Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 12/2013

01-12-2013

Modeling of Ionic Conductivity Enhancement of LiClO4-PVA-C System by TiO2 Addition Using Complex Numerical Model of PDE

Authors: Mahvash Shokrollahi, Dariush Semnani, Mohammad Morshed, Behzad Rezaei, Mehdi Mirsoofian

Published in: Journal of Materials Engineering and Performance | Issue 12/2013

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

PVA-TiO2 nanocomposite polymer electrolytes (PEs) were produced with different amounts of TiO2 (0, 5, 10, 15, and 20 wt.%) using the electrospinning process. Morphological studies of PVA-TiO2 nanofibers were accomplished with SEM. PVA-TiO2 membranes exhibited a high porosity of 79-91%. The impedance results showed that incorporation of TiO2 into the nanofiber membrane improved its ionic conductivity from 0.7 × 10−5 to 2.5 × 10−5 S/cm at room temperature. Nanofiber PEs showed very good reversibility and electrochemical stability up to 4.7 V. Diffusion coefficient of Li ion into PVA-TiO2 nanocomposite PEs was estimated by using a complex numerical model of partial differential equation for evaluation of ion transmission. Diffusion coefficient of PVA-TiO2 PEs containing different amounts of TiO2 (0, 5, 10, 15, and 20 wt.%) increased with increasing the nanoparticles content.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference B. Scrosati and J. Garche, Lithium Batteries: Status, Prospects and Future, J. Power Sources, 2010, 195, p 2419–2430CrossRef B. Scrosati and J. Garche, Lithium Batteries: Status, Prospects and Future, J. Power Sources, 2010, 195, p 2419–2430CrossRef
2.
go back to reference M. Wakihara, Recent Developments in Lithium Ion Batteries, Mater. Sci. Eng., 2001, 33, p 109–134CrossRef M. Wakihara, Recent Developments in Lithium Ion Batteries, Mater. Sci. Eng., 2001, 33, p 109–134CrossRef
3.
go back to reference S.Y. Chew, Advanced Materials for Electrode and Electrolyte in Rechargeable Lithium Batteries, Institute of Super conducting and Electronic Materials, 2009, p 1–223 S.Y. Chew, Advanced Materials for Electrode and Electrolyte in Rechargeable Lithium Batteries, Institute of Super conducting and Electronic Materials, 2009, p 1–223
4.
go back to reference X. Huang, Separator Technologies for Lithium-Ion Batteries—A Review, J. Solid State Chem., 2011, 15, p 649–662 X. Huang, Separator Technologies for Lithium-Ion Batteries—A Review, J. Solid State Chem., 2011, 15, p 649–662
5.
go back to reference A. Pankaj and Z. Zhengming, Battery Separators—A review, Chem. Rev., 2004, 104, p 4419–4462CrossRef A. Pankaj and Z. Zhengming, Battery Separators—A review, Chem. Rev., 2004, 104, p 4419–4462CrossRef
6.
go back to reference S.S. Zhang, A Review on the Separators of Liquid Electrolyte Li-Ion Batteries, J. Power Sources, 2007, 164, p 351–364CrossRef S.S. Zhang, A Review on the Separators of Liquid Electrolyte Li-Ion Batteries, J. Power Sources, 2007, 164, p 351–364CrossRef
7.
go back to reference A. Patil, V. Patil, D.W. Shin, J.W. Choi, D.S. Paik, and S.J. Yoon, Issue and Challenges Facing Rechargeable Thin Film Lithium Batteries—A Review, J. Mater. Res. Bull., 2008, 43, p 1913–1942CrossRef A. Patil, V. Patil, D.W. Shin, J.W. Choi, D.S. Paik, and S.J. Yoon, Issue and Challenges Facing Rechargeable Thin Film Lithium Batteries—A Review, J. Mater. Res. Bull., 2008, 43, p 1913–1942CrossRef
8.
go back to reference M. Park et al., A Review of Conduction Phenomena in Li-ion Batteries, J. Power Sources, 2010, 195, p 7904–7929CrossRef M. Park et al., A Review of Conduction Phenomena in Li-ion Batteries, J. Power Sources, 2010, 195, p 7904–7929CrossRef
9.
10.
go back to reference P. Kofstad, and T. Norby, Electrical Conductivity, Defects and Transport in Crystalline Solids, University of Oslo, 2009, Ch. 6 P. Kofstad, and T. Norby, Electrical Conductivity, Defects and Transport in Crystalline Solids, University of Oslo, 2009, Ch. 6
11.
go back to reference A. Subramania and N. Sundaram, New Polymer Electrolyte Based on (PVA-PAN) Blend for Li-Ion Battery Applications, Ionics, 2006, 12, p 175–178CrossRef A. Subramania and N. Sundaram, New Polymer Electrolyte Based on (PVA-PAN) Blend for Li-Ion Battery Applications, Ionics, 2006, 12, p 175–178CrossRef
12.
go back to reference A. Subramania, N.T.K. Sundaram, and N. Sukumar, Development of PVA Based Micro-porous Polymer Electrolyte by a Novel Preferential Polymer Dissolution Process, J. Power Sources, 2005, 141, p 188–192CrossRef A. Subramania, N.T.K. Sundaram, and N. Sukumar, Development of PVA Based Micro-porous Polymer Electrolyte by a Novel Preferential Polymer Dissolution Process, J. Power Sources, 2005, 141, p 188–192CrossRef
13.
go back to reference S. Rajendran and M. Sivakumar, Investigations on the Effect of Various Plasticizers in PVA-PMMA Solid Polymer Blend Electrolytes, Mater. Lett., 2004, 58, p 641–649CrossRef S. Rajendran and M. Sivakumar, Investigations on the Effect of Various Plasticizers in PVA-PMMA Solid Polymer Blend Electrolytes, Mater. Lett., 2004, 58, p 641–649CrossRef
14.
go back to reference S. Rajenran, M. Sivakumar, and R. Subadaevi, Effect of Salt Concentration in Poly(vinyl alcohol)-Based Solid Polymer Electrolytes, J. Power Sources, 2003, 124, p 225–230CrossRef S. Rajenran, M. Sivakumar, and R. Subadaevi, Effect of Salt Concentration in Poly(vinyl alcohol)-Based Solid Polymer Electrolytes, J. Power Sources, 2003, 124, p 225–230CrossRef
15.
go back to reference S. Rajendran, M. Sivakumar, and R. Subadevi, Li-Ion Conduction of Plasticized PVA Solid Polymer Electrolytes Complexed with Various Lithium Salts, J. Solid State Ionics, 2004, 167, p 335–339CrossRef S. Rajendran, M. Sivakumar, and R. Subadevi, Li-Ion Conduction of Plasticized PVA Solid Polymer Electrolytes Complexed with Various Lithium Salts, J. Solid State Ionics, 2004, 167, p 335–339CrossRef
16.
go back to reference S. Rajendran, M. Sivakumar, and M. Nirmala, Characterization of PVA-PVDF Based Solid Polymer Blend Electrolyte, Phys. B, 2004, 348, p 73–78CrossRef S. Rajendran, M. Sivakumar, and M. Nirmala, Characterization of PVA-PVDF Based Solid Polymer Blend Electrolyte, Phys. B, 2004, 348, p 73–78CrossRef
17.
go back to reference S. Rajenran, M. Sivakumar, R. Subadevi, N.L. Wu, and J.Y. Lee, Electrochemical Investigations on the Effect of Dispersoid in PVA Based Solid Polymer Electrolytes, J. Appl. Polym. Sci., 2007, 103, p 3950–3956CrossRef S. Rajenran, M. Sivakumar, R. Subadevi, N.L. Wu, and J.Y. Lee, Electrochemical Investigations on the Effect of Dispersoid in PVA Based Solid Polymer Electrolytes, J. Appl. Polym. Sci., 2007, 103, p 3950–3956CrossRef
18.
go back to reference Z. Dong, S.J. Kennedy, and J. Wu, Electrospinning Materials for Energy-Related Applications and Devices, J. Power Sources, 2011, 196, p 4886–4904CrossRef Z. Dong, S.J. Kennedy, and J. Wu, Electrospinning Materials for Energy-Related Applications and Devices, J. Power Sources, 2011, 196, p 4886–4904CrossRef
19.
go back to reference G. Cheruvally, J. Kim, J. Choi, J. Ahn, Y. Shin, J. Manuel, P. Raghavan, K. Kim, H. Ahn, D. Choi, and C. Song, Electrospun Polymer Membrane Activated with Room Temperature Ionic Liquid: Novel Polymer Electrolytes for Lithium Batteries, J. Power Sources, 2007, 172, p 863–869CrossRef G. Cheruvally, J. Kim, J. Choi, J. Ahn, Y. Shin, J. Manuel, P. Raghavan, K. Kim, H. Ahn, D. Choi, and C. Song, Electrospun Polymer Membrane Activated with Room Temperature Ionic Liquid: Novel Polymer Electrolytes for Lithium Batteries, J. Power Sources, 2007, 172, p 863–869CrossRef
20.
go back to reference M.M. Jacob, E.H. Hackett, and E.P. Giannelis, From Nanocomposite to Nanogel Polymer Electrolytes, J. Mater. Chem., 2003, 13, p 1–5CrossRef M.M. Jacob, E.H. Hackett, and E.P. Giannelis, From Nanocomposite to Nanogel Polymer Electrolytes, J. Mater. Chem., 2003, 13, p 1–5CrossRef
21.
go back to reference C.W. Lin, C.L. Hung, M.V. Venkateswarlu, and B.J. Hwang, Influence of TiO2 Nano-particles on the Transport of Composite Polymer Electrolyte for Lithium-Ion Batteries, J. Power Sources, 2005, 146, p 397–401CrossRef C.W. Lin, C.L. Hung, M.V. Venkateswarlu, and B.J. Hwang, Influence of TiO2 Nano-particles on the Transport of Composite Polymer Electrolyte for Lithium-Ion Batteries, J. Power Sources, 2005, 146, p 397–401CrossRef
22.
go back to reference H.R. Jung, D.H. Ju, X. Zhang, and R. Kotek, Electrospun Hydrophilic Fumed Silica/Polyacrylonitrile Nanofiber-Based Composite Electrolyte Membranes, Electrochim. Acta, 2009, 154, p 3630–3637CrossRef H.R. Jung, D.H. Ju, X. Zhang, and R. Kotek, Electrospun Hydrophilic Fumed Silica/Polyacrylonitrile Nanofiber-Based Composite Electrolyte Membranes, Electrochim. Acta, 2009, 154, p 3630–3637CrossRef
23.
go back to reference Z.H. Li, H.P. Zhang, G.C. Li, Y.P. Wu, and X.D. Zhou, Effects of the Porous Structure on Conductivity of Nanocomposite Polymer Electrolyte for Lithium Ion Batteries, J. Membr. Sci., 2008, 322, p 416–422CrossRef Z.H. Li, H.P. Zhang, G.C. Li, Y.P. Wu, and X.D. Zhou, Effects of the Porous Structure on Conductivity of Nanocomposite Polymer Electrolyte for Lithium Ion Batteries, J. Membr. Sci., 2008, 322, p 416–422CrossRef
24.
go back to reference G.D. Smith, Numerical Solution of Partial Differential Equations: Finite Difference Method, 3rd ed., Oxford University Press, Oxford, 1986 G.D. Smith, Numerical Solution of Partial Differential Equations: Finite Difference Method, 3rd ed., Oxford University Press, Oxford, 1986
25.
go back to reference S. Ramakrishna, K. Fujihara, W.E. Teo, T.C. Lim, and Z. Ma, An Introduction to Electrospinning and Nanofibers, World Scientific, Singapore, 2005, p 1–381CrossRef S. Ramakrishna, K. Fujihara, W.E. Teo, T.C. Lim, and Z. Ma, An Introduction to Electrospinning and Nanofibers, World Scientific, Singapore, 2005, p 1–381CrossRef
26.
go back to reference P. Kritzer, Nonwoven Support Material for Improved Separators in Li-Polymer Batteries, J. Power Sources, 2006, 161, p 1335–1340CrossRef P. Kritzer, Nonwoven Support Material for Improved Separators in Li-Polymer Batteries, J. Power Sources, 2006, 161, p 1335–1340CrossRef
27.
go back to reference X. Li, G. Cheruvally, J. Kim, J. Choi, J. Ahn, K. Kim, and H. Ahn, Polymer Electrolytes Based on an Electrospun Poly(vinylidene fluoride-co-hexafluoropropylene) Membrane for Lithium Batteries, J. Power Sources, 2007, 167, p 491–498CrossRef X. Li, G. Cheruvally, J. Kim, J. Choi, J. Ahn, K. Kim, and H. Ahn, Polymer Electrolytes Based on an Electrospun Poly(vinylidene fluoride-co-hexafluoropropylene) Membrane for Lithium Batteries, J. Power Sources, 2007, 167, p 491–498CrossRef
28.
go back to reference A.L. Gopalan, P. Santhosh, K.M. Manesh, J.H. Nho, S.H. Kim, C.G. Hwang, and K.P. Lee, Development of Electrospun PVdF-PAN Membrane-Based Polymer Electrolytes for Lithium Batteries, J. Membr. Sci., 2008, 325, p 683–690CrossRef A.L. Gopalan, P. Santhosh, K.M. Manesh, J.H. Nho, S.H. Kim, C.G. Hwang, and K.P. Lee, Development of Electrospun PVdF-PAN Membrane-Based Polymer Electrolytes for Lithium Batteries, J. Membr. Sci., 2008, 325, p 683–690CrossRef
29.
go back to reference Y. Wang, Z. Huaiyu, L. Yun, and Z. Shushu, Wet-Laid Non-Woven Fabric for Separator of Lithium-Ion Battery, J. Power Sources, 2009, 189, p 616–619CrossRef Y. Wang, Z. Huaiyu, L. Yun, and Z. Shushu, Wet-Laid Non-Woven Fabric for Separator of Lithium-Ion Battery, J. Power Sources, 2009, 189, p 616–619CrossRef
30.
go back to reference Z.L. Xu, L.Y. Yu, and L.H. Han, Polymer-Nano Inorganic Particles Composite Membrane: A Brief Overview, J. Chem. Eng. China, 2009, 3, p 318–329 Z.L. Xu, L.Y. Yu, and L.H. Han, Polymer-Nano Inorganic Particles Composite Membrane: A Brief Overview, J. Chem. Eng. China, 2009, 3, p 318–329
31.
go back to reference H.S. Park and Y.O. Park, Filtration Properties of Electrospun Ultrafine Fiber Webs, J. Chem. Eng., 2005, 22, p 165–172 H.S. Park and Y.O. Park, Filtration Properties of Electrospun Ultrafine Fiber Webs, J. Chem. Eng., 2005, 22, p 165–172
32.
go back to reference Z. Luxue, W. Xiulian, L. Peng, and S. Zhixing, Low Temperature Deposition of TiO2 Thin Films on Polyvinyl Alcohol Fibers with Photocatalytical and Antibacterial Activities, Appl. Surf. Sci., 2008, 254, p 1771–1774CrossRef Z. Luxue, W. Xiulian, L. Peng, and S. Zhixing, Low Temperature Deposition of TiO2 Thin Films on Polyvinyl Alcohol Fibers with Photocatalytical and Antibacterial Activities, Appl. Surf. Sci., 2008, 254, p 1771–1774CrossRef
33.
go back to reference M. Sairam, M.B. Patil, R.S. Veerapur, S.A. Patil, and T.M. Aminabhavi, Novel Dense Poly(vinyl alcohol)-TiO2 Mixed Matrix Membranes for Pervaporation Separation of Water-Isopropanol Mixtures at 30 °C, J. Membr. Sci., 2006, 281, p 95–102CrossRef M. Sairam, M.B. Patil, R.S. Veerapur, S.A. Patil, and T.M. Aminabhavi, Novel Dense Poly(vinyl alcohol)-TiO2 Mixed Matrix Membranes for Pervaporation Separation of Water-Isopropanol Mixtures at 30 °C, J. Membr. Sci., 2006, 281, p 95–102CrossRef
34.
go back to reference C. Park, W.M. Choin, M.H. Kim, and O.O. Park, Thermal and Mechanical Properties of Syndiotactic Polystyrene/Organoclay Nanocomposites with Different Microstructures, J. Polym. Sci., 2004, 42, p 1685–1693CrossRef C. Park, W.M. Choin, M.H. Kim, and O.O. Park, Thermal and Mechanical Properties of Syndiotactic Polystyrene/Organoclay Nanocomposites with Different Microstructures, J. Polym. Sci., 2004, 42, p 1685–1693CrossRef
35.
go back to reference Y.J. Kim, C.H. Ahn, M.B. Lee, and M.B. Choi, Characteristics of Electrospun PVDF/SiO2 Composite Nanofiber Membranes as Polymer Electrolyte, Mater. Chem. Phys., 2011, 127, p 137–142CrossRef Y.J. Kim, C.H. Ahn, M.B. Lee, and M.B. Choi, Characteristics of Electrospun PVDF/SiO2 Composite Nanofiber Membranes as Polymer Electrolyte, Mater. Chem. Phys., 2011, 127, p 137–142CrossRef
36.
go back to reference Y.J. Wang and D. Kim, Crystallinity, Morphology, Mechanical Properties and Conductivity Study of In Situ Formed PVdF/LiClO4/TiO2 Nano Composite Polymer Electrolytes, Electrochim. Acta, 2007, 52, p 3181–3189CrossRef Y.J. Wang and D. Kim, Crystallinity, Morphology, Mechanical Properties and Conductivity Study of In Situ Formed PVdF/LiClO4/TiO2 Nano Composite Polymer Electrolytes, Electrochim. Acta, 2007, 52, p 3181–3189CrossRef
37.
go back to reference Y. Saito, A.M. Stephan, and H. Kataoka, Ionic Conduction Mechanisms of Lithium Gel Polymer Electrolytes Investigated by the Conductivity and Diffusion Coefficient, Solid State Ionics, 2003, 160, p 149–153CrossRef Y. Saito, A.M. Stephan, and H. Kataoka, Ionic Conduction Mechanisms of Lithium Gel Polymer Electrolytes Investigated by the Conductivity and Diffusion Coefficient, Solid State Ionics, 2003, 160, p 149–153CrossRef
38.
go back to reference F. Croce, L. Persi, F. Ronci, and B. Scrosati, Nanocomposite Polymer Electrolytes and Their Impact on the Lithium Battery Technology, Solid State Ionics, 2000, 135, p 47–52CrossRef F. Croce, L. Persi, F. Ronci, and B. Scrosati, Nanocomposite Polymer Electrolytes and Their Impact on the Lithium Battery Technology, Solid State Ionics, 2000, 135, p 47–52CrossRef
39.
go back to reference J. Sauniar, F. Alloin, J.Y. Sanchez, and J.G. Caillon, Thin and Flexible Lithium-Ion Batteries: Investigation of Polymer Electrolytes, J. Power Sources, 2003, 119-121, p 454–459CrossRef J. Sauniar, F. Alloin, J.Y. Sanchez, and J.G. Caillon, Thin and Flexible Lithium-Ion Batteries: Investigation of Polymer Electrolytes, J. Power Sources, 2003, 119-121, p 454–459CrossRef
40.
go back to reference R.S. Baldwin, Battery Separator Characterization and Evaluation Procedures for NASA’s Advanced Lithium-Ion Batteries, National Aeronautics and Space Administration, NASA, 2010, 216099, p 1–70 R.S. Baldwin, Battery Separator Characterization and Evaluation Procedures for NASA’s Advanced Lithium-Ion Batteries, National Aeronautics and Space Administration, NASA, 2010, 216099, p 1–70
41.
go back to reference K. Gao, X. Hu, C. Dai, and T. Yi, Crystal Structures of Electrospun PVDF Membranes and Its Separator Application for Rechargeable Lithium Metal Cell, Mater. Sci. Eng., B, 2006, 131, p 100–105CrossRef K. Gao, X. Hu, C. Dai, and T. Yi, Crystal Structures of Electrospun PVDF Membranes and Its Separator Application for Rechargeable Lithium Metal Cell, Mater. Sci. Eng., B, 2006, 131, p 100–105CrossRef
42.
go back to reference Q. Wu, J. Zhang, and S. Sang, Preparation of Alkaline Solid Polymer Electrolyte Based on PVA-TiO2-KOH-H2O and Its Performance in Zn-Ni Battery, J. Phys. Chem. Solids, 2008, 69, p 2691–2695CrossRef Q. Wu, J. Zhang, and S. Sang, Preparation of Alkaline Solid Polymer Electrolyte Based on PVA-TiO2-KOH-H2O and Its Performance in Zn-Ni Battery, J. Phys. Chem. Solids, 2008, 69, p 2691–2695CrossRef
Metadata
Title
Modeling of Ionic Conductivity Enhancement of LiClO4-PVA-C System by TiO2 Addition Using Complex Numerical Model of PDE
Authors
Mahvash Shokrollahi
Dariush Semnani
Mohammad Morshed
Behzad Rezaei
Mehdi Mirsoofian
Publication date
01-12-2013
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 12/2013
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-013-0686-9

Other articles of this Issue 12/2013

Journal of Materials Engineering and Performance 12/2013 Go to the issue

Premium Partners