Skip to main content
Top

2018 | OriginalPaper | Chapter

8. Modeling Precision Grip Force in Controls and Parkinson’s Disease Patients

Authors : Ankur Gupta, V. Srinivasa Chakravarthy

Published in: Computational Neuroscience Models of the Basal Ganglia

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Precision grip (PG) is the ability to hold an object between forefinger and thumb. Lifting objects in PG require delicate finger grip force (GF) control. Healthy controls modulate GF depending on size, weight, surface curvature, and friction. The difference between the actual GF generated and the minimum GF required to prevent the object from slipping is known as safety margin (SM). Published results suggest that OFF-medicated Parkinson’s disease (PD) patients generated average SM identical to that of controls with increased SM variance. PD patients on medication demonstrated higher average SM with SM variance identical to that of controls. Previously known computational models provide an insight on how the GF is generated and controlled but are unsuitable for modeling the GF in PD patients. In this chapter, we present a Go/Explore/NoGo (GEN) algorithm in a utility-based decision-making framework to explain the SM generated by healthy controls and PD patients both during ON and OFF medication. The study suggests that PD GF is a result of dopamine-level-dependent suboptimal decision-making-based force selection and the suitability of the GEN algorithm to model decision-making tasks.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Almecija, S., Moya-Sola, S., & Alba, D. M. (2010). Early origin for human-like precision grasping: A comparative study of pollical distal phalanges in fossil hominins. PLoS ONE, 5(7), e11727.CrossRef Almecija, S., Moya-Sola, S., & Alba, D. M. (2010). Early origin for human-like precision grasping: A comparative study of pollical distal phalanges in fossil hominins. PLoS ONE, 5(7), e11727.CrossRef
go back to reference Boecker, H., Lee, A., Mühlau, M., Ceballos-Baumann, A., Ritzl, A., Spilker, M., et al. (2005). Force level independent representations of predictive grip force–load force coupling: A PET activation study. Neuroimage, 25(1), 243–252.CrossRef Boecker, H., Lee, A., Mühlau, M., Ceballos-Baumann, A., Ritzl, A., Spilker, M., et al. (2005). Force level independent representations of predictive grip force–load force coupling: A PET activation study. Neuroimage, 25(1), 243–252.CrossRef
go back to reference Calvin, W. H. (1982). Did throwing stones shape hominid brain evolution? Ethology and Sociobiology, 3(3), 115–124.CrossRef Calvin, W. H. (1982). Did throwing stones shape hominid brain evolution? Ethology and Sociobiology, 3(3), 115–124.CrossRef
go back to reference Chakravarthy, V. S., Joseph, D., & Bapi, R. S. (2010). What do the basal ganglia do? A modeling perspective. Biological Cybernetics, 103(3), 237–253.MathSciNetCrossRefMATH Chakravarthy, V. S., Joseph, D., & Bapi, R. S. (2010). What do the basal ganglia do? A modeling perspective. Biological Cybernetics, 103(3), 237–253.MathSciNetCrossRefMATH
go back to reference d’Acremont, M., Lu, Z. L., Li, X., Van der Linden, M., & Bechara, A. (2009). Neural correlates of risk prediction error during reinforcement learning in humans. Neuroimage, 47(4), 1929–1939.CrossRef d’Acremont, M., Lu, Z. L., Li, X., Van der Linden, M., & Bechara, A. (2009). Neural correlates of risk prediction error during reinforcement learning in humans. Neuroimage, 47(4), 1929–1939.CrossRef
go back to reference Davare, M., Andres, M., Cosnard, G., Thonnard, J.-L., & Olivier, E. (2006). Dissociating the role of ventral and dorsal premotor cortex in precision grasping. The Journal of neuroscience, 26(8), 2260–2268.CrossRef Davare, M., Andres, M., Cosnard, G., Thonnard, J.-L., & Olivier, E. (2006). Dissociating the role of ventral and dorsal premotor cortex in precision grasping. The Journal of neuroscience, 26(8), 2260–2268.CrossRef
go back to reference Davidson, P. R., & Wolpert, D. M. (2003). Motor learning and prediction in a variable environment. Current Opinion in Neurobiology, 13(2), 232–237.CrossRef Davidson, P. R., & Wolpert, D. M. (2003). Motor learning and prediction in a variable environment. Current Opinion in Neurobiology, 13(2), 232–237.CrossRef
go back to reference de Gruijl, J. R., van der Smagt, P., & De Zeeuw, C. I. (2009). Anticipatory grip force control using a cerebellar model. Neuroscience, 162(3), 777–786.CrossRef de Gruijl, J. R., van der Smagt, P., & De Zeeuw, C. I. (2009). Anticipatory grip force control using a cerebellar model. Neuroscience, 162(3), 777–786.CrossRef
go back to reference Ehrsson, H. H., Fagergren, A., Johansson, R. S., & Forssberg, H. (2003). Evidence for the involvement of the posterior parietal cortex in coordination of fingertip forces for grasp stability in manipulation. Journal of Neurophysiology, 90(5), 2978–2986.CrossRef Ehrsson, H. H., Fagergren, A., Johansson, R. S., & Forssberg, H. (2003). Evidence for the involvement of the posterior parietal cortex in coordination of fingertip forces for grasp stability in manipulation. Journal of Neurophysiology, 90(5), 2978–2986.CrossRef
go back to reference Fagergren, A., Ekeberg, O., & Forssberg, H. (2000). Precision grip force dynamics: A system identification approach. Biomedical Engineering, IEEE Transactions on, 47(10), 1366–1375.CrossRef Fagergren, A., Ekeberg, O., & Forssberg, H. (2000). Precision grip force dynamics: A system identification approach. Biomedical Engineering, IEEE Transactions on, 47(10), 1366–1375.CrossRef
go back to reference Fagergren, A., Ekeberg, Ö., & Forssberg, H. (2003). Control strategies correcting inaccurately programmed fingertip forces: Model predictions derived from human behavior. Journal of Neurophysiology, 89(6), 2904–2916.CrossRef Fagergren, A., Ekeberg, Ö., & Forssberg, H. (2003). Control strategies correcting inaccurately programmed fingertip forces: Model predictions derived from human behavior. Journal of Neurophysiology, 89(6), 2904–2916.CrossRef
go back to reference Fellows, S. J., & Noth, J. (2004). Grip force abnormalities in de novo Parkinson’s disease. Movement Disorders, 19(5), 560–565.CrossRef Fellows, S. J., & Noth, J. (2004). Grip force abnormalities in de novo Parkinson’s disease. Movement Disorders, 19(5), 560–565.CrossRef
go back to reference Fellows, S. J., Noth, J., & Schwarz, M. (1998). Precision grip and Parkinson’s disease. Brain, 121(9), 1771–1784.CrossRef Fellows, S. J., Noth, J., & Schwarz, M. (1998). Precision grip and Parkinson’s disease. Brain, 121(9), 1771–1784.CrossRef
go back to reference Flanagan, J. R., Bowman, M. C., & Johansson, R. S. (2006). Control strategies in object manipulation tasks. Current Opinion in Neurobiology, 16(6), 650–659.CrossRef Flanagan, J. R., Bowman, M. C., & Johansson, R. S. (2006). Control strategies in object manipulation tasks. Current Opinion in Neurobiology, 16(6), 650–659.CrossRef
go back to reference Flanagan, J. R., Vetter, P., Johansson, R. S., & Wolpert, D. M. (2003). Prediction precedes control in motor learning. Current Biology, 13(2), 146–150.CrossRef Flanagan, J. R., Vetter, P., Johansson, R. S., & Wolpert, D. M. (2003). Prediction precedes control in motor learning. Current Biology, 13(2), 146–150.CrossRef
go back to reference Flanagan, J. R., & Wing, A. M. (1997). The role of internal models in motion planning and control: Evidence from grip force adjustments during movements of hand-held loads. The Journal of Neuroscience, 17(4), 1519–1528. Flanagan, J. R., & Wing, A. M. (1997). The role of internal models in motion planning and control: Evidence from grip force adjustments during movements of hand-held loads. The Journal of Neuroscience, 17(4), 1519–1528.
go back to reference Forssberg, H., Eliasson, A. C., Kinoshita, H., Johansson, R. S., & Westling, G. (1991). Development of human precision grip. I: Basic coordination of force. Experimental Brain Research, 85(2), 451–457.CrossRef Forssberg, H., Eliasson, A. C., Kinoshita, H., Johansson, R. S., & Westling, G. (1991). Development of human precision grip. I: Basic coordination of force. Experimental Brain Research, 85(2), 451–457.CrossRef
go back to reference Forssberg, H., Eliasson, A. C., Kinoshita, H., Westling, G., & Johansson, R. S. (1995). Development of human precision grip. IV. Tactile adaptation of isometric finger forces to the frictional condition. Experimental Brain Research, 104(2), 323–330.CrossRef Forssberg, H., Eliasson, A. C., Kinoshita, H., Westling, G., & Johansson, R. S. (1995). Development of human precision grip. IV. Tactile adaptation of isometric finger forces to the frictional condition. Experimental Brain Research, 104(2), 323–330.CrossRef
go back to reference Forssberg, H., Kinoshita, H., Eliasson, A. C., Johansson, R. S., Westling, G., & Gordon, A. M. (1992). Development of human precision grip. II. Anticipatory control of isometric forces targeted for object’s weight. Experimental Brain Research, 90(2), 393–398.CrossRef Forssberg, H., Kinoshita, H., Eliasson, A. C., Johansson, R. S., Westling, G., & Gordon, A. M. (1992). Development of human precision grip. II. Anticipatory control of isometric forces targeted for object’s weight. Experimental Brain Research, 90(2), 393–398.CrossRef
go back to reference Gao, J.-H., Parsons, L. M., Bower, J. M., Xiong, J., Li, J., & Fox, P. T. (1996). Cerebellum Implicated in Sensory Acquisition and Discrimination Rather Than Motor Control. Science, 272(5261), 545–547.CrossRef Gao, J.-H., Parsons, L. M., Bower, J. M., Xiong, J., Li, J., & Fox, P. T. (1996). Cerebellum Implicated in Sensory Acquisition and Discrimination Rather Than Motor Control. Science, 272(5261), 545–547.CrossRef
go back to reference Gordon, A. M., Forssberg, H., Johansson, R. S., Eliasson, A. C., & Westling, G. (1992). Development of human precision grip. III. Integration of visual size cues during the programming of isometric forces. Experimental Brain Research, 90(2), 399–403.CrossRef Gordon, A. M., Forssberg, H., Johansson, R. S., Eliasson, A. C., & Westling, G. (1992). Development of human precision grip. III. Integration of visual size cues during the programming of isometric forces. Experimental Brain Research, 90(2), 399–403.CrossRef
go back to reference Gordon, A. M., Forssberg, H., Johansson, R. S., & Westling, G. (1991). Visual size cues in the programming of manipulative forces during precision grip. Experimental Brain Research, 83(3), 477–482. Gordon, A. M., Forssberg, H., Johansson, R. S., & Westling, G. (1991). Visual size cues in the programming of manipulative forces during precision grip. Experimental Brain Research, 83(3), 477–482.
go back to reference Gordon, A. M., Quinn, L., Reilmann, R., & Marder, K. (2000). Coordination of prehensile forces during precision grip in Huntington’s disease. Experimental Neurology, 163(1), 136–148.CrossRef Gordon, A. M., Quinn, L., Reilmann, R., & Marder, K. (2000). Coordination of prehensile forces during precision grip in Huntington’s disease. Experimental Neurology, 163(1), 136–148.CrossRef
go back to reference Gupta, A., Avinash, M., Kandaswamy, D., Kumar, M., Devasahayam, S., Babu, K. S. & Chakravarthy, V. S. (2013a). Biologically inspired closed-loop model of precision grip lifting task. Advances in cognitive neurodynamics (III) (543–550) Dordrecht: Springer. Gupta, A., Avinash, M., Kandaswamy, D., Kumar, M., Devasahayam, S., Babu, K. S. & Chakravarthy, V. S. (2013a). Biologically inspired closed-loop model of precision grip lifting task. Advances in cognitive neurodynamics (III) (543–550) Dordrecht: Springer.
go back to reference Gupta, A., Avinash, M., Kandaswamy, D., Kumar, M., Devasahayam, S., Babu, K. S., et al. (2013b). Human precision grip performance under variable skin friction conditions: A modelling and experimental study. International Journal of Mind, Brain and Cognition. B. Publications. New Delhi, 4, 7–45. Gupta, A., Avinash, M., Kandaswamy, D., Kumar, M., Devasahayam, S., Babu, K. S., et al. (2013b). Human precision grip performance under variable skin friction conditions: A modelling and experimental study. International Journal of Mind, Brain and Cognition. B. Publications. New Delhi, 4, 7–45.
go back to reference Gupta, A., Balasubramani, P. P., & Chakravarthy, V. S. (2013c). Computational model of precision grip in Parkinson’s disease: A utility based approach. Frontiers in Computational Neuroscience, 7, 172.CrossRef Gupta, A., Balasubramani, P. P., & Chakravarthy, V. S. (2013c). Computational model of precision grip in Parkinson’s disease: A utility based approach. Frontiers in Computational Neuroscience, 7, 172.CrossRef
go back to reference Ingvarsson, P. E., Gordon, A. M., & Forssberg, H. (1997). Coordination of manipulative forces in Parkinson’s disease. Experimental Neurology, 145(2 Pt 1), 489–501.CrossRef Ingvarsson, P. E., Gordon, A. M., & Forssberg, H. (1997). Coordination of manipulative forces in Parkinson’s disease. Experimental Neurology, 145(2 Pt 1), 489–501.CrossRef
go back to reference Jenmalm, P., Goodwin, A. W., & Johansson, R. S. (1998). Control of grasp stability when humans lift objects with different surface curvatures. Journal of Neurophysiology, 79(4), 1643–1652.CrossRef Jenmalm, P., Goodwin, A. W., & Johansson, R. S. (1998). Control of grasp stability when humans lift objects with different surface curvatures. Journal of Neurophysiology, 79(4), 1643–1652.CrossRef
go back to reference Joel, D., Niv, Y., & Ruppin, E. (2002). Actor-critic models of the basal ganglia: New anatomical and computational perspectives. Neural Networks, 15(4–6), 535–547.CrossRef Joel, D., Niv, Y., & Ruppin, E. (2002). Actor-critic models of the basal ganglia: New anatomical and computational perspectives. Neural Networks, 15(4–6), 535–547.CrossRef
go back to reference Johansson, R. S., & Cole, K. J. (1994). Grasp stability during manipulative actions. Canadian Journal of Physiology and Pharmacology, 72(5), 511–524.CrossRef Johansson, R. S., & Cole, K. J. (1994). Grasp stability during manipulative actions. Canadian Journal of Physiology and Pharmacology, 72(5), 511–524.CrossRef
go back to reference Johansson, R. S., Riso, R., Hager, C., & Backstrom, L. (1992). Somatosensory control of precision grip during unpredictable pulling loads. I. Changes in load force amplitude. Experimental Brain Research, 89(1), 181–191.CrossRef Johansson, R. S., Riso, R., Hager, C., & Backstrom, L. (1992). Somatosensory control of precision grip during unpredictable pulling loads. I. Changes in load force amplitude. Experimental Brain Research, 89(1), 181–191.CrossRef
go back to reference Johansson, R. S., & Westling, G. (1984). Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Experimental Brain Research, 56(3), 550–564.CrossRef Johansson, R. S., & Westling, G. (1984). Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Experimental Brain Research, 56(3), 550–564.CrossRef
go back to reference Johansson, R. S., & Westling, G. (1988a). Coordinated isometric muscle commands adequately and erroneously programmed for the weight during lifting task with precision grip. Experimental Brain Research, 71(1), 59–71. Johansson, R. S., & Westling, G. (1988a). Coordinated isometric muscle commands adequately and erroneously programmed for the weight during lifting task with precision grip. Experimental Brain Research, 71(1), 59–71.
go back to reference Johansson, R. S., & Westling, G. (1988b). Programmed and triggered actions to rapid load changes during precision grip. Experimental Brain Research, 71(1), 72–86. Johansson, R. S., & Westling, G. (1988b). Programmed and triggered actions to rapid load changes during precision grip. Experimental Brain Research, 71(1), 72–86.
go back to reference Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47, 263–292.CrossRefMATH Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47, 263–292.CrossRefMATH
go back to reference Kalva, S. K., Rengaswamy, M., Chakravarthy, V. S., & Gupte, N. (2012). On the neural substrates for exploratory dynamics in basal ganglia: A model. Neural Networks, 32, 65–73.CrossRef Kalva, S. K., Rengaswamy, M., Chakravarthy, V. S., & Gupte, N. (2012). On the neural substrates for exploratory dynamics in basal ganglia: A model. Neural Networks, 32, 65–73.CrossRef
go back to reference Kandel, E. R., Schwartz, J. H., & Jessell, T. M. (2000). Principles of neural science, New York: McGraw-Hill. Kandel, E. R., Schwartz, J. H., & Jessell, T. M. (2000). Principles of neural science, New York: McGraw-Hill.
go back to reference Kim, I., & Inooka, H. (1994). Determination of grasp forces for robot hands based on human capabilities. Control Engineering Practice, 2(3), 415–420.CrossRef Kim, I., & Inooka, H. (1994). Determination of grasp forces for robot hands based on human capabilities. Control Engineering Practice, 2(3), 415–420.CrossRef
go back to reference Kim, I., Nakazawa, N., & Inooka, H. (2002). Control of a robot hand emulating human’s hand-over motion. Mechatronics, 12(1), 55–69.CrossRef Kim, I., Nakazawa, N., & Inooka, H. (2002). Control of a robot hand emulating human’s hand-over motion. Mechatronics, 12(1), 55–69.CrossRef
go back to reference Kinoshita, H., Oku, N., Hashikawa, K., & Nishimura, T. (2000). Functional brain areas used for the lifting of objects using a precision grip: A PET study. Brain Research, 857(1), 119–130.CrossRef Kinoshita, H., Oku, N., Hashikawa, K., & Nishimura, T. (2000). Functional brain areas used for the lifting of objects using a precision grip: A PET study. Brain Research, 857(1), 119–130.CrossRef
go back to reference Lakshminarayanan, V. R., Chen, M. K., & Santos, L. R. (2011). The evolution of decision-making under risk: Framing effects in monkey risk preferences. Journal of Experimental Social Psychology, 47(3), 689–693.CrossRef Lakshminarayanan, V. R., Chen, M. K., & Santos, L. R. (2011). The evolution of decision-making under risk: Framing effects in monkey risk preferences. Journal of Experimental Social Psychology, 47(3), 689–693.CrossRef
go back to reference Leathers, M. L., & Olson, C. R. (2012). In monkeys making value-based decisions, LIP neurons encode cue salience and not action value. Science, 338(6103), 132–135.CrossRef Leathers, M. L., & Olson, C. R. (2012). In monkeys making value-based decisions, LIP neurons encode cue salience and not action value. Science, 338(6103), 132–135.CrossRef
go back to reference Lemon, R. N., Johansson, R., & Westling, G. (1995). Corticospinal control during reach, grasp, and precision lift in man. The Journal of Neuroscience, 15(9), 6145–6156. Lemon, R. N., Johansson, R., & Westling, G. (1995). Corticospinal control during reach, grasp, and precision lift in man. The Journal of Neuroscience, 15(9), 6145–6156.
go back to reference Magdoom, K. N., Subramanian, D., Chakravarthy, V. S., Ravindran, B., Amari, S., & Meenakshisundaram, N. (2011). Modeling basal ganglia for understanding Parkinsonian reaching movements. Neural Computation, 23(2), 477–516.CrossRefMATH Magdoom, K. N., Subramanian, D., Chakravarthy, V. S., Ravindran, B., Amari, S., & Meenakshisundaram, N. (2011). Modeling basal ganglia for understanding Parkinsonian reaching movements. Neural Computation, 23(2), 477–516.CrossRefMATH
go back to reference Manto, M., Bower, J. M., Conforto, A. B., Delgado-García, J. M., da Guarda, S. N. F., Gerwig, M., et al. (2012). Consensus paper: Roles of the cerebellum in motor control—the diversity of ideas on cerebellar involvement in movement. The Cerebellum, 11(2), 457–487.CrossRef Manto, M., Bower, J. M., Conforto, A. B., Delgado-García, J. M., da Guarda, S. N. F., Gerwig, M., et al. (2012). Consensus paper: Roles of the cerebellum in motor control—the diversity of ideas on cerebellar involvement in movement. The Cerebellum, 11(2), 457–487.CrossRef
go back to reference Moustafa, A. A., Chakravarthy, S., Phillips, J. R., Crouse, J. J., Gupta, A., Frank, M. J., et al. (2016a). Interrelations between cognitive dysfunction and motor symptoms of Parkinson’s disease: Behavioral and neural studies. Reviews in the Neurosciences, 27(5), 535–548.CrossRef Moustafa, A. A., Chakravarthy, S., Phillips, J. R., Crouse, J. J., Gupta, A., Frank, M. J., et al. (2016a). Interrelations between cognitive dysfunction and motor symptoms of Parkinson’s disease: Behavioral and neural studies. Reviews in the Neurosciences, 27(5), 535–548.CrossRef
go back to reference Moustafa, A. A., Chakravarthy, S., Phillips, J. R., Gupta, A., Keri, S., Polner, B., et al. (2016b). Motor symptoms in Parkinson’s disease: A unified framework. Neuroscience and Biobehavioral Reviews, 68, 727–740.CrossRef Moustafa, A. A., Chakravarthy, S., Phillips, J. R., Gupta, A., Keri, S., Polner, B., et al. (2016b). Motor symptoms in Parkinson’s disease: A unified framework. Neuroscience and Biobehavioral Reviews, 68, 727–740.CrossRef
go back to reference Muir, R., & Lemon, R. (1983). Corticospinal neurons with a special role in precision grip. Brain Research, 261(2), 312–316.CrossRef Muir, R., & Lemon, R. (1983). Corticospinal neurons with a special role in precision grip. Brain Research, 261(2), 312–316.CrossRef
go back to reference Napier, J. R. (1956). The prehensile movements of the human hand. J Bone Joint Surg Br, 38-B(4), 902–913.CrossRef Napier, J. R. (1956). The prehensile movements of the human hand. J Bone Joint Surg Br, 38-B(4), 902–913.CrossRef
go back to reference Newman-Norlund, R. D., van Schie, H. T., van Zuijlen, A. M., & Bekkering, H. (2007). The mirror neuron system is more active during complementary compared with imitative action. Nature Neuroscience, 10(7), 817.CrossRef Newman-Norlund, R. D., van Schie, H. T., van Zuijlen, A. M., & Bekkering, H. (2007). The mirror neuron system is more active during complementary compared with imitative action. Nature Neuroscience, 10(7), 817.CrossRef
go back to reference Nowak, D. A., Glasauer, S., & Hermsdörfer, J. (2004). How predictive is grip force control in the complete absence of somatosensory feedback? Brain, 127(1), 182–192.CrossRef Nowak, D. A., Glasauer, S., & Hermsdörfer, J. (2004). How predictive is grip force control in the complete absence of somatosensory feedback? Brain, 127(1), 182–192.CrossRef
go back to reference Nowak, D. A., & Hermsdörfer, J. (2005). Grip force behavior during object manipulation in neurological disorders: Toward an objective evaluation of manual performance deficits. Movement Disorders, 20(1), 11–25.CrossRef Nowak, D. A., & Hermsdörfer, J. (2005). Grip force behavior during object manipulation in neurological disorders: Toward an objective evaluation of manual performance deficits. Movement Disorders, 20(1), 11–25.CrossRef
go back to reference Panger, M. A., Brooks, A. S., Richmond, B. G., & Wood, B. (2002). Older than the Oldowan? Rethinking the emergence of hominin tool use. Evolutionary Anthropology: Issues, News, and Reviews, 11(6), 235–245.CrossRef Panger, M. A., Brooks, A. S., Richmond, B. G., & Wood, B. (2002). Older than the Oldowan? Rethinking the emergence of hominin tool use. Evolutionary Anthropology: Issues, News, and Reviews, 11(6), 235–245.CrossRef
go back to reference Pope, P., Wing, A. M., Praamstra, P., & Miall, R. C. (2005). Force related activations in rhythmic sequence production. Neuroimage, 27(4), 909–918.CrossRef Pope, P., Wing, A. M., Praamstra, P., & Miall, R. C. (2005). Force related activations in rhythmic sequence production. Neuroimage, 27(4), 909–918.CrossRef
go back to reference Priyadharsini, B. P., Ravindran, B., & Chakravarthy, V. S. (2012). In: A. P. Villa, W. Duch, P. Érdi, F. Masulli & G. Palm (Eds.), Understanding the role of serotonin in basal ganglia through a unified model. Artificial Neural Networks and Machine Learning—ICANN 2012 (Vol. 7552, pp. 467–473). Springer Berlin Heidelberg. Priyadharsini, B. P., Ravindran, B., & Chakravarthy, V. S. (2012). In: A. P. Villa, W. Duch, P. Érdi, F. Masulli & G. Palm (Eds.), Understanding the role of serotonin in basal ganglia through a unified model. Artificial Neural Networks and Machine Learning—ICANN 2012 (Vol. 7552, pp. 467–473). Springer Berlin Heidelberg.
go back to reference Prodoehl, J., Yu, H., Wasson, P., Corcos, D. M., & Vaillancourt, D. E. (2008). Effects of visual and auditory feedback on sensorimotor circuits in the basal ganglia. Journal of Neurophysiology, 99(6), 3042–3051.CrossRef Prodoehl, J., Yu, H., Wasson, P., Corcos, D. M., & Vaillancourt, D. E. (2008). Effects of visual and auditory feedback on sensorimotor circuits in the basal ganglia. Journal of Neurophysiology, 99(6), 3042–3051.CrossRef
go back to reference Saels, P., Thonnard, J. L., Detrembleur, C., & Smith, A. M. (1999). Impact of the surface slipperiness of grasped objects on their subsequent acceleration. Neuropsychologia, 37(6), 751–756.CrossRef Saels, P., Thonnard, J. L., Detrembleur, C., & Smith, A. M. (1999). Impact of the surface slipperiness of grasped objects on their subsequent acceleration. Neuropsychologia, 37(6), 751–756.CrossRef
go back to reference Schmitz, C., Jenmalm, P., Ehrsson, H. H., & Forssberg, H. (2005). Brain activity during predictable and unpredictable weight changes when lifting objects. Journal of Neurophysiology, 93(3), 1498–1509.CrossRef Schmitz, C., Jenmalm, P., Ehrsson, H. H., & Forssberg, H. (2005). Brain activity during predictable and unpredictable weight changes when lifting objects. Journal of Neurophysiology, 93(3), 1498–1509.CrossRef
go back to reference Schultz, W. (2010). Dopamine signals for reward value and risk: Basic and recent data. Behavioral and Brain Functions, 6, 24.CrossRef Schultz, W. (2010). Dopamine signals for reward value and risk: Basic and recent data. Behavioral and Brain Functions, 6, 24.CrossRef
go back to reference Spraker, M. B., Yu, H., Corcos, D. M., & Vaillancourt, D. E. (2007). Role of individual basal ganglia nuclei in force amplitude generation. Journal of Neurophysiology, 98(2), 821–834.CrossRef Spraker, M. B., Yu, H., Corcos, D. M., & Vaillancourt, D. E. (2007). Role of individual basal ganglia nuclei in force amplitude generation. Journal of Neurophysiology, 98(2), 821–834.CrossRef
go back to reference Strick, P. L. (1976). Anatomical analysis of ventrolateral thalamic input to primate motor cortex. Journal of Neurophysiology, 39(5), 1020–1031.CrossRef Strick, P. L. (1976). Anatomical analysis of ventrolateral thalamic input to primate motor cortex. Journal of Neurophysiology, 39(5), 1020–1031.CrossRef
go back to reference Sukumar, D., Rengaswamy, M., & Chakravarthy, V. S. (2012). Modeling the contributions of Basal ganglia and Hippocampus to spatial navigation using reinforcement learning. PLoS ONE, 7(10), e47467.CrossRef Sukumar, D., Rengaswamy, M., & Chakravarthy, V. S. (2012). Modeling the contributions of Basal ganglia and Hippocampus to spatial navigation using reinforcement learning. PLoS ONE, 7(10), e47467.CrossRef
go back to reference Ulloa, A., Bullock, D., & Rhodes, B. J. (2003). Adaptive force generation for precision-grip lifting by a spectral timing model of the cerebellum. Neural Networks, 16(5–6), 521–528.CrossRef Ulloa, A., Bullock, D., & Rhodes, B. J. (2003). Adaptive force generation for precision-grip lifting by a spectral timing model of the cerebellum. Neural Networks, 16(5–6), 521–528.CrossRef
go back to reference Vaillancourt, D. E., Mayka, M. A., Thulborn, K. R., & Corcos, D. M. (2004). Subthalamic nucleus and internal globus pallidus scale with the rate of change of force production in humans. Neuroimage, 23(1), 175–186.CrossRef Vaillancourt, D. E., Mayka, M. A., Thulborn, K. R., & Corcos, D. M. (2004). Subthalamic nucleus and internal globus pallidus scale with the rate of change of force production in humans. Neuroimage, 23(1), 175–186.CrossRef
go back to reference Vaillancourt, D. E., Yu, H., Mayka, M. A., & Corcos, D. M. (2007). Role of the basal ganglia and frontal cortex in selecting and producing internally guided force pulses. Neuroimage, 36(3), 793–803.CrossRef Vaillancourt, D. E., Yu, H., Mayka, M. A., & Corcos, D. M. (2007). Role of the basal ganglia and frontal cortex in selecting and producing internally guided force pulses. Neuroimage, 36(3), 793–803.CrossRef
go back to reference Van Schaik, C. P., Deaner, R. O., & Merrill, M. Y. (1999). The conditions for tool use in primates: Implications for the evolution of material culture. Journal of Human Evolution, 36(6), 719–741.CrossRef Van Schaik, C. P., Deaner, R. O., & Merrill, M. Y. (1999). The conditions for tool use in primates: Implications for the evolution of material culture. Journal of Human Evolution, 36(6), 719–741.CrossRef
go back to reference Warren, W. H. (2006). The dynamics of perception and action. Psychological Review, 113(2), 358.CrossRef Warren, W. H. (2006). The dynamics of perception and action. Psychological Review, 113(2), 358.CrossRef
go back to reference Wasson, P., Prodoehl, J., Yu, H., Corcos, D., & Vaillancourt, D. (2007). Prediction and the basal ganglia. San Diego: Society for Neuroscience. Wasson, P., Prodoehl, J., Yu, H., Corcos, D., & Vaillancourt, D. (2007). Prediction and the basal ganglia. San Diego: Society for Neuroscience.
go back to reference Westling, G., & Johansson, R. S. (1984). Factors influencing the force control during precision grip. Experimental Brain Research, 53(2), 277–284.CrossRef Westling, G., & Johansson, R. S. (1984). Factors influencing the force control during precision grip. Experimental Brain Research, 53(2), 277–284.CrossRef
go back to reference Witney, A. G., Wing, A., Thonnard, J.-L., & Smith, A. M. (2004). The cutaneous contribution to adaptive precision grip. Trends in Neurosciences, 27(10), 637–643.CrossRef Witney, A. G., Wing, A., Thonnard, J.-L., & Smith, A. M. (2004). The cutaneous contribution to adaptive precision grip. Trends in Neurosciences, 27(10), 637–643.CrossRef
go back to reference Wolpert, D. M., & Flanagan, J. R. (2001). Motor prediction. Current Biology, 11(18), R729–R732.CrossRef Wolpert, D. M., & Flanagan, J. R. (2001). Motor prediction. Current Biology, 11(18), R729–R732.CrossRef
go back to reference Wolpert, D. M., Ghahramani, Z., & Jordan, M. I. (1995). An internal model for sensorimotor integration. Science, 269(5232), 1880–1882.CrossRef Wolpert, D. M., Ghahramani, Z., & Jordan, M. I. (1995). An internal model for sensorimotor integration. Science, 269(5232), 1880–1882.CrossRef
go back to reference Wolpert, D. M., & Landy, M. S. (2012). Motor control is decision-making. Current Opinion in Neurobiology, 22(6), 996–1003.CrossRef Wolpert, D. M., & Landy, M. S. (2012). Motor control is decision-making. Current Opinion in Neurobiology, 22(6), 996–1003.CrossRef
go back to reference Wu, S. W., Delgado, M. R., & Maloney, L. T. (2009). Economic decision-making compared with an equivalent motor task. Proc Natl Acad Sci U S A, 106(15), 6088–6093.CrossRef Wu, S. W., Delgado, M. R., & Maloney, L. T. (2009). Economic decision-making compared with an equivalent motor task. Proc Natl Acad Sci U S A, 106(15), 6088–6093.CrossRef
go back to reference Wu, T., & Hallett, M. (2013). The cerebellum in Parkinson’s disease. Brain, 136(3), 696–709.CrossRef Wu, T., & Hallett, M. (2013). The cerebellum in Parkinson’s disease. Brain, 136(3), 696–709.CrossRef
go back to reference Zhang, H., Maddula, S. V., & Maloney, L. T. (2010). Planning routes across economic terrains: Maximizing utility, following heuristics. Front Psychol, 1, 214.CrossRef Zhang, H., Maddula, S. V., & Maloney, L. T. (2010). Planning routes across economic terrains: Maximizing utility, following heuristics. Front Psychol, 1, 214.CrossRef
Metadata
Title
Modeling Precision Grip Force in Controls and Parkinson’s Disease Patients
Authors
Ankur Gupta
V. Srinivasa Chakravarthy
Copyright Year
2018
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-8494-2_8