Skip to main content
Top
Published in: Dynamic Games and Applications 4/2021

24-03-2021

Modeling COVID-19 Pandemic with Hierarchical Quarantine and Time Delay

Author: Wei Yang

Published in: Dynamic Games and Applications | Issue 4/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

COVID-19 comes out as a sudden pandemic disease within human population. The pandemic dynamics of COVID-19 needs to be studied in detail. A pandemic model with hierarchical quarantine and time delay is proposed in this paper. In the COVID-19 case, the virus incubation period and the antibody failure will cause the time delay and reinfection, respectively, and the hierarchical quarantine strategy includes home isolation and quarantine in hospital. These factors that affect the spread of COVID-19 are well considered and analyzed in the model. The stability of the equilibrium and the nonlinear dynamics is studied as well. The threshold value \(\tau_{k}\) of the bifurcation is deduced and quantitatively analyzed. Numerical simulations are performed to establish the analytical results with suitable examples. The research reveals that the COVID-19 outbreak may recur over a period of time, which can be helpful to increase the number of tested people with or without symptoms in order to be able to early identify the clusters of infection. And before the effective vaccine is successfully developed, the hierarchical quarantine strategy is currently the best way to prevent the spread of this pandemic.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Tyrrell DA, Bynoe ML (1966) Cultivation of viruses from a high proportion of patients with colds. Lancet 287(7248):76–77CrossRef Tyrrell DA, Bynoe ML (1966) Cultivation of viruses from a high proportion of patients with colds. Lancet 287(7248):76–77CrossRef
3.
go back to reference Hamer WH (1906) Epidemic disease in England—the evidence of variety and of persistency of type. Lancet 1(4305):733–739 Hamer WH (1906) Epidemic disease in England—the evidence of variety and of persistency of type. Lancet 1(4305):733–739
4.
go back to reference Ross R (1911) The prevention of malaria. Murray, London Ross R (1911) The prevention of malaria. Murray, London
5.
go back to reference Kermack WO, McKendrick AG (1927) Contributions to the mathematical theory of epidemics. Proc R Soc London Series A 115(772):700–721CrossRef Kermack WO, McKendrick AG (1927) Contributions to the mathematical theory of epidemics. Proc R Soc London Series A 115(772):700–721CrossRef
6.
7.
go back to reference Gray A, Greenhalgh D, Hu L, Mao X, Pan J (2011) A stochastic differential equation SIS epidemic model. SIAM J Appl Math 71(3):876–902MathSciNetCrossRef Gray A, Greenhalgh D, Hu L, Mao X, Pan J (2011) A stochastic differential equation SIS epidemic model. SIAM J Appl Math 71(3):876–902MathSciNetCrossRef
8.
go back to reference Lahrouz A, Omari L, Kiouach D (2011) Global analysis of a deterministic and stochastic nonlinear SIRS epidemic model. Nonlinear Anal Model Control 16:59–76MathSciNetCrossRef Lahrouz A, Omari L, Kiouach D (2011) Global analysis of a deterministic and stochastic nonlinear SIRS epidemic model. Nonlinear Anal Model Control 16:59–76MathSciNetCrossRef
9.
go back to reference Tornatore E, Buccellato SM, Vetro P (2005) Stability of a stochastic SIR system. Phys A 354:111–126CrossRef Tornatore E, Buccellato SM, Vetro P (2005) Stability of a stochastic SIR system. Phys A 354:111–126CrossRef
10.
go back to reference Chowell G, Sattenspiel L, Bansal S, Viboud C (2016) Mathematical models to characterize early epidemic growth: a Review. Phys Life Rev 18:66–97CrossRef Chowell G, Sattenspiel L, Bansal S, Viboud C (2016) Mathematical models to characterize early epidemic growth: a Review. Phys Life Rev 18:66–97CrossRef
11.
go back to reference Stehle J, Voirin N, Barrat A et al (2011) Simulation of an SEIR infectious disease model on the dynamic contact network of conference attendees. BMC Med 9:87CrossRef Stehle J, Voirin N, Barrat A et al (2011) Simulation of an SEIR infectious disease model on the dynamic contact network of conference attendees. BMC Med 9:87CrossRef
12.
go back to reference Chan JF, Zhang AJ, Yuan S, Poon VK et al (2020) Simulation of the clinical and pathological manifestations of coronavirus disease 2019 (COVID-19) in golden Syrian hamster model: implications for disease pathogenesis and transmissibility. Clin Infect Dis. https://doi.org/10.1093/cid/ciaa325CrossRef Chan JF, Zhang AJ, Yuan S, Poon VK et al (2020) Simulation of the clinical and pathological manifestations of coronavirus disease 2019 (COVID-19) in golden Syrian hamster model: implications for disease pathogenesis and transmissibility. Clin Infect Dis. https://​doi.​org/​10.​1093/​cid/​ciaa325CrossRef
13.
go back to reference Tian J, Wu J, Bao Y et al (2020) Modeling analysis of COVID-19 based on morbidity data in Anhui, China. Math Biosci Eng 17:2842–2852MathSciNetCrossRef Tian J, Wu J, Bao Y et al (2020) Modeling analysis of COVID-19 based on morbidity data in Anhui, China. Math Biosci Eng 17:2842–2852MathSciNetCrossRef
14.
go back to reference Dai C, Yang J, Wang K (2020) Evaluation of prevention and control interventions and its impact on the epidemic of coronavirus disease 2019 in Chongqing and Guizhou Provinces. Math Biosci Eng 17(4):2781–2791MathSciNetCrossRef Dai C, Yang J, Wang K (2020) Evaluation of prevention and control interventions and its impact on the epidemic of coronavirus disease 2019 in Chongqing and Guizhou Provinces. Math Biosci Eng 17(4):2781–2791MathSciNetCrossRef
15.
go back to reference Prem K, Liu Y, Russell TW, Kucharski AJ, Eggo RM, Davies N (2020) Centre for the mathematical modelling of infectious diseases COVID-19 working group, the effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: a modelling study. Lancet F Health. https://doi.org/10.1016/S2468-2667(20)30073-6CrossRef Prem K, Liu Y, Russell TW, Kucharski AJ, Eggo RM, Davies N (2020) Centre for the mathematical modelling of infectious diseases COVID-19 working group, the effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: a modelling study. Lancet F Health. https://​doi.​org/​10.​1016/​S2468-2667(20)30073-6CrossRef
16.
go back to reference Zhao S, Chen H (2020) Modeling the epidemic dynamics and control of COVID-19 outbreak in China. Quant Biol 8:11–19CrossRef Zhao S, Chen H (2020) Modeling the epidemic dynamics and control of COVID-19 outbreak in China. Quant Biol 8:11–19CrossRef
17.
go back to reference Tang B, Bragazzi NL, Li Q, Tang S, Xiao Y, Wu J (2020) An updated estimation of the risk of transmission of the novel coronavirus (2019-nCov). Infect Dis Model 5:248–255 Tang B, Bragazzi NL, Li Q, Tang S, Xiao Y, Wu J (2020) An updated estimation of the risk of transmission of the novel coronavirus (2019-nCov). Infect Dis Model 5:248–255
18.
go back to reference Chen TM, Rui J, Wang QP, Zhao ZY, Cui JA, Yin L (2020) A mathematical model for simulating the phase-based transmissibility of a novel coronavirus. Infect Dis Poverty 9(1):24–24CrossRef Chen TM, Rui J, Wang QP, Zhao ZY, Cui JA, Yin L (2020) A mathematical model for simulating the phase-based transmissibility of a novel coronavirus. Infect Dis Poverty 9(1):24–24CrossRef
20.
go back to reference Sun T, Weng D (2020) Estimating the effects of asymptomatic and imported patients on COVID-19 epidemic using mathematical modeling. J Med Virol 92(10):1995–2003CrossRef Sun T, Weng D (2020) Estimating the effects of asymptomatic and imported patients on COVID-19 epidemic using mathematical modeling. J Med Virol 92(10):1995–2003CrossRef
21.
go back to reference Shao P, Shan Y (2020) Beware of asymptomatic transmission: Study on 2019 nCoV prevention and control measures based on extended SEIR model. bioRxiv Shao P, Shan Y (2020) Beware of asymptomatic transmission: Study on 2019 nCoV prevention and control measures based on extended SEIR model. bioRxiv
22.
go back to reference Li L (2015) Bifurcation and chaos in a discrete physiological control system. Appl Math Comput 252:397–404MathSciNetMATH Li L (2015) Bifurcation and chaos in a discrete physiological control system. Appl Math Comput 252:397–404MathSciNetMATH
23.
go back to reference Din Q (2017) Global stability and Neimark-Sacker bifurcation of a host-parasitoid model. Int J Syst Sci 48(6):1194–1202MathSciNetCrossRef Din Q (2017) Global stability and Neimark-Sacker bifurcation of a host-parasitoid model. Int J Syst Sci 48(6):1194–1202MathSciNetCrossRef
24.
go back to reference Huang C, Cao J, Xiao M, Alsaedi A, Hayat T (2017) Bifurcations in a delayed fractional complex-valued neural network. Appl Math Comput 292:210–227MathSciNetMATH Huang C, Cao J, Xiao M, Alsaedi A, Hayat T (2017) Bifurcations in a delayed fractional complex-valued neural network. Appl Math Comput 292:210–227MathSciNetMATH
25.
go back to reference Dong T, Liao X, Li H (2012) Stability and hopf bifurcation in a computer virus model with multistate antivirus. Abstr Appl Anal 2012:1–16MathSciNetMATH Dong T, Liao X, Li H (2012) Stability and hopf bifurcation in a computer virus model with multistate antivirus. Abstr Appl Anal 2012:1–16MathSciNetMATH
26.
go back to reference Ren J, Yang XF, Yang LX (2012) A delayed computer virus propagation model and its dynamics. Chaos Solitons Fractals 45(1):74–79MathSciNetCrossRef Ren J, Yang XF, Yang LX (2012) A delayed computer virus propagation model and its dynamics. Chaos Solitons Fractals 45(1):74–79MathSciNetCrossRef
27.
go back to reference Wang S, Liu QM, Yu XF (2010) Bifurcation analysis of a model for network worm propagation with time delay. Math Comput Model 52(3):435–447MathSciNetCrossRef Wang S, Liu QM, Yu XF (2010) Bifurcation analysis of a model for network worm propagation with time delay. Math Comput Model 52(3):435–447MathSciNetCrossRef
28.
go back to reference Zhu Q, Yang XF, Ren J (2012) Modeling and analysis of the spread of computer virus. Commun Nonlinear Sci Numer Simul 17(12):5117–5124MathSciNetCrossRef Zhu Q, Yang XF, Ren J (2012) Modeling and analysis of the spread of computer virus. Commun Nonlinear Sci Numer Simul 17(12):5117–5124MathSciNetCrossRef
29.
go back to reference Lipsitch M, Cohen T, Cooper B et al (2003) Transmission dynamics and control of severe acute respiratory syndrome. Science 300(5627):1966–1970CrossRef Lipsitch M, Cohen T, Cooper B et al (2003) Transmission dynamics and control of severe acute respiratory syndrome. Science 300(5627):1966–1970CrossRef
30.
go back to reference Chan JF, Yuan S, Kok K et al (2020) A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet 395(10223):514–523CrossRef Chan JF, Yuan S, Kok K et al (2020) A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet 395(10223):514–523CrossRef
31.
go back to reference Cao Z, Zhang Q, Lu X et al (2020) Incorporating human movement data to improve epidemiological estimates for 2019-nCoV. MedRxiv 362:170 Cao Z, Zhang Q, Lu X et al (2020) Incorporating human movement data to improve epidemiological estimates for 2019-nCoV. MedRxiv 362:170
32.
go back to reference Ireland’s Health Services (2020) Health Care Worker Information (PDF). Retrieved March 27 Ireland’s Health Services (2020) Health Care Worker Information (PDF). Retrieved March 27
33.
go back to reference Kretzschmar M, Teunis PF, Pebody RG (2010) Incidence and reproduction numbers of pertussis: estimates from serological and social contact data in five European countries. PLOS Med 7(6):1000291CrossRef Kretzschmar M, Teunis PF, Pebody RG (2010) Incidence and reproduction numbers of pertussis: estimates from serological and social contact data in five European countries. PLOS Med 7(6):1000291CrossRef
34.
go back to reference Gani R, Leach S (2001) Transmission potential of smallpox in contemporary populations. Nature 414(6865):748–751CrossRef Gani R, Leach S (2001) Transmission potential of smallpox in contemporary populations. Nature 414(6865):748–751CrossRef
35.
go back to reference Nishiura H (2010) Correcting the actual reproduction number: a simple method to estimate R0 from early epidemic growth data. Int J Environ Res Public Health 7(1):291–302CrossRef Nishiura H (2010) Correcting the actual reproduction number: a simple method to estimate R0 from early epidemic growth data. Int J Environ Res Public Health 7(1):291–302CrossRef
36.
go back to reference Wallinga J, Teunis P (2004) Different epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures. Am J Epidemiol 160(6):509–516CrossRef Wallinga J, Teunis P (2004) Different epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures. Am J Epidemiol 160(6):509–516CrossRef
37.
go back to reference Riou J, Althaus CL (2020) Pattern of early human-to-human transmission of Wuhan 2019 novel coronavirus (2019-nCoV), December 2019 to January 2020. Eurosurveillance 25(4):2000058CrossRef Riou J, Althaus CL (2020) Pattern of early human-to-human transmission of Wuhan 2019 novel coronavirus (2019-nCoV), December 2019 to January 2020. Eurosurveillance 25(4):2000058CrossRef
38.
go back to reference Liu T, Hu J, Kang M, Lin L (2020) Time-varying transmission dynamics of novel coronavirus pneumonia in China. bioRxiv 2: 79 Liu T, Hu J, Kang M, Lin L (2020) Time-varying transmission dynamics of novel coronavirus pneumonia in China. bioRxiv 2: 79
39.
go back to reference Read JM, Bridgen JR, Cummings DA et al (2020) Novel coronavirus 2019-nCoV: early estimation of epidemiological parameters and epidemic predictions. MedRxiv 10(7):1258 Read JM, Bridgen JR, Cummings DA et al (2020) Novel coronavirus 2019-nCoV: early estimation of epidemiological parameters and epidemic predictions. MedRxiv 10(7):1258
40.
go back to reference Wu JT, Leung K, Bushman M et al (2020) Estimating clinical severity of COVID-19 from the transmission dynamics in Wuhan, China. Nat Med 26(4):506–510CrossRef Wu JT, Leung K, Bushman M et al (2020) Estimating clinical severity of COVID-19 from the transmission dynamics in Wuhan, China. Nat Med 26(4):506–510CrossRef
42.
go back to reference Coburn BJ, Wagner BG, Blower S (2009) Modeling influenza epidemics and epidemics: insights into the future of swine flu (H1N1). BMC Med 7(1):30–30CrossRef Coburn BJ, Wagner BG, Blower S (2009) Modeling influenza epidemics and epidemics: insights into the future of swine flu (H1N1). BMC Med 7(1):30–30CrossRef
43.
go back to reference Hassard B, Kazarino D, Wan Y (1981) Theory and application of Hopf bifurcation. Cambridge University Press, Cambridge, pp 210–211 Hassard B, Kazarino D, Wan Y (1981) Theory and application of Hopf bifurcation. Cambridge University Press, Cambridge, pp 210–211
44.
go back to reference Kissler SM, Tedijanto C, Goldstein E et al (2020) Projecting the transmission dynamics of SARS-CoV-2 through the post epidemic period. Science 368:860–868CrossRef Kissler SM, Tedijanto C, Goldstein E et al (2020) Projecting the transmission dynamics of SARS-CoV-2 through the post epidemic period. Science 368:860–868CrossRef
45.
go back to reference Fu X, Small M, Chen G (2014) Propagation dynamics on complex networks: models, methods and stability analysis. Higher Education Press, BeijingCrossRef Fu X, Small M, Chen G (2014) Propagation dynamics on complex networks: models, methods and stability analysis. Higher Education Press, BeijingCrossRef
Metadata
Title
Modeling COVID-19 Pandemic with Hierarchical Quarantine and Time Delay
Author
Wei Yang
Publication date
24-03-2021
Publisher
Springer US
Published in
Dynamic Games and Applications / Issue 4/2021
Print ISSN: 2153-0785
Electronic ISSN: 2153-0793
DOI
https://doi.org/10.1007/s13235-021-00382-3

Other articles of this Issue 4/2021

Dynamic Games and Applications 4/2021 Go to the issue

Premium Partner