T, Weng D (2020) Estimating the effects of asymptomatic and imported patients on COVID-19 epidemic using mathematical modeling. J Med Virol 92(10):1995–2003 CrossRef
21.
go back to reference Shao P, Shan Y (2020) Beware of asymptomatic transmission: Study on 2019 nCoV prevention and control measures based on extended SEIR model. bioRxiv Shao P, Shan Y (2020) Beware of asymptomatic transmission: Study on 2019 nCoV prevention and control measures based on extended SEIR model. bioRxiv
22.
go back to reference Li L (2015) Bifurcation and chaos in a discrete physiological control system. Appl Math Comput 252:397–404 MathSciNetMATH Li L (2015) Bifurcation and chaos in a discrete physiological control system. Appl Math Comput 252:397–404 MathSciNetMATH
23.
go back to reference Din Q (2017) Global stability and Neimark-Sacker bifurcation of a host-parasitoid model. Int J Syst Sci 48(6):1194–1202 MathSciNetCrossRef Din Q (2017) Global stability and Neimark-Sacker bifurcation of a host-parasitoid model. Int J Syst Sci 48(6):1194–1202 MathSciNetCrossRef
24.
go back to reference Huang C, Cao J, Xiao M, Alsaedi A, Hayat T (2017) Bifurcations in a delayed fractional complex-valued neural network. Appl Math Comput 292:210–227 MathSciNetMATH Huang C, Cao J, Xiao M, Alsaedi A, Hayat T (2017) Bifurcations in a delayed fractional complex-valued neural network. Appl Math Comput 292:210–227 MathSciNetMATH
25.
go back to reference Dong T, Liao X, Li H (2012) Stability and hopf bifurcation in a computer virus model with multistate antivirus. Abstr Appl Anal 2012:1–16 MathSciNetMATH Dong T, Liao X, Li H (2012) Stability and hopf bifurcation in a computer virus model with multistate antivirus. Abstr Appl Anal 2012:1–16 MathSciNetMATH
26.
go back to reference Ren J, Yang XF, Yang LX (2012) A delayed computer virus propagation model and its dynamics. Chaos Solitons Fractals 45(1):74–79 MathSciNetCrossRef Ren J, Yang XF, Yang LX (2012) A delayed computer virus propagation model and its dynamics. Chaos Solitons Fractals 45(1):74–79 MathSciNetCrossRef
27.
go back to reference Wang S, Liu QM, Yu XF (2010) Bifurcation analysis of a model for network worm propagation with time delay. Math Comput Model 52(3):435–447 MathSciNetCrossRef Wang S, Liu QM, Yu XF (2010) Bifurcation analysis of a model for network worm propagation with time delay. Math Comput Model 52(3):435–447 MathSciNetCrossRef
28.
go back to reference Zhu Q, Yang XF, Ren J (2012) Modeling and analysis of the spread of computer virus. Commun Nonlinear Sci Numer Simul 17(12):5117–5124 MathSciNetCrossRef Zhu Q, Yang XF, Ren J (2012) Modeling and analysis of the spread of computer virus. Commun Nonlinear Sci Numer Simul 17(12):5117–5124 MathSciNetCrossRef
29.
go back to reference Lipsitch M, Cohen T, Cooper B et al (2003) Transmission dynamics and control of severe acute respiratory syndrome. Science 300(5627):1966–1970 CrossRef Lipsitch M, Cohen T, Cooper B et al (2003) Transmission dynamics and control of severe acute respiratory syndrome. Science 300(5627):1966–1970 CrossRef
30.
go back to reference Chan JF, Yuan S, Kok K et al (2020) A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet 395(10223):514–523 CrossRef Chan JF, Yuan S, Kok K et al (2020) A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet 395(10223):514–523 CrossRef
31.
go back to reference Cao Z, Zhang Q, Lu X et al (2020) Incorporating human movement data to improve epidemiological estimates for 2019-nCoV. MedRxiv 362:170 Cao Z, Zhang Q, Lu X et al (2020) Incorporating human movement data to improve epidemiological estimates for 2019-nCoV. MedRxiv 362:170
32.
go back to reference Ireland’s Health Services (2020) Health Care Worker Information (PDF). Retrieved March 27 Ireland’s Health Services (2020) Health Care Worker Information (PDF). Retrieved March 27
33.
go back to reference Kretzschmar M, Teunis PF, Pebody RG (2010) Incidence and reproduction numbers of pertussis: estimates from serological and social contact data in five European countries. PLOS Med 7(6):1000291 CrossRef Kretzschmar M, Teunis PF, Pebody RG (2010) Incidence and reproduction numbers of pertussis: estimates from serological and social contact data in five European countries. PLOS Med 7(6):1000291 CrossRef
34.
go back to reference Gani R, Leach S (2001) Transmission potential of smallpox in contemporary populations. Nature 414(6865):748–751 CrossRef Gani R, Leach S (2001) Transmission potential of smallpox in contemporary populations. Nature 414(6865):748–751 CrossRef
35.
go back to reference Nishiura H (2010) Correcting the actual reproduction number: a simple method to estimate R0 from early epidemic growth data. Int J Environ Res Public Health 7(1):291–302 CrossRef Nishiura H (2010) Correcting the actual reproduction number: a simple method to estimate R0 from early epidemic growth data. Int J Environ Res Public Health 7(1):291–302 CrossRef
36.
go back to reference Wallinga J, Teunis P (2004) Different epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures. Am J Epidemiol 160(6):509–516 CrossRef Wallinga J, Teunis P (2004) Different epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures. Am J Epidemiol 160(6):509–516 CrossRef
37.
go back to reference Riou J, Althaus CL (2020) Pattern of early human-to-human transmission of Wuhan 2019 novel coronavirus (2019-nCoV), December 2019 to January 2020. Eurosurveillance 25(4):2000058 CrossRef Riou J, Althaus CL (2020) Pattern of early human-to-human transmission of Wuhan 2019 novel coronavirus (2019-nCoV), December 2019 to January 2020. Eurosurveillance 25(4):2000058 CrossRef
38.
go back to reference Liu T, Hu J, Kang M, Lin L (2020) Time-varying transmission dynamics of novel coronavirus pneumonia in China. bioRxiv 2: 79 Liu T, Hu J, Kang M, Lin L (2020) Time-varying transmission dynamics of novel coronavirus pneumonia in China. bioRxiv 2: 79
39.
go back to reference Read JM, Bridgen JR, Cummings DA et al (2020) Novel coronavirus 2019-nCoV: early estimation of epidemiological parameters and epidemic predictions. MedRxiv 10(7):1258 Read JM, Bridgen JR, Cummings DA et al (2020) Novel coronavirus 2019-nCoV: early estimation of epidemiological parameters and epidemic predictions. MedRxiv 10(7):1258
40.
go back to reference Wu JT, Leung K, Bushman M et al (2020) Estimating clinical severity of COVID-19 from the transmission dynamics in Wuhan, China. Nat Med 26(4):506–510 CrossRef Wu JT, Leung K, Bushman M et al (2020) Estimating clinical severity of COVID-19 from the transmission dynamics in Wuhan, China. Nat Med 26(4):506–510 CrossRef
42.
go back to reference Coburn BJ, Wagner BG, Blower S (2009) Modeling influenza epidemics and epidemics: insights into the future of swine flu (H1N1). BMC Med 7(1):30–30 CrossRef Coburn BJ, Wagner BG, Blower S (2009) Modeling influenza epidemics and epidemics: insights into the future of swine flu (H1N1). BMC Med 7(1):30–30 CrossRef
43.
go back to reference Hassard B, Kazarino D, Wan Y (1981) Theory and application of Hopf bifurcation. Cambridge University Press, Cambridge, pp 210–211 Hassard B, Kazarino D, Wan Y (1981) Theory and application of Hopf bifurcation. Cambridge University Press, Cambridge, pp 210–211
44.
go back to reference Kissler SM, Tedijanto C, Goldstein E et al (2020) Projecting the transmission dynamics of SARS-CoV-2 through the post epidemic period. Science 368:860–868 CrossRef Kissler SM, Tedijanto C, Goldstein E et al (2020) Projecting the transmission dynamics of SARS-CoV-2 through the post epidemic period. Science 368:860–868 CrossRef
45.
go back to reference Fu X, Small M, Chen G (2014) Propagation dynamics on complex networks: models, methods and stability analysis. Higher Education Press, Beijing CrossRef Fu X, Small M, Chen G (2014) Propagation dynamics on complex networks: models, methods and stability analysis. Higher Education Press, Beijing CrossRef
Metadata
Title
Modeling COVID-19 Pandemic with Hierarchical Quarantine and Time Delay
Author
Wei Yang
Publication date
24-03-2021
Publisher
Springer US
Published in
Dynamic Games and Applications / Issue 4/2021
Print ISSN: 2153-0785
Electronic ISSN: 2153-0793
DOI
https://doi.org/10.1007/s13235-021-00382-3

Other articles of this Issue 4/2021

Dynamic Games and Applications 4/2021 Go to the issue

Premium Partner