Skip to main content
Top

2022 | OriginalPaper | Chapter

Modeling of Soft Tissue Deformation Using Mass Spring Method with Nonlinear Volume Force

Authors : Mohd Nadzeri Omar, Nasrul Hadi Johari, Mohd Hasnun Arif Hassan, Mohd Amzar Azizan

Published in: Human-Centered Technology for a Better Tomorrow

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Soft tissues displayed two phases of deformation, linear behavior during small deformation and nonlinear behavior during large deformation. Mass Spring Method (MSM) is one of the preferred methods for simulating soft tissue deformations. MSM-based models provide simpler calculations that allow real-time interaction. However, only a small number of MSM models are capable of simulating two phases of soft tissue deformation. This study introduces a new approach to modeling the deformation. The conventional MSM model, which is governed by Hooke’s law, is coupled with the nonlinear volume force defined using the conical spring methodology. The nonlinear volume force is triggered by a change in volume in the structure of the MSM model. With the implementation, at small deformation where volume change is also small, only the Hooke’s law equation is activated resulting in linear deformation. Whereas, during large deformation, nonlinear deformation occurs as a result of a large change in the MSM volume. Analyzes conducted show that the proposed model can simulate the two phases of deformation. The proposed model can also control each phase independently, which shows that it has a high degree of flexibility on modeling various of soft tissue deformation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Mozafary V, Payvandy P (2017) A novel method based on loop shape for simulating knitted fabric using mass spring model. Fibers Polym 18:533–541CrossRef Mozafary V, Payvandy P (2017) A novel method based on loop shape for simulating knitted fabric using mass spring model. Fibers Polym 18:533–541CrossRef
2.
go back to reference Kot M, Nagahashi H (2017) Mass spring models with adjustable Poisson’s ratio. Vis Comput 33:283–291CrossRef Kot M, Nagahashi H (2017) Mass spring models with adjustable Poisson’s ratio. Vis Comput 33:283–291CrossRef
3.
go back to reference Omar N, Zhong Y, Jazar RN, Subic A, Smith J, Shirinzadeh B (2015) Soft tissue modelling with conical springs. Bio-Med Mater Eng 26(s1):S207–S214CrossRef Omar N, Zhong Y, Jazar RN, Subic A, Smith J, Shirinzadeh B (2015) Soft tissue modelling with conical springs. Bio-Med Mater Eng 26(s1):S207–S214CrossRef
4.
go back to reference Fung YC (2011) Biomechanics: mechanical properties of living tissues. Springer, New York Fung YC (2011) Biomechanics: mechanical properties of living tissues. Springer, New York
5.
go back to reference Cooper L, Maddock S (1997) Preventing collapse within mass-spring-damper models of deformable objects. In: 5th international conference, Centre Europe, vol 2, pp 196–204 Cooper L, Maddock S (1997) Preventing collapse within mass-spring-damper models of deformable objects. In: 5th international conference, Centre Europe, vol 2, pp 196–204
6.
go back to reference Cui T, Song A, Wu J (2009) Simulation of a mass-spring model for global deformation. Front Electr Electron Eng China 4:78–82CrossRef Cui T, Song A, Wu J (2009) Simulation of a mass-spring model for global deformation. Front Electr Electron Eng China 4:78–82CrossRef
7.
go back to reference Luo Q, Xiao J (2007) Contact and deformation modeling for interactive environments. IEEE Trans Robot 23:416–430 Luo Q, Xiao J (2007) Contact and deformation modeling for interactive environments. IEEE Trans Robot 23:416–430
8.
go back to reference Teschner M, Girod S, Girod B (2000) Direct computation of nonlinear soft-tissue deformation. Vis Model Vis 22–24 Teschner M, Girod S, Girod B (2000) Direct computation of nonlinear soft-tissue deformation. Vis Model Vis 22–24
9.
go back to reference San-Vicente G, Aguinaga I, Celigueta JT (2012) Cubical mass-spring model design based on a tensile deformation test and nonlinear material model. IEEE Trans Visual Comput Graphics 18(2):228–241CrossRef San-Vicente G, Aguinaga I, Celigueta JT (2012) Cubical mass-spring model design based on a tensile deformation test and nonlinear material model. IEEE Trans Visual Comput Graphics 18(2):228–241CrossRef
10.
go back to reference Golec K, Palierne JF, Zara F, Nicolle S, Damiand G (2019) Hybrid 3D mass-spring system for simulation of isotropic materials with any Poisson’s ratio. Vis Comput 36:809–825CrossRef Golec K, Palierne JF, Zara F, Nicolle S, Damiand G (2019) Hybrid 3D mass-spring system for simulation of isotropic materials with any Poisson’s ratio. Vis Comput 36:809–825CrossRef
11.
go back to reference Shah R, Gupta A (2013) Non-linear cubic spring-mesh model for simulating biological tissues. Bio-Med Eng Sci 51:U–12 Shah R, Gupta A (2013) Non-linear cubic spring-mesh model for simulating biological tissues. Bio-Med Eng Sci 51:U–12
12.
go back to reference Cai Y, Chen L, Yu W, Zhou J, Wan F, Suh M, Kay Chow DH (2018) A piecewise mass-spring-damper model of the human breast. J Biomech 67:137–143 Cai Y, Chen L, Yu W, Zhou J, Wan F, Suh M, Kay Chow DH (2018) A piecewise mass-spring-damper model of the human breast. J Biomech 67:137–143
13.
go back to reference Basafa E, Farahmand F (2010) Real-time simulation of the nonlinear viscoelastic deformations of soft tissues. Int J Comput Assist Radiol Surg 6(3):297–307CrossRef Basafa E, Farahmand F (2010) Real-time simulation of the nonlinear viscoelastic deformations of soft tissues. Int J Comput Assist Radiol Surg 6(3):297–307CrossRef
14.
go back to reference García M, Gómez M, Ruiz O, Boulanger P (2007) Spring–particle model for hyperelastic cloth. Modelo Resorte-Particula Para Telas Hiperelasticas. Dyna 74:137–145 García M, Gómez M, Ruiz O, Boulanger P (2007) Spring–particle model for hyperelastic cloth. Modelo Resorte-Particula Para Telas Hiperelasticas. Dyna 74:137–145
15.
go back to reference Keeve E, Girod S, Kikinis R, Girod B (1998) Deformable modeling of facial tissue for craniofacial surgery simulation. Comput Aided Surg 3(5):228–238CrossRef Keeve E, Girod S, Kikinis R, Girod B (1998) Deformable modeling of facial tissue for craniofacial surgery simulation. Comput Aided Surg 3(5):228–238CrossRef
16.
go back to reference Meier U, López O, Monserrat C, Juan MC, Alcañiz M (2005) Real-time deformable models for surgery simulation: a survey. Comput Methods Programs Biomed 77(3):183–197CrossRef Meier U, López O, Monserrat C, Juan MC, Alcañiz M (2005) Real-time deformable models for surgery simulation: a survey. Comput Methods Programs Biomed 77(3):183–197CrossRef
17.
go back to reference Wahl AM (1963) Mechanical springs. McGraw-Hill, New York Wahl AM (1963) Mechanical springs. McGraw-Hill, New York
18.
go back to reference Rodriguez E, Paredes M, Sartor M (2006) Analytical behavior law for a constant pitch conical compression spring. J Mech Des 128(6):1352–1356CrossRef Rodriguez E, Paredes M, Sartor M (2006) Analytical behavior law for a constant pitch conical compression spring. J Mech Des 128(6):1352–1356CrossRef
19.
go back to reference Huangfu Z (2013) An improved mass-spring model for simulation of soft tissue deformation. J Inf Comput Sci 10(17):5551–5558CrossRef Huangfu Z (2013) An improved mass-spring model for simulation of soft tissue deformation. J Inf Comput Sci 10(17):5551–5558CrossRef
20.
go back to reference Ahmadian MT, Nikooyan AA (2006) Modeling and prediction of soft tissue directional stiffness using in-vitro force. Int J Sci Res 16:385–389 Ahmadian MT, Nikooyan AA (2006) Modeling and prediction of soft tissue directional stiffness using in-vitro force. Int J Sci Res 16:385–389
Metadata
Title
Modeling of Soft Tissue Deformation Using Mass Spring Method with Nonlinear Volume Force
Authors
Mohd Nadzeri Omar
Nasrul Hadi Johari
Mohd Hasnun Arif Hassan
Mohd Amzar Azizan
Copyright Year
2022
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-16-4115-2_6