Skip to main content

2018 | OriginalPaper | Buchkapitel

8. Modeling Precision Grip Force in Controls and Parkinson’s Disease Patients

verfasst von : Ankur Gupta, V. Srinivasa Chakravarthy

Erschienen in: Computational Neuroscience Models of the Basal Ganglia

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Precision grip (PG) is the ability to hold an object between forefinger and thumb. Lifting objects in PG require delicate finger grip force (GF) control. Healthy controls modulate GF depending on size, weight, surface curvature, and friction. The difference between the actual GF generated and the minimum GF required to prevent the object from slipping is known as safety margin (SM). Published results suggest that OFF-medicated Parkinson’s disease (PD) patients generated average SM identical to that of controls with increased SM variance. PD patients on medication demonstrated higher average SM with SM variance identical to that of controls. Previously known computational models provide an insight on how the GF is generated and controlled but are unsuitable for modeling the GF in PD patients. In this chapter, we present a Go/Explore/NoGo (GEN) algorithm in a utility-based decision-making framework to explain the SM generated by healthy controls and PD patients both during ON and OFF medication. The study suggests that PD GF is a result of dopamine-level-dependent suboptimal decision-making-based force selection and the suitability of the GEN algorithm to model decision-making tasks.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Almecija, S., Moya-Sola, S., & Alba, D. M. (2010). Early origin for human-like precision grasping: A comparative study of pollical distal phalanges in fossil hominins. PLoS ONE, 5(7), e11727.CrossRef Almecija, S., Moya-Sola, S., & Alba, D. M. (2010). Early origin for human-like precision grasping: A comparative study of pollical distal phalanges in fossil hominins. PLoS ONE, 5(7), e11727.CrossRef
Zurück zum Zitat Boecker, H., Lee, A., Mühlau, M., Ceballos-Baumann, A., Ritzl, A., Spilker, M., et al. (2005). Force level independent representations of predictive grip force–load force coupling: A PET activation study. Neuroimage, 25(1), 243–252.CrossRef Boecker, H., Lee, A., Mühlau, M., Ceballos-Baumann, A., Ritzl, A., Spilker, M., et al. (2005). Force level independent representations of predictive grip force–load force coupling: A PET activation study. Neuroimage, 25(1), 243–252.CrossRef
Zurück zum Zitat Calvin, W. H. (1982). Did throwing stones shape hominid brain evolution? Ethology and Sociobiology, 3(3), 115–124.CrossRef Calvin, W. H. (1982). Did throwing stones shape hominid brain evolution? Ethology and Sociobiology, 3(3), 115–124.CrossRef
Zurück zum Zitat Chakravarthy, V. S., Joseph, D., & Bapi, R. S. (2010). What do the basal ganglia do? A modeling perspective. Biological Cybernetics, 103(3), 237–253.MathSciNetCrossRefMATH Chakravarthy, V. S., Joseph, D., & Bapi, R. S. (2010). What do the basal ganglia do? A modeling perspective. Biological Cybernetics, 103(3), 237–253.MathSciNetCrossRefMATH
Zurück zum Zitat d’Acremont, M., Lu, Z. L., Li, X., Van der Linden, M., & Bechara, A. (2009). Neural correlates of risk prediction error during reinforcement learning in humans. Neuroimage, 47(4), 1929–1939.CrossRef d’Acremont, M., Lu, Z. L., Li, X., Van der Linden, M., & Bechara, A. (2009). Neural correlates of risk prediction error during reinforcement learning in humans. Neuroimage, 47(4), 1929–1939.CrossRef
Zurück zum Zitat Davare, M., Andres, M., Cosnard, G., Thonnard, J.-L., & Olivier, E. (2006). Dissociating the role of ventral and dorsal premotor cortex in precision grasping. The Journal of neuroscience, 26(8), 2260–2268.CrossRef Davare, M., Andres, M., Cosnard, G., Thonnard, J.-L., & Olivier, E. (2006). Dissociating the role of ventral and dorsal premotor cortex in precision grasping. The Journal of neuroscience, 26(8), 2260–2268.CrossRef
Zurück zum Zitat Davidson, P. R., & Wolpert, D. M. (2003). Motor learning and prediction in a variable environment. Current Opinion in Neurobiology, 13(2), 232–237.CrossRef Davidson, P. R., & Wolpert, D. M. (2003). Motor learning and prediction in a variable environment. Current Opinion in Neurobiology, 13(2), 232–237.CrossRef
Zurück zum Zitat de Gruijl, J. R., van der Smagt, P., & De Zeeuw, C. I. (2009). Anticipatory grip force control using a cerebellar model. Neuroscience, 162(3), 777–786.CrossRef de Gruijl, J. R., van der Smagt, P., & De Zeeuw, C. I. (2009). Anticipatory grip force control using a cerebellar model. Neuroscience, 162(3), 777–786.CrossRef
Zurück zum Zitat Ehrsson, H. H., Fagergren, A., Johansson, R. S., & Forssberg, H. (2003). Evidence for the involvement of the posterior parietal cortex in coordination of fingertip forces for grasp stability in manipulation. Journal of Neurophysiology, 90(5), 2978–2986.CrossRef Ehrsson, H. H., Fagergren, A., Johansson, R. S., & Forssberg, H. (2003). Evidence for the involvement of the posterior parietal cortex in coordination of fingertip forces for grasp stability in manipulation. Journal of Neurophysiology, 90(5), 2978–2986.CrossRef
Zurück zum Zitat Fagergren, A., Ekeberg, O., & Forssberg, H. (2000). Precision grip force dynamics: A system identification approach. Biomedical Engineering, IEEE Transactions on, 47(10), 1366–1375.CrossRef Fagergren, A., Ekeberg, O., & Forssberg, H. (2000). Precision grip force dynamics: A system identification approach. Biomedical Engineering, IEEE Transactions on, 47(10), 1366–1375.CrossRef
Zurück zum Zitat Fagergren, A., Ekeberg, Ö., & Forssberg, H. (2003). Control strategies correcting inaccurately programmed fingertip forces: Model predictions derived from human behavior. Journal of Neurophysiology, 89(6), 2904–2916.CrossRef Fagergren, A., Ekeberg, Ö., & Forssberg, H. (2003). Control strategies correcting inaccurately programmed fingertip forces: Model predictions derived from human behavior. Journal of Neurophysiology, 89(6), 2904–2916.CrossRef
Zurück zum Zitat Fellows, S. J., & Noth, J. (2004). Grip force abnormalities in de novo Parkinson’s disease. Movement Disorders, 19(5), 560–565.CrossRef Fellows, S. J., & Noth, J. (2004). Grip force abnormalities in de novo Parkinson’s disease. Movement Disorders, 19(5), 560–565.CrossRef
Zurück zum Zitat Fellows, S. J., Noth, J., & Schwarz, M. (1998). Precision grip and Parkinson’s disease. Brain, 121(9), 1771–1784.CrossRef Fellows, S. J., Noth, J., & Schwarz, M. (1998). Precision grip and Parkinson’s disease. Brain, 121(9), 1771–1784.CrossRef
Zurück zum Zitat Flanagan, J. R., Bowman, M. C., & Johansson, R. S. (2006). Control strategies in object manipulation tasks. Current Opinion in Neurobiology, 16(6), 650–659.CrossRef Flanagan, J. R., Bowman, M. C., & Johansson, R. S. (2006). Control strategies in object manipulation tasks. Current Opinion in Neurobiology, 16(6), 650–659.CrossRef
Zurück zum Zitat Flanagan, J. R., Vetter, P., Johansson, R. S., & Wolpert, D. M. (2003). Prediction precedes control in motor learning. Current Biology, 13(2), 146–150.CrossRef Flanagan, J. R., Vetter, P., Johansson, R. S., & Wolpert, D. M. (2003). Prediction precedes control in motor learning. Current Biology, 13(2), 146–150.CrossRef
Zurück zum Zitat Flanagan, J. R., & Wing, A. M. (1997). The role of internal models in motion planning and control: Evidence from grip force adjustments during movements of hand-held loads. The Journal of Neuroscience, 17(4), 1519–1528. Flanagan, J. R., & Wing, A. M. (1997). The role of internal models in motion planning and control: Evidence from grip force adjustments during movements of hand-held loads. The Journal of Neuroscience, 17(4), 1519–1528.
Zurück zum Zitat Forssberg, H., Eliasson, A. C., Kinoshita, H., Johansson, R. S., & Westling, G. (1991). Development of human precision grip. I: Basic coordination of force. Experimental Brain Research, 85(2), 451–457.CrossRef Forssberg, H., Eliasson, A. C., Kinoshita, H., Johansson, R. S., & Westling, G. (1991). Development of human precision grip. I: Basic coordination of force. Experimental Brain Research, 85(2), 451–457.CrossRef
Zurück zum Zitat Forssberg, H., Eliasson, A. C., Kinoshita, H., Westling, G., & Johansson, R. S. (1995). Development of human precision grip. IV. Tactile adaptation of isometric finger forces to the frictional condition. Experimental Brain Research, 104(2), 323–330.CrossRef Forssberg, H., Eliasson, A. C., Kinoshita, H., Westling, G., & Johansson, R. S. (1995). Development of human precision grip. IV. Tactile adaptation of isometric finger forces to the frictional condition. Experimental Brain Research, 104(2), 323–330.CrossRef
Zurück zum Zitat Forssberg, H., Kinoshita, H., Eliasson, A. C., Johansson, R. S., Westling, G., & Gordon, A. M. (1992). Development of human precision grip. II. Anticipatory control of isometric forces targeted for object’s weight. Experimental Brain Research, 90(2), 393–398.CrossRef Forssberg, H., Kinoshita, H., Eliasson, A. C., Johansson, R. S., Westling, G., & Gordon, A. M. (1992). Development of human precision grip. II. Anticipatory control of isometric forces targeted for object’s weight. Experimental Brain Research, 90(2), 393–398.CrossRef
Zurück zum Zitat Gao, J.-H., Parsons, L. M., Bower, J. M., Xiong, J., Li, J., & Fox, P. T. (1996). Cerebellum Implicated in Sensory Acquisition and Discrimination Rather Than Motor Control. Science, 272(5261), 545–547.CrossRef Gao, J.-H., Parsons, L. M., Bower, J. M., Xiong, J., Li, J., & Fox, P. T. (1996). Cerebellum Implicated in Sensory Acquisition and Discrimination Rather Than Motor Control. Science, 272(5261), 545–547.CrossRef
Zurück zum Zitat Gordon, A. M., Forssberg, H., Johansson, R. S., Eliasson, A. C., & Westling, G. (1992). Development of human precision grip. III. Integration of visual size cues during the programming of isometric forces. Experimental Brain Research, 90(2), 399–403.CrossRef Gordon, A. M., Forssberg, H., Johansson, R. S., Eliasson, A. C., & Westling, G. (1992). Development of human precision grip. III. Integration of visual size cues during the programming of isometric forces. Experimental Brain Research, 90(2), 399–403.CrossRef
Zurück zum Zitat Gordon, A. M., Forssberg, H., Johansson, R. S., & Westling, G. (1991). Visual size cues in the programming of manipulative forces during precision grip. Experimental Brain Research, 83(3), 477–482. Gordon, A. M., Forssberg, H., Johansson, R. S., & Westling, G. (1991). Visual size cues in the programming of manipulative forces during precision grip. Experimental Brain Research, 83(3), 477–482.
Zurück zum Zitat Gordon, A. M., Quinn, L., Reilmann, R., & Marder, K. (2000). Coordination of prehensile forces during precision grip in Huntington’s disease. Experimental Neurology, 163(1), 136–148.CrossRef Gordon, A. M., Quinn, L., Reilmann, R., & Marder, K. (2000). Coordination of prehensile forces during precision grip in Huntington’s disease. Experimental Neurology, 163(1), 136–148.CrossRef
Zurück zum Zitat Gupta, A., Avinash, M., Kandaswamy, D., Kumar, M., Devasahayam, S., Babu, K. S. & Chakravarthy, V. S. (2013a). Biologically inspired closed-loop model of precision grip lifting task. Advances in cognitive neurodynamics (III) (543–550) Dordrecht: Springer. Gupta, A., Avinash, M., Kandaswamy, D., Kumar, M., Devasahayam, S., Babu, K. S. & Chakravarthy, V. S. (2013a). Biologically inspired closed-loop model of precision grip lifting task. Advances in cognitive neurodynamics (III) (543–550) Dordrecht: Springer.
Zurück zum Zitat Gupta, A., Avinash, M., Kandaswamy, D., Kumar, M., Devasahayam, S., Babu, K. S., et al. (2013b). Human precision grip performance under variable skin friction conditions: A modelling and experimental study. International Journal of Mind, Brain and Cognition. B. Publications. New Delhi, 4, 7–45. Gupta, A., Avinash, M., Kandaswamy, D., Kumar, M., Devasahayam, S., Babu, K. S., et al. (2013b). Human precision grip performance under variable skin friction conditions: A modelling and experimental study. International Journal of Mind, Brain and Cognition. B. Publications. New Delhi, 4, 7–45.
Zurück zum Zitat Gupta, A., Balasubramani, P. P., & Chakravarthy, V. S. (2013c). Computational model of precision grip in Parkinson’s disease: A utility based approach. Frontiers in Computational Neuroscience, 7, 172.CrossRef Gupta, A., Balasubramani, P. P., & Chakravarthy, V. S. (2013c). Computational model of precision grip in Parkinson’s disease: A utility based approach. Frontiers in Computational Neuroscience, 7, 172.CrossRef
Zurück zum Zitat Ingvarsson, P. E., Gordon, A. M., & Forssberg, H. (1997). Coordination of manipulative forces in Parkinson’s disease. Experimental Neurology, 145(2 Pt 1), 489–501.CrossRef Ingvarsson, P. E., Gordon, A. M., & Forssberg, H. (1997). Coordination of manipulative forces in Parkinson’s disease. Experimental Neurology, 145(2 Pt 1), 489–501.CrossRef
Zurück zum Zitat Jenmalm, P., Goodwin, A. W., & Johansson, R. S. (1998). Control of grasp stability when humans lift objects with different surface curvatures. Journal of Neurophysiology, 79(4), 1643–1652.CrossRef Jenmalm, P., Goodwin, A. W., & Johansson, R. S. (1998). Control of grasp stability when humans lift objects with different surface curvatures. Journal of Neurophysiology, 79(4), 1643–1652.CrossRef
Zurück zum Zitat Joel, D., Niv, Y., & Ruppin, E. (2002). Actor-critic models of the basal ganglia: New anatomical and computational perspectives. Neural Networks, 15(4–6), 535–547.CrossRef Joel, D., Niv, Y., & Ruppin, E. (2002). Actor-critic models of the basal ganglia: New anatomical and computational perspectives. Neural Networks, 15(4–6), 535–547.CrossRef
Zurück zum Zitat Johansson, R. S., & Cole, K. J. (1994). Grasp stability during manipulative actions. Canadian Journal of Physiology and Pharmacology, 72(5), 511–524.CrossRef Johansson, R. S., & Cole, K. J. (1994). Grasp stability during manipulative actions. Canadian Journal of Physiology and Pharmacology, 72(5), 511–524.CrossRef
Zurück zum Zitat Johansson, R. S., Riso, R., Hager, C., & Backstrom, L. (1992). Somatosensory control of precision grip during unpredictable pulling loads. I. Changes in load force amplitude. Experimental Brain Research, 89(1), 181–191.CrossRef Johansson, R. S., Riso, R., Hager, C., & Backstrom, L. (1992). Somatosensory control of precision grip during unpredictable pulling loads. I. Changes in load force amplitude. Experimental Brain Research, 89(1), 181–191.CrossRef
Zurück zum Zitat Johansson, R. S., & Westling, G. (1984). Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Experimental Brain Research, 56(3), 550–564.CrossRef Johansson, R. S., & Westling, G. (1984). Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Experimental Brain Research, 56(3), 550–564.CrossRef
Zurück zum Zitat Johansson, R. S., & Westling, G. (1988a). Coordinated isometric muscle commands adequately and erroneously programmed for the weight during lifting task with precision grip. Experimental Brain Research, 71(1), 59–71. Johansson, R. S., & Westling, G. (1988a). Coordinated isometric muscle commands adequately and erroneously programmed for the weight during lifting task with precision grip. Experimental Brain Research, 71(1), 59–71.
Zurück zum Zitat Johansson, R. S., & Westling, G. (1988b). Programmed and triggered actions to rapid load changes during precision grip. Experimental Brain Research, 71(1), 72–86. Johansson, R. S., & Westling, G. (1988b). Programmed and triggered actions to rapid load changes during precision grip. Experimental Brain Research, 71(1), 72–86.
Zurück zum Zitat Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47, 263–292.CrossRefMATH Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47, 263–292.CrossRefMATH
Zurück zum Zitat Kalva, S. K., Rengaswamy, M., Chakravarthy, V. S., & Gupte, N. (2012). On the neural substrates for exploratory dynamics in basal ganglia: A model. Neural Networks, 32, 65–73.CrossRef Kalva, S. K., Rengaswamy, M., Chakravarthy, V. S., & Gupte, N. (2012). On the neural substrates for exploratory dynamics in basal ganglia: A model. Neural Networks, 32, 65–73.CrossRef
Zurück zum Zitat Kandel, E. R., Schwartz, J. H., & Jessell, T. M. (2000). Principles of neural science, New York: McGraw-Hill. Kandel, E. R., Schwartz, J. H., & Jessell, T. M. (2000). Principles of neural science, New York: McGraw-Hill.
Zurück zum Zitat Kim, I., & Inooka, H. (1994). Determination of grasp forces for robot hands based on human capabilities. Control Engineering Practice, 2(3), 415–420.CrossRef Kim, I., & Inooka, H. (1994). Determination of grasp forces for robot hands based on human capabilities. Control Engineering Practice, 2(3), 415–420.CrossRef
Zurück zum Zitat Kim, I., Nakazawa, N., & Inooka, H. (2002). Control of a robot hand emulating human’s hand-over motion. Mechatronics, 12(1), 55–69.CrossRef Kim, I., Nakazawa, N., & Inooka, H. (2002). Control of a robot hand emulating human’s hand-over motion. Mechatronics, 12(1), 55–69.CrossRef
Zurück zum Zitat Kinoshita, H., Oku, N., Hashikawa, K., & Nishimura, T. (2000). Functional brain areas used for the lifting of objects using a precision grip: A PET study. Brain Research, 857(1), 119–130.CrossRef Kinoshita, H., Oku, N., Hashikawa, K., & Nishimura, T. (2000). Functional brain areas used for the lifting of objects using a precision grip: A PET study. Brain Research, 857(1), 119–130.CrossRef
Zurück zum Zitat Lakshminarayanan, V. R., Chen, M. K., & Santos, L. R. (2011). The evolution of decision-making under risk: Framing effects in monkey risk preferences. Journal of Experimental Social Psychology, 47(3), 689–693.CrossRef Lakshminarayanan, V. R., Chen, M. K., & Santos, L. R. (2011). The evolution of decision-making under risk: Framing effects in monkey risk preferences. Journal of Experimental Social Psychology, 47(3), 689–693.CrossRef
Zurück zum Zitat Leathers, M. L., & Olson, C. R. (2012). In monkeys making value-based decisions, LIP neurons encode cue salience and not action value. Science, 338(6103), 132–135.CrossRef Leathers, M. L., & Olson, C. R. (2012). In monkeys making value-based decisions, LIP neurons encode cue salience and not action value. Science, 338(6103), 132–135.CrossRef
Zurück zum Zitat Lemon, R. N., Johansson, R., & Westling, G. (1995). Corticospinal control during reach, grasp, and precision lift in man. The Journal of Neuroscience, 15(9), 6145–6156. Lemon, R. N., Johansson, R., & Westling, G. (1995). Corticospinal control during reach, grasp, and precision lift in man. The Journal of Neuroscience, 15(9), 6145–6156.
Zurück zum Zitat Magdoom, K. N., Subramanian, D., Chakravarthy, V. S., Ravindran, B., Amari, S., & Meenakshisundaram, N. (2011). Modeling basal ganglia for understanding Parkinsonian reaching movements. Neural Computation, 23(2), 477–516.CrossRefMATH Magdoom, K. N., Subramanian, D., Chakravarthy, V. S., Ravindran, B., Amari, S., & Meenakshisundaram, N. (2011). Modeling basal ganglia for understanding Parkinsonian reaching movements. Neural Computation, 23(2), 477–516.CrossRefMATH
Zurück zum Zitat Manto, M., Bower, J. M., Conforto, A. B., Delgado-García, J. M., da Guarda, S. N. F., Gerwig, M., et al. (2012). Consensus paper: Roles of the cerebellum in motor control—the diversity of ideas on cerebellar involvement in movement. The Cerebellum, 11(2), 457–487.CrossRef Manto, M., Bower, J. M., Conforto, A. B., Delgado-García, J. M., da Guarda, S. N. F., Gerwig, M., et al. (2012). Consensus paper: Roles of the cerebellum in motor control—the diversity of ideas on cerebellar involvement in movement. The Cerebellum, 11(2), 457–487.CrossRef
Zurück zum Zitat Moustafa, A. A., Chakravarthy, S., Phillips, J. R., Crouse, J. J., Gupta, A., Frank, M. J., et al. (2016a). Interrelations between cognitive dysfunction and motor symptoms of Parkinson’s disease: Behavioral and neural studies. Reviews in the Neurosciences, 27(5), 535–548.CrossRef Moustafa, A. A., Chakravarthy, S., Phillips, J. R., Crouse, J. J., Gupta, A., Frank, M. J., et al. (2016a). Interrelations between cognitive dysfunction and motor symptoms of Parkinson’s disease: Behavioral and neural studies. Reviews in the Neurosciences, 27(5), 535–548.CrossRef
Zurück zum Zitat Moustafa, A. A., Chakravarthy, S., Phillips, J. R., Gupta, A., Keri, S., Polner, B., et al. (2016b). Motor symptoms in Parkinson’s disease: A unified framework. Neuroscience and Biobehavioral Reviews, 68, 727–740.CrossRef Moustafa, A. A., Chakravarthy, S., Phillips, J. R., Gupta, A., Keri, S., Polner, B., et al. (2016b). Motor symptoms in Parkinson’s disease: A unified framework. Neuroscience and Biobehavioral Reviews, 68, 727–740.CrossRef
Zurück zum Zitat Muir, R., & Lemon, R. (1983). Corticospinal neurons with a special role in precision grip. Brain Research, 261(2), 312–316.CrossRef Muir, R., & Lemon, R. (1983). Corticospinal neurons with a special role in precision grip. Brain Research, 261(2), 312–316.CrossRef
Zurück zum Zitat Napier, J. R. (1956). The prehensile movements of the human hand. J Bone Joint Surg Br, 38-B(4), 902–913.CrossRef Napier, J. R. (1956). The prehensile movements of the human hand. J Bone Joint Surg Br, 38-B(4), 902–913.CrossRef
Zurück zum Zitat Newman-Norlund, R. D., van Schie, H. T., van Zuijlen, A. M., & Bekkering, H. (2007). The mirror neuron system is more active during complementary compared with imitative action. Nature Neuroscience, 10(7), 817.CrossRef Newman-Norlund, R. D., van Schie, H. T., van Zuijlen, A. M., & Bekkering, H. (2007). The mirror neuron system is more active during complementary compared with imitative action. Nature Neuroscience, 10(7), 817.CrossRef
Zurück zum Zitat Nowak, D. A., Glasauer, S., & Hermsdörfer, J. (2004). How predictive is grip force control in the complete absence of somatosensory feedback? Brain, 127(1), 182–192.CrossRef Nowak, D. A., Glasauer, S., & Hermsdörfer, J. (2004). How predictive is grip force control in the complete absence of somatosensory feedback? Brain, 127(1), 182–192.CrossRef
Zurück zum Zitat Nowak, D. A., & Hermsdörfer, J. (2005). Grip force behavior during object manipulation in neurological disorders: Toward an objective evaluation of manual performance deficits. Movement Disorders, 20(1), 11–25.CrossRef Nowak, D. A., & Hermsdörfer, J. (2005). Grip force behavior during object manipulation in neurological disorders: Toward an objective evaluation of manual performance deficits. Movement Disorders, 20(1), 11–25.CrossRef
Zurück zum Zitat Panger, M. A., Brooks, A. S., Richmond, B. G., & Wood, B. (2002). Older than the Oldowan? Rethinking the emergence of hominin tool use. Evolutionary Anthropology: Issues, News, and Reviews, 11(6), 235–245.CrossRef Panger, M. A., Brooks, A. S., Richmond, B. G., & Wood, B. (2002). Older than the Oldowan? Rethinking the emergence of hominin tool use. Evolutionary Anthropology: Issues, News, and Reviews, 11(6), 235–245.CrossRef
Zurück zum Zitat Pope, P., Wing, A. M., Praamstra, P., & Miall, R. C. (2005). Force related activations in rhythmic sequence production. Neuroimage, 27(4), 909–918.CrossRef Pope, P., Wing, A. M., Praamstra, P., & Miall, R. C. (2005). Force related activations in rhythmic sequence production. Neuroimage, 27(4), 909–918.CrossRef
Zurück zum Zitat Priyadharsini, B. P., Ravindran, B., & Chakravarthy, V. S. (2012). In: A. P. Villa, W. Duch, P. Érdi, F. Masulli & G. Palm (Eds.), Understanding the role of serotonin in basal ganglia through a unified model. Artificial Neural Networks and Machine Learning—ICANN 2012 (Vol. 7552, pp. 467–473). Springer Berlin Heidelberg. Priyadharsini, B. P., Ravindran, B., & Chakravarthy, V. S. (2012). In: A. P. Villa, W. Duch, P. Érdi, F. Masulli & G. Palm (Eds.), Understanding the role of serotonin in basal ganglia through a unified model. Artificial Neural Networks and Machine Learning—ICANN 2012 (Vol. 7552, pp. 467–473). Springer Berlin Heidelberg.
Zurück zum Zitat Prodoehl, J., Yu, H., Wasson, P., Corcos, D. M., & Vaillancourt, D. E. (2008). Effects of visual and auditory feedback on sensorimotor circuits in the basal ganglia. Journal of Neurophysiology, 99(6), 3042–3051.CrossRef Prodoehl, J., Yu, H., Wasson, P., Corcos, D. M., & Vaillancourt, D. E. (2008). Effects of visual and auditory feedback on sensorimotor circuits in the basal ganglia. Journal of Neurophysiology, 99(6), 3042–3051.CrossRef
Zurück zum Zitat Saels, P., Thonnard, J. L., Detrembleur, C., & Smith, A. M. (1999). Impact of the surface slipperiness of grasped objects on their subsequent acceleration. Neuropsychologia, 37(6), 751–756.CrossRef Saels, P., Thonnard, J. L., Detrembleur, C., & Smith, A. M. (1999). Impact of the surface slipperiness of grasped objects on their subsequent acceleration. Neuropsychologia, 37(6), 751–756.CrossRef
Zurück zum Zitat Schmitz, C., Jenmalm, P., Ehrsson, H. H., & Forssberg, H. (2005). Brain activity during predictable and unpredictable weight changes when lifting objects. Journal of Neurophysiology, 93(3), 1498–1509.CrossRef Schmitz, C., Jenmalm, P., Ehrsson, H. H., & Forssberg, H. (2005). Brain activity during predictable and unpredictable weight changes when lifting objects. Journal of Neurophysiology, 93(3), 1498–1509.CrossRef
Zurück zum Zitat Schultz, W. (2010). Dopamine signals for reward value and risk: Basic and recent data. Behavioral and Brain Functions, 6, 24.CrossRef Schultz, W. (2010). Dopamine signals for reward value and risk: Basic and recent data. Behavioral and Brain Functions, 6, 24.CrossRef
Zurück zum Zitat Spraker, M. B., Yu, H., Corcos, D. M., & Vaillancourt, D. E. (2007). Role of individual basal ganglia nuclei in force amplitude generation. Journal of Neurophysiology, 98(2), 821–834.CrossRef Spraker, M. B., Yu, H., Corcos, D. M., & Vaillancourt, D. E. (2007). Role of individual basal ganglia nuclei in force amplitude generation. Journal of Neurophysiology, 98(2), 821–834.CrossRef
Zurück zum Zitat Strick, P. L. (1976). Anatomical analysis of ventrolateral thalamic input to primate motor cortex. Journal of Neurophysiology, 39(5), 1020–1031.CrossRef Strick, P. L. (1976). Anatomical analysis of ventrolateral thalamic input to primate motor cortex. Journal of Neurophysiology, 39(5), 1020–1031.CrossRef
Zurück zum Zitat Sukumar, D., Rengaswamy, M., & Chakravarthy, V. S. (2012). Modeling the contributions of Basal ganglia and Hippocampus to spatial navigation using reinforcement learning. PLoS ONE, 7(10), e47467.CrossRef Sukumar, D., Rengaswamy, M., & Chakravarthy, V. S. (2012). Modeling the contributions of Basal ganglia and Hippocampus to spatial navigation using reinforcement learning. PLoS ONE, 7(10), e47467.CrossRef
Zurück zum Zitat Ulloa, A., Bullock, D., & Rhodes, B. J. (2003). Adaptive force generation for precision-grip lifting by a spectral timing model of the cerebellum. Neural Networks, 16(5–6), 521–528.CrossRef Ulloa, A., Bullock, D., & Rhodes, B. J. (2003). Adaptive force generation for precision-grip lifting by a spectral timing model of the cerebellum. Neural Networks, 16(5–6), 521–528.CrossRef
Zurück zum Zitat Vaillancourt, D. E., Mayka, M. A., Thulborn, K. R., & Corcos, D. M. (2004). Subthalamic nucleus and internal globus pallidus scale with the rate of change of force production in humans. Neuroimage, 23(1), 175–186.CrossRef Vaillancourt, D. E., Mayka, M. A., Thulborn, K. R., & Corcos, D. M. (2004). Subthalamic nucleus and internal globus pallidus scale with the rate of change of force production in humans. Neuroimage, 23(1), 175–186.CrossRef
Zurück zum Zitat Vaillancourt, D. E., Yu, H., Mayka, M. A., & Corcos, D. M. (2007). Role of the basal ganglia and frontal cortex in selecting and producing internally guided force pulses. Neuroimage, 36(3), 793–803.CrossRef Vaillancourt, D. E., Yu, H., Mayka, M. A., & Corcos, D. M. (2007). Role of the basal ganglia and frontal cortex in selecting and producing internally guided force pulses. Neuroimage, 36(3), 793–803.CrossRef
Zurück zum Zitat Van Schaik, C. P., Deaner, R. O., & Merrill, M. Y. (1999). The conditions for tool use in primates: Implications for the evolution of material culture. Journal of Human Evolution, 36(6), 719–741.CrossRef Van Schaik, C. P., Deaner, R. O., & Merrill, M. Y. (1999). The conditions for tool use in primates: Implications for the evolution of material culture. Journal of Human Evolution, 36(6), 719–741.CrossRef
Zurück zum Zitat Warren, W. H. (2006). The dynamics of perception and action. Psychological Review, 113(2), 358.CrossRef Warren, W. H. (2006). The dynamics of perception and action. Psychological Review, 113(2), 358.CrossRef
Zurück zum Zitat Wasson, P., Prodoehl, J., Yu, H., Corcos, D., & Vaillancourt, D. (2007). Prediction and the basal ganglia. San Diego: Society for Neuroscience. Wasson, P., Prodoehl, J., Yu, H., Corcos, D., & Vaillancourt, D. (2007). Prediction and the basal ganglia. San Diego: Society for Neuroscience.
Zurück zum Zitat Westling, G., & Johansson, R. S. (1984). Factors influencing the force control during precision grip. Experimental Brain Research, 53(2), 277–284.CrossRef Westling, G., & Johansson, R. S. (1984). Factors influencing the force control during precision grip. Experimental Brain Research, 53(2), 277–284.CrossRef
Zurück zum Zitat Witney, A. G., Wing, A., Thonnard, J.-L., & Smith, A. M. (2004). The cutaneous contribution to adaptive precision grip. Trends in Neurosciences, 27(10), 637–643.CrossRef Witney, A. G., Wing, A., Thonnard, J.-L., & Smith, A. M. (2004). The cutaneous contribution to adaptive precision grip. Trends in Neurosciences, 27(10), 637–643.CrossRef
Zurück zum Zitat Wolpert, D. M., & Flanagan, J. R. (2001). Motor prediction. Current Biology, 11(18), R729–R732.CrossRef Wolpert, D. M., & Flanagan, J. R. (2001). Motor prediction. Current Biology, 11(18), R729–R732.CrossRef
Zurück zum Zitat Wolpert, D. M., Ghahramani, Z., & Jordan, M. I. (1995). An internal model for sensorimotor integration. Science, 269(5232), 1880–1882.CrossRef Wolpert, D. M., Ghahramani, Z., & Jordan, M. I. (1995). An internal model for sensorimotor integration. Science, 269(5232), 1880–1882.CrossRef
Zurück zum Zitat Wolpert, D. M., & Landy, M. S. (2012). Motor control is decision-making. Current Opinion in Neurobiology, 22(6), 996–1003.CrossRef Wolpert, D. M., & Landy, M. S. (2012). Motor control is decision-making. Current Opinion in Neurobiology, 22(6), 996–1003.CrossRef
Zurück zum Zitat Wu, S. W., Delgado, M. R., & Maloney, L. T. (2009). Economic decision-making compared with an equivalent motor task. Proc Natl Acad Sci U S A, 106(15), 6088–6093.CrossRef Wu, S. W., Delgado, M. R., & Maloney, L. T. (2009). Economic decision-making compared with an equivalent motor task. Proc Natl Acad Sci U S A, 106(15), 6088–6093.CrossRef
Zurück zum Zitat Wu, T., & Hallett, M. (2013). The cerebellum in Parkinson’s disease. Brain, 136(3), 696–709.CrossRef Wu, T., & Hallett, M. (2013). The cerebellum in Parkinson’s disease. Brain, 136(3), 696–709.CrossRef
Zurück zum Zitat Zhang, H., Maddula, S. V., & Maloney, L. T. (2010). Planning routes across economic terrains: Maximizing utility, following heuristics. Front Psychol, 1, 214.CrossRef Zhang, H., Maddula, S. V., & Maloney, L. T. (2010). Planning routes across economic terrains: Maximizing utility, following heuristics. Front Psychol, 1, 214.CrossRef
Metadaten
Titel
Modeling Precision Grip Force in Controls and Parkinson’s Disease Patients
verfasst von
Ankur Gupta
V. Srinivasa Chakravarthy
Copyright-Jahr
2018
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-8494-2_8

Neuer Inhalt