Skip to main content
Top
Published in: Rheologica Acta 3/2005

01-01-2005 | Original Paper

Modeling strain hardening of polydisperse polystyrene melts by molecular stress function theory

Authors: M. H. Wagner, S. Kheirandish, K. Koyama, A. Nishioka, A. Minegishi, T. Takahashi

Published in: Rheologica Acta | Issue 3/2005

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The strain hardening of blends of polystyrene (PS) and ultra-high molecular weight polystyrene (UHMW-PS) in elongational flow is modeled by the molecular stress function (MSF) theory. Assuming that the ratios of strain energies stored in polydisperse and monodisperse polymers are identical for linear and nonlinear deformations, the value of the only non-linear parameter of the theory in extensional flows, the maximum molecular stress f max , can be determined and is shown to be related to steady-state compliance J e0 . Using only linear-viscoelastic data, the elongational viscosity of PS/UHMW-PS blends is consistently predicted by the MSF theory.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Bersted BH (1975) An empirical model relating the molecular weight distribution of high-density polyethylene to the shear dependence of the steady state shear melt viscosity. J Appl Polym Sci 19:2167–2177CrossRef Bersted BH (1975) An empirical model relating the molecular weight distribution of high-density polyethylene to the shear dependence of the steady state shear melt viscosity. J Appl Polym Sci 19:2167–2177CrossRef
go back to reference Bersted BH (1979) Effect of molecular weight distribution on elongational viscosity of undiluted polymer fluids. J Appl Polym Sci 24:671–682CrossRef Bersted BH (1979) Effect of molecular weight distribution on elongational viscosity of undiluted polymer fluids. J Appl Polym Sci 24:671–682CrossRef
go back to reference Brabec CJ, Schausberger A (1995) An improved algorithm for calculating relaxation time spectra from material functions of polymers with monodisperse and bimodal mass distributions. Rheol Acta 34:397–405 Brabec CJ, Schausberger A (1995) An improved algorithm for calculating relaxation time spectra from material functions of polymers with monodisperse and bimodal mass distributions. Rheol Acta 34:397–405
go back to reference de Gennes PG (1974) Remarks on entanglements and rubber elasticity. J Phys 35:1–133 de Gennes PG (1974) Remarks on entanglements and rubber elasticity. J Phys 35:1–133
go back to reference Doi M, Edwards SF (1979) Dynamics of concentrated polymer systems. Part IV. Rheological properties. Faraday Trans II 75:38–54CrossRef Doi M, Edwards SF (1979) Dynamics of concentrated polymer systems. Part IV. Rheological properties. Faraday Trans II 75:38–54CrossRef
go back to reference Ferry JD (1980) Viscoelastic properties of polymers. Wiley Ferry JD (1980) Viscoelastic properties of polymers. Wiley
go back to reference Hepperle J (2002) Einfluss der molekularen Struktur auf rheologische Eigenschaften von Polystyrol- und Polycarbonatschmelzen. PhD Dissertation, Erlangen, Germany Hepperle J (2002) Einfluss der molekularen Struktur auf rheologische Eigenschaften von Polystyrol- und Polycarbonatschmelzen. PhD Dissertation, Erlangen, Germany
go back to reference Kraft M, Meissner J, Kaschta J (1999) Linear viscoelastic characterization of polymer melts with long relaxation times. Macromolecules 32:751–757CrossRef Kraft M, Meissner J, Kaschta J (1999) Linear viscoelastic characterization of polymer melts with long relaxation times. Macromolecules 32:751–757CrossRef
go back to reference Marrucci G, Hermans JJ (1980) Nonlinear viscoelasticity of concentrated polymeric liquids. Macromolecules 13:380–387 Marrucci G, Hermans JJ (1980) Nonlinear viscoelasticity of concentrated polymeric liquids. Macromolecules 13:380–387
go back to reference Masuda T, Kitagawa K, Inoue T, Onogi S (1970) Rheological properties of anionic polystyrenes. II. Dynamic viscoelasticity of blends of narrow-distribution polystyrenes. Macromolecules 3:116–125 Masuda T, Kitagawa K, Inoue T, Onogi S (1970) Rheological properties of anionic polystyrenes. II. Dynamic viscoelasticity of blends of narrow-distribution polystyrenes. Macromolecules 3:116–125
go back to reference Micic P, Bhattacharya SN (2000) Rheology of LLDPE, LDPE and LLDPE/LDPE blends and its relevance to the film blowing process. Polym Int 49:1580–1589CrossRef Micic P, Bhattacharya SN (2000) Rheology of LLDPE, LDPE and LLDPE/LDPE blends and its relevance to the film blowing process. Polym Int 49:1580–1589CrossRef
go back to reference Minegishi A, Nishioka A, Takahashi T, Masubuchi Y, Takimoto J, Koyama K (2001) Uniaxial elongational viscosity of PS/a small amount of UHMW-PS blends. Rheol. Acta 40:329–338CrossRef Minegishi A, Nishioka A, Takahashi T, Masubuchi Y, Takimoto J, Koyama K (2001) Uniaxial elongational viscosity of PS/a small amount of UHMW-PS blends. Rheol. Acta 40:329–338CrossRef
go back to reference Montfort JP, Marin G, Arman J, Monge P (1978) Blending law for binary blends of fractions of linear polystyrene. Polymer 19:277–284CrossRef Montfort JP, Marin G, Arman J, Monge P (1978) Blending law for binary blends of fractions of linear polystyrene. Polymer 19:277–284CrossRef
go back to reference Montfort JP, Martin G, Monge P (1984) Effects of constraint release on the dynamics of entangled linear polymer melts. Macromolecules 17:1551–1560 Montfort JP, Martin G, Monge P (1984) Effects of constraint release on the dynamics of entangled linear polymer melts. Macromolecules 17:1551–1560
go back to reference Münstedt H (1980) Dependence of the elongational behavior of polystyrene melts on molecular weight and molecular weight distribution. J Rheol 24:847–867CrossRef Münstedt H (1980) Dependence of the elongational behavior of polystyrene melts on molecular weight and molecular weight distribution. J Rheol 24:847–867CrossRef
go back to reference Onogi S, Masuda T, Kitagawa K (1970) Rheological properties of anionic polystyrenes. I. Dynamic viscoelasticity of blends of narrow-distribution polystyrenes. Macromolecules 3:109–116 Onogi S, Masuda T, Kitagawa K (1970) Rheological properties of anionic polystyrenes. I. Dynamic viscoelasticity of blends of narrow-distribution polystyrenes. Macromolecules 3:109–116
go back to reference Plazek DJ (1965) Temperature dependence of the viscoelastic behavior of polystyrene. J Phys Chem 69:3480–3487 Plazek DJ (1965) Temperature dependence of the viscoelastic behavior of polystyrene. J Phys Chem 69:3480–3487
go back to reference Struglinski MJ, Graessley WW (1985) Effects of polydispersity on the linear viscoelastic properties of entangled polymers. 1. Experimental observations for binary mixtures of linear polybutadiene. Macromolecules 18:2630–2643 Struglinski MJ, Graessley WW (1985) Effects of polydispersity on the linear viscoelastic properties of entangled polymers. 1. Experimental observations for binary mixtures of linear polybutadiene. Macromolecules 18:2630–2643
go back to reference Throne JL, Beine J (1999) Thermoformen: Werkstoffe-Verfahren-Anwendungen. Carl Hanser Verlag Throne JL, Beine J (1999) Thermoformen: Werkstoffe-Verfahren-Anwendungen. Carl Hanser Verlag
go back to reference Utracki LA (1989) Polymer alloys and blends: thermodynamics and rheology. Hanser Publishers Utracki LA (1989) Polymer alloys and blends: thermodynamics and rheology. Hanser Publishers
go back to reference Utracki LA (ed) (1991) Two-phase polymer systems. Hanser Publishers Utracki LA (ed) (1991) Two-phase polymer systems. Hanser Publishers
go back to reference van Ruymbeke E, Keunings R, Stéphenne V, Hagenaars A, Bailly C (2002a) Evaluation of models for predicting the linear viscoelastic properties of entangled and linear polymers. Macromolecules 35:2689–2699CrossRef van Ruymbeke E, Keunings R, Stéphenne V, Hagenaars A, Bailly C (2002a) Evaluation of models for predicting the linear viscoelastic properties of entangled and linear polymers. Macromolecules 35:2689–2699CrossRef
go back to reference van Ruymbeke E, Keunings R, Bailly C (2002b) Determination of the molecular weight distribution of entangled linear polymers from linear viscoelasticity data. J Non-Newtonian Fluid Mech 105:153–175 van Ruymbeke E, Keunings R, Bailly C (2002b) Determination of the molecular weight distribution of entangled linear polymers from linear viscoelasticity data. J Non-Newtonian Fluid Mech 105:153–175
go back to reference Wagner MH, Schaeffer J (1992) Constitutive equations from Gaussian slip-link network theories in polymer melt rheology. Rheol Acta 31:22–31 Wagner MH, Schaeffer J (1992) Constitutive equations from Gaussian slip-link network theories in polymer melt rheology. Rheol Acta 31:22–31
go back to reference Wagner MH, Schaeffer J (1993) Rubbers and polymer melts: universal aspects of nonlinear stress-strain relations. J Rheol 37:643–661CrossRef Wagner MH, Schaeffer J (1993) Rubbers and polymer melts: universal aspects of nonlinear stress-strain relations. J Rheol 37:643–661CrossRef
go back to reference Wagner MH, Rubio P, Bastian H (2001) The molecular stress function model for polydisperse polymer melts with dissipative convective constraint release. J Rheol 45:1387–1412CrossRef Wagner MH, Rubio P, Bastian H (2001) The molecular stress function model for polydisperse polymer melts with dissipative convective constraint release. J Rheol 45:1387–1412CrossRef
go back to reference Wagner MH, Yamaguchi M, Takahashi M (2003) Quantitative assessment of strain hardening of low-density polyethylene melts by the molecular stress function model. J Rheol 47:779–793CrossRef Wagner MH, Yamaguchi M, Takahashi M (2003) Quantitative assessment of strain hardening of low-density polyethylene melts by the molecular stress function model. J Rheol 47:779–793CrossRef
go back to reference Wagner MH, Kheirandish S, Yamaguchi M (2004) Quantitative analysis of melt elongational behavior of LLDPE/LDPE blends. Rheol Acta (in press) Wagner MH, Kheirandish S, Yamaguchi M (2004) Quantitative analysis of melt elongational behavior of LLDPE/LDPE blends. Rheol Acta (in press)
go back to reference Watanabe H, Kotaka T (1984) Viscoelastic properties and relaxation mechanisms of binary blends of narrow molecular weight distribution polystyrene. Macromolecules 17:2316–2325 Watanabe H, Kotaka T (1984) Viscoelastic properties and relaxation mechanisms of binary blends of narrow molecular weight distribution polystyrene. Macromolecules 17:2316–2325
go back to reference Winter HH, Mours M (1997) Rheology of polymers near their liquid-solid transitions. Adv Polym Sci 134:165–234 Winter HH, Mours M (1997) Rheology of polymers near their liquid-solid transitions. Adv Polym Sci 134:165–234
go back to reference Zang YH, Muller R, Froelich D (1987) Influence of molecular weight distribution on viscoelastic constants of polymer melts in the terminal zone. New blending law and comparison with experimental data. Polymer 28:1577–1582CrossRef Zang YH, Muller R, Froelich D (1987) Influence of molecular weight distribution on viscoelastic constants of polymer melts in the terminal zone. New blending law and comparison with experimental data. Polymer 28:1577–1582CrossRef
Metadata
Title
Modeling strain hardening of polydisperse polystyrene melts by molecular stress function theory
Authors
M. H. Wagner
S. Kheirandish
K. Koyama
A. Nishioka
A. Minegishi
T. Takahashi
Publication date
01-01-2005
Publisher
Springer-Verlag
Published in
Rheologica Acta / Issue 3/2005
Print ISSN: 0035-4511
Electronic ISSN: 1435-1528
DOI
https://doi.org/10.1007/s00397-004-0402-7

Other articles of this Issue 3/2005

Rheologica Acta 3/2005 Go to the issue

Premium Partners