Skip to main content
Top
Published in: Journal of Materials Science 24/2014

01-12-2014 | Original Paper

Modeling the buckling strength of polypropylene stochastic honeycombs

Authors: Megan Hostetter, Glenn D. Hibbard

Published in: Journal of Materials Science | Issue 24/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The effect of internal architecture on the mechanical properties of stochastic honeycombs was investigated by using four polypropylenes with varying rheological properties. The polymers were first characterized in terms of their thermal and mechanical properties, and then used to fabricate a set of stochastic honeycombs over a range of densities. The internal architecture was characterized by X-ray tomography, and the out-of-plane compressive properties of the stochastic honeycombs were determined. Overall, the strengths varied from 1 to 4 MPa over a core density range of 7–14 %. A thin-plate buckling model was developed to build a predictive strength model. This model was split into a material properties portion (dependent on the polymer stiffness) and an architectural portion (dependent on the fraction of bound webs in the honeycomb). The model was found to serve as a good first step towards predicting the strength of irregular honeycombs.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Hostetter M, Cordner B, Hibbard GD (2012) Stochastic honeycomb sandwich cores. Compos B 43:1024–1029CrossRef Hostetter M, Cordner B, Hibbard GD (2012) Stochastic honeycomb sandwich cores. Compos B 43:1024–1029CrossRef
2.
go back to reference Hostetter M, Hibbard GD (2014) Architectural characteristics of stochastic honeycombs fabricated from varying melt strength polypropylenes. J Appl Polym Sci 131:40074CrossRef Hostetter M, Hibbard GD (2014) Architectural characteristics of stochastic honeycombs fabricated from varying melt strength polypropylenes. J Appl Polym Sci 131:40074CrossRef
3.
go back to reference Van Krevelen DW (2009) Properties of Polymers, Their Estimation and Correlation with Chemical Structure, 4th edn. Elsevier, New York Van Krevelen DW (2009) Properties of Polymers, Their Estimation and Correlation with Chemical Structure, 4th edn. Elsevier, New York
4.
go back to reference Galeski A (1999) Crystallization. In: Karger-Kocsis J (ed) Polypropylene: an A–Z guide. Kluwer, Dordrecht, pp 135–141CrossRef Galeski A (1999) Crystallization. In: Karger-Kocsis J (ed) Polypropylene: an A–Z guide. Kluwer, Dordrecht, pp 135–141CrossRef
5.
go back to reference Maier C, Calafut T (1998) Polypropylene: the definitive user’s guide and databook. Plast Des Libr, Norwich Maier C, Calafut T (1998) Polypropylene: the definitive user’s guide and databook. Plast Des Libr, Norwich
6.
go back to reference Ide F, Hasegawa A (1974) Studies on polymer blend of nylon 6 and polypropylene or nylon 6 and polystyrene using the reaction of polymer. J Appl Polym Sci 18:963–974CrossRef Ide F, Hasegawa A (1974) Studies on polymer blend of nylon 6 and polypropylene or nylon 6 and polystyrene using the reaction of polymer. J Appl Polym Sci 18:963–974CrossRef
7.
go back to reference Svoboda P, Zeng C, Wang H, Lee LJ, Tomasko DL (2002) Morphology and mechanical properties of polypropylene/organoclay nanocomposites. J Appl Polym Sci 85:1562–1570CrossRef Svoboda P, Zeng C, Wang H, Lee LJ, Tomasko DL (2002) Morphology and mechanical properties of polypropylene/organoclay nanocomposites. J Appl Polym Sci 85:1562–1570CrossRef
8.
go back to reference Natta G, Corradini P (1960) Structure and properties of isotactic polypropylene. Il Nuovo Cimento Ser 10:40–51CrossRef Natta G, Corradini P (1960) Structure and properties of isotactic polypropylene. Il Nuovo Cimento Ser 10:40–51CrossRef
9.
go back to reference Nielsen AS, Batchelder DN, Pyrz R (2002) Estimation of crystallinity of isotactic polypropylene using Raman spectroscopy. Polymer 43:2671–2676CrossRef Nielsen AS, Batchelder DN, Pyrz R (2002) Estimation of crystallinity of isotactic polypropylene using Raman spectroscopy. Polymer 43:2671–2676CrossRef
10.
go back to reference Asakawa H, Nishida K, Kanaya T, Tosaka M (2013) Giant single crystal of isotactic polypropylene showing near-equilibrium melting temperature. Polym J 45:287–292CrossRef Asakawa H, Nishida K, Kanaya T, Tosaka M (2013) Giant single crystal of isotactic polypropylene showing near-equilibrium melting temperature. Polym J 45:287–292CrossRef
11.
go back to reference Yamada K, Hikosaka M, Toda A, Yamazaki S, Tagashira K (2003) Equilibrium melting temperature of isotactic polypropylene with high tacticity. 2. Determination by optical microscopy. Macromolecules 36:4802–4812CrossRef Yamada K, Hikosaka M, Toda A, Yamazaki S, Tagashira K (2003) Equilibrium melting temperature of isotactic polypropylene with high tacticity. 2. Determination by optical microscopy. Macromolecules 36:4802–4812CrossRef
12.
go back to reference Yamada K, Hikosaka M, Toda A, Yamazaki S, Tagashira K (2003) Equilibrium melting temperature of isotactic polypropylene with high tacticity: 1. Determination by differential scanning calorimetry. Macromolecules 36:4790–4801CrossRef Yamada K, Hikosaka M, Toda A, Yamazaki S, Tagashira K (2003) Equilibrium melting temperature of isotactic polypropylene with high tacticity: 1. Determination by differential scanning calorimetry. Macromolecules 36:4790–4801CrossRef
13.
go back to reference Cheng SZD, Janimak JJ, Zhang A, Hsieh ET (1991) Isotacticity effect on crystallization and melting in polypropylene fractions: 1. Crystalline structures and thermodynamic property changes. Polymer 32:648–655CrossRef Cheng SZD, Janimak JJ, Zhang A, Hsieh ET (1991) Isotacticity effect on crystallization and melting in polypropylene fractions: 1. Crystalline structures and thermodynamic property changes. Polymer 32:648–655CrossRef
14.
go back to reference Nakamura K, Shimizu S, Umemoto S, Thierry A, Lotz B, Okui N (2008) Temperature dependence of crystal growth rate for α and β forms of isotactic polypropylene. Polym J 40:915–922CrossRef Nakamura K, Shimizu S, Umemoto S, Thierry A, Lotz B, Okui N (2008) Temperature dependence of crystal growth rate for α and β forms of isotactic polypropylene. Polym J 40:915–922CrossRef
15.
go back to reference Fried JR (2003) Polymer science and technology, 2nd edn. Prentice Hall PTR, Upper Saddle River Fried JR (2003) Polymer science and technology, 2nd edn. Prentice Hall PTR, Upper Saddle River
16.
go back to reference CES Polymer Selector (2013) Granta material intelligence. Cambridge, UK CES Polymer Selector (2013) Granta material intelligence. Cambridge, UK
17.
go back to reference Perego G, Cella GD, Bastioli C (1996) Effect of molecular weight and crystallinity on poly(lactic acid) mechanical properties. J Appl Polym Sci 59:37–43CrossRef Perego G, Cella GD, Bastioli C (1996) Effect of molecular weight and crystallinity on poly(lactic acid) mechanical properties. J Appl Polym Sci 59:37–43CrossRef
18.
go back to reference van der Wal A, Mulder JJ, Gaymans RJ (1998) Fracture of polypropylene: the effect of crystallinity. Polymer 39:5477–5481CrossRef van der Wal A, Mulder JJ, Gaymans RJ (1998) Fracture of polypropylene: the effect of crystallinity. Polymer 39:5477–5481CrossRef
19.
go back to reference Xu S, Beynon JH, Ruan D, Lu G (2012) Experimental study of the out-of-plane dynamic compression of hexagonal honeycombs. Compos Struct 94:2326–2336CrossRef Xu S, Beynon JH, Ruan D, Lu G (2012) Experimental study of the out-of-plane dynamic compression of hexagonal honeycombs. Compos Struct 94:2326–2336CrossRef
20.
go back to reference Zhang J, Ashby MF (1992) The out-of-plane properties of honeycombs. Int J Mech Sci 34:475–489CrossRef Zhang J, Ashby MF (1992) The out-of-plane properties of honeycombs. Int J Mech Sci 34:475–489CrossRef
21.
go back to reference Côté F, Deshpande VS, Fleck NA, Evans AG (2004) The out-of-plane compressive behavior of metallic honeycombs. Mater Sci Eng A 380:272–280CrossRef Côté F, Deshpande VS, Fleck NA, Evans AG (2004) The out-of-plane compressive behavior of metallic honeycombs. Mater Sci Eng A 380:272–280CrossRef
22.
go back to reference Aminanda Y, Castanié B, Barrau J, Thevenet P (2005) Experimental analysis and modeling of the crushing of honeycomb cores. Appl Compos Mater 12:213–227CrossRef Aminanda Y, Castanié B, Barrau J, Thevenet P (2005) Experimental analysis and modeling of the crushing of honeycomb cores. Appl Compos Mater 12:213–227CrossRef
23.
go back to reference Lee HS, Hong SH, Lee JR, Kim YK (2002) Mechanical behavior and failure process during compressive and shear deformation of honeycomb composite at elevated temperatures. J Mater Sci 37:1265–1272. doi:10.1023/A:1014344228141 CrossRef Lee HS, Hong SH, Lee JR, Kim YK (2002) Mechanical behavior and failure process during compressive and shear deformation of honeycomb composite at elevated temperatures. J Mater Sci 37:1265–1272. doi:10.​1023/​A:​1014344228141 CrossRef
24.
go back to reference Liang S, Chen HL (2006) Investigation on the square cell honeycomb structures under axial loading. Compos Struct 72:446–454CrossRef Liang S, Chen HL (2006) Investigation on the square cell honeycomb structures under axial loading. Compos Struct 72:446–454CrossRef
25.
go back to reference Domenico A, Ferdinando A, Costantino M, Simone M, Andrea P, Alessandro R (2013) Statistical finite element analysis of the buckling behavior of honeycomb structures. Compos Struct 105:240–255CrossRef Domenico A, Ferdinando A, Costantino M, Simone M, Andrea P, Alessandro R (2013) Statistical finite element analysis of the buckling behavior of honeycomb structures. Compos Struct 105:240–255CrossRef
26.
go back to reference Fan X, Verpoest I, Vandepitte D (2006) Finite element analysis of out-of-plane compressive properties of thermoplastic honeycomb. J Sandw Struct Mater 8:437–458CrossRef Fan X, Verpoest I, Vandepitte D (2006) Finite element analysis of out-of-plane compressive properties of thermoplastic honeycomb. J Sandw Struct Mater 8:437–458CrossRef
27.
go back to reference Hohe J, Beckmann C (2012) Probabilistic homogenization of hexagonal honeycombs with perturbed microstructure. Mech Mater 49:13–29CrossRef Hohe J, Beckmann C (2012) Probabilistic homogenization of hexagonal honeycombs with perturbed microstructure. Mech Mater 49:13–29CrossRef
28.
go back to reference Silva MJ, Hayes WC, Gibson LJ (1995) The effects of non-periodic microstructure on the elastic properties of two-dimensional cellular solids. Int J Mech Sci 37:1161–1177CrossRef Silva MJ, Hayes WC, Gibson LJ (1995) The effects of non-periodic microstructure on the elastic properties of two-dimensional cellular solids. Int J Mech Sci 37:1161–1177CrossRef
29.
go back to reference Zhu HX, Hobdell JR, Windle AH (2001) Effects of cell irregularity on the elastic properties of 2D Voronoi honeycombs. J Mech Phys Solids 49:857–870CrossRef Zhu HX, Hobdell JR, Windle AH (2001) Effects of cell irregularity on the elastic properties of 2D Voronoi honeycombs. J Mech Phys Solids 49:857–870CrossRef
30.
go back to reference Zhu HX, Thorpe SM, Windle AH (2006) The effect of cell irregularity on the high strain compression of 2D Voronoi honeycombs. Int J Solids Struct 43:1061–1078CrossRef Zhu HX, Thorpe SM, Windle AH (2006) The effect of cell irregularity on the high strain compression of 2D Voronoi honeycombs. Int J Solids Struct 43:1061–1078CrossRef
31.
32.
go back to reference Silva MJ, Gibson LJ (1997) The effects of non-periodic microstructure and defects on the compressive strength of two-dimensional cellular solids. Int J Mech Sci 39:549–563CrossRef Silva MJ, Gibson LJ (1997) The effects of non-periodic microstructure and defects on the compressive strength of two-dimensional cellular solids. Int J Mech Sci 39:549–563CrossRef
33.
go back to reference Albuquerque JM, Fátima Vaz M, Fortes MA (1999) Effect of missing walls on the compression behaviour of honeycombs. Scr Mater 41:167–174CrossRef Albuquerque JM, Fátima Vaz M, Fortes MA (1999) Effect of missing walls on the compression behaviour of honeycombs. Scr Mater 41:167–174CrossRef
34.
go back to reference Guo XE, Gibson LJ (1999) Behavior of intact and damaged honeycombs: a finite element study. Int J Mech Sci 41:85–105CrossRef Guo XE, Gibson LJ (1999) Behavior of intact and damaged honeycombs: a finite element study. Int J Mech Sci 41:85–105CrossRef
35.
go back to reference Wang AJ, McDowell DL (2003) Effects of defects on in-plane properties of periodic metal honeycombs. Int J Mech Sci 45:1799–1813CrossRef Wang AJ, McDowell DL (2003) Effects of defects on in-plane properties of periodic metal honeycombs. Int J Mech Sci 45:1799–1813CrossRef
36.
go back to reference Lautensack C, Sych T (2006) 3D Image analysis of open foams using random tesselations. Image Anal Stereol 25:87–93CrossRef Lautensack C, Sych T (2006) 3D Image analysis of open foams using random tesselations. Image Anal Stereol 25:87–93CrossRef
37.
go back to reference Mecke KR (2000) Additivity, convexity, and beyond: applications of minkowski functionals in statistical physics. In: Mecke KR, Stoyan D (eds) Lecture notes in Physics vol 554. Springer, Berlin, pp 111–184 Mecke KR (2000) Additivity, convexity, and beyond: applications of minkowski functionals in statistical physics. In: Mecke KR, Stoyan D (eds) Lecture notes in Physics vol 554. Springer, Berlin, pp 111–184
38.
go back to reference Frenkel G, Blumenfeld R, King PR, Blunt MJ (2009) Topological analysis of foams and tetrahedral structures. Adv Eng Mater 11:169–176CrossRef Frenkel G, Blumenfeld R, King PR, Blunt MJ (2009) Topological analysis of foams and tetrahedral structures. Adv Eng Mater 11:169–176CrossRef
39.
go back to reference Schröder-Turk GE, Mickel W, Kapfer SC et al (2011) Minkowski tensor shape analysis of cellular, granular and porous structures. Adv Mater 23:2535–2553CrossRef Schröder-Turk GE, Mickel W, Kapfer SC et al (2011) Minkowski tensor shape analysis of cellular, granular and porous structures. Adv Mater 23:2535–2553CrossRef
40.
go back to reference Michielsen K, De Raedt H (2001) Integral-geometry morphological image analysis. Phys Rep 347:461–538CrossRef Michielsen K, De Raedt H (2001) Integral-geometry morphological image analysis. Phys Rep 347:461–538CrossRef
41.
go back to reference Ohser J, Mücklich F (2000) Statistical analysis of microstructures in materials science. Wiley, Chichester Ohser J, Mücklich F (2000) Statistical analysis of microstructures in materials science. Wiley, Chichester
42.
go back to reference Legland D, Kiêu K, Devaux MF (2007) Computation of Minkowski measures on 2D and 3D binary images. Image Anal Stereol 26:83–92CrossRef Legland D, Kiêu K, Devaux MF (2007) Computation of Minkowski measures on 2D and 3D binary images. Image Anal Stereol 26:83–92CrossRef
43.
go back to reference Mikos AG, Thorsen AJ, Czerwonka LA, Bao Y, Langer R, Winslow DN, Vacanti JP (1994) Preparation and characterization of poly(l-lactic acid) foams. Polymer 35:1068–1077CrossRef Mikos AG, Thorsen AJ, Czerwonka LA, Bao Y, Langer R, Winslow DN, Vacanti JP (1994) Preparation and characterization of poly(l-lactic acid) foams. Polymer 35:1068–1077CrossRef
44.
go back to reference Kraynik AM, Reinelt DA, van Swol F (2004) Structure of random foam. Phys Rev Lett 93:208301CrossRef Kraynik AM, Reinelt DA, van Swol F (2004) Structure of random foam. Phys Rev Lett 93:208301CrossRef
45.
go back to reference Lu L, Peter SJ, Lyman MD et al (2000) In vitro degradation of porous poly(l-lactic acid) foams. Biomaterials 21:1595–1605CrossRef Lu L, Peter SJ, Lyman MD et al (2000) In vitro degradation of porous poly(l-lactic acid) foams. Biomaterials 21:1595–1605CrossRef
46.
go back to reference Zeschky J, Hofner T, Arnold C, Weibmann R, Bahloul-Hourlier D, Scheffler M, Greil P (2005) Polysilsesquioxane derived ceramic foams with gradient porosity. Acta Mater 53:927–937CrossRef Zeschky J, Hofner T, Arnold C, Weibmann R, Bahloul-Hourlier D, Scheffler M, Greil P (2005) Polysilsesquioxane derived ceramic foams with gradient porosity. Acta Mater 53:927–937CrossRef
47.
go back to reference Bryan GH (1890) On the stability of a plane plate under thrusts in its own plane, with applications to the “buckling” of the sides of a ship. Proc Lond Math Soc 22:54–67CrossRef Bryan GH (1890) On the stability of a plane plate under thrusts in its own plane, with applications to the “buckling” of the sides of a ship. Proc Lond Math Soc 22:54–67CrossRef
48.
go back to reference Gere JM, Timoshenko SP (1961) Theory of elastic stability, 2nd edn. McGraw-Hill, New York Gere JM, Timoshenko SP (1961) Theory of elastic stability, 2nd edn. McGraw-Hill, New York
49.
go back to reference Rinde JA (1970) Poisson’s ratio for rigid plastic foams. J Appl Polym Sci 14:1913–1926CrossRef Rinde JA (1970) Poisson’s ratio for rigid plastic foams. J Appl Polym Sci 14:1913–1926CrossRef
50.
go back to reference Callister WD, Rethwisch DG (2008) Fundamentals of materials science and engineering: an integrated approach, 3rd edn. Wiley, Hoboken Callister WD, Rethwisch DG (2008) Fundamentals of materials science and engineering: an integrated approach, 3rd edn. Wiley, Hoboken
51.
go back to reference Zihlif AM, Duckett RA, Ward IM (1978) The Poisson’s ratio of ultra-drawn polyethylene and polypropylene fibres using Michelson interferometry. J Mater Sci 13:1837–1840. doi:10.1007/BF00548754 CrossRef Zihlif AM, Duckett RA, Ward IM (1978) The Poisson’s ratio of ultra-drawn polyethylene and polypropylene fibres using Michelson interferometry. J Mater Sci 13:1837–1840. doi:10.​1007/​BF00548754 CrossRef
52.
go back to reference Van Krevelen DW, Te Nijenhuis K (2009) Properties of polymers: their correlation with chemical structure; their numerical estimation and prediction from additive group contributions, 4th edn. Elsevier, Amsterdam Van Krevelen DW, Te Nijenhuis K (2009) Properties of polymers: their correlation with chemical structure; their numerical estimation and prediction from additive group contributions, 4th edn. Elsevier, Amsterdam
53.
go back to reference Allen HG, Bulson PS (1980) Background to buckling. McGraw-Hill Book Co., New York Allen HG, Bulson PS (1980) Background to buckling. McGraw-Hill Book Co., New York
54.
go back to reference Bloom F, Coffin D (2000) Handbook of thin plate buckling and postbuckling. Chapman & Hall/CRC, Boca RatonCrossRef Bloom F, Coffin D (2000) Handbook of thin plate buckling and postbuckling. Chapman & Hall/CRC, Boca RatonCrossRef
Metadata
Title
Modeling the buckling strength of polypropylene stochastic honeycombs
Authors
Megan Hostetter
Glenn D. Hibbard
Publication date
01-12-2014
Publisher
Springer US
Published in
Journal of Materials Science / Issue 24/2014
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-014-8546-z

Other articles of this Issue 24/2014

Journal of Materials Science 24/2014 Go to the issue

Premium Partners