Skip to main content
Top
Published in: Mathematical Models and Computer Simulations 6/2022

01-12-2022

Modeling the Stages of Verification of the Suitability of a Short Section of a Gas Pipeline for Operation

Authors: I. K. Khujaev, S. S. Akhmadjonov, M. K. Mahkamov

Published in: Mathematical Models and Computer Simulations | Issue 6/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

When modeling the processes of gas injection into an elementary section and gas outflow from it into an unlimited space, quasi-one-dimensional equations of gas pipeline transport in the approximation of a short pipeline are used, when the gas pressure gradient is formed only under the influence of the local component of the gas inertia force, and N.E. Zhukovsky’s formula on the gas outflow rate. The equations for the conservation of momentum and mass are linearized with the introduction of the gas mass flow rate, and the first boundary condition is presented as a linear dependence on the sought functions. The solution area is divided into rectangles with the dimensions of the section length of the section and the conditional period of the problem, which corresponds to the travel time of the perturbation over the entire length of the section. For the first conditional period, the formulas for calculating the pressure and gas mass flow rate are obtained by the method of characteristics. The ways of using these formulas to obtain a solution for the subsequent conditional periods are shown. Separate results of the calculations for the pressure, mass flow, and gas flow rate are presented for constant values of the functions involved in the boundary conditions. It is found that the difference between the external pressure and the gas pressure in the subregions, as well as the gas mass flow rate, decreases exponentially over time.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference V. V. Grachev, M. A. Guseinzade, B. I. Ksendz, and E. I. Yakovlev, Complex Pipeline Systems (Nedra, Moscow, 1982) [in Russian]. V. V. Grachev, M. A. Guseinzade, B. I. Ksendz, and E. I. Yakovlev, Complex Pipeline Systems (Nedra, Moscow, 1982) [in Russian].
2.
go back to reference V. V. Grachev, S. G. Shcherbakov, and E.I. Yakovlev, Dynamics of Pipeline Systems (Nauka, Moscow, 1987) [in Russian]. V. V. Grachev, S. G. Shcherbakov, and E.I. Yakovlev, Dynamics of Pipeline Systems (Nauka, Moscow, 1987) [in Russian].
3.
go back to reference S. A. Bobrovskii, S. G. Shcherbakov, and M. A. Guseinzade, Gas Flow in Gas Pipelines with Traveling Extraction (Nauka, Moscow, 1972) [in Russian]. S. A. Bobrovskii, S. G. Shcherbakov, and M. A. Guseinzade, Gas Flow in Gas Pipelines with Traveling Extraction (Nauka, Moscow, 1972) [in Russian].
4.
go back to reference I. A. Charnyi, Unsteady Motion of a Real Fluid in Pipes, 2nd ed. (Nedra, Moscow, 1975) [in Russian]. I. A. Charnyi, Unsteady Motion of a Real Fluid in Pipes, 2nd ed. (Nedra, Moscow, 1975) [in Russian].
5.
go back to reference A. Lewandowski, “New Numerical Methods for Transient Modeling of Gas Pipeline Networks,” in PSIG Annual Meeting, Albuquerque, NM, October 18–20, 1995, Paper No. PSIG-9501 (Pipeline Simulation Interest Group, 1995). A. Lewandowski, “New Numerical Methods for Transient Modeling of Gas Pipeline Networks,” in PSIG Annual Meeting, Albuquerque, NM, October 18–20, 1995, Paper No. PSIG-9501 (Pipeline Simulation Interest Group, 1995).
6.
go back to reference V. E. Seleznev, V. V. Aleshin, and S. N. Pryalov, Mathematical Simulation of Gas Pipeline Networks and Channel Systems: Methods, Models and Algorithms, Ed. by V. E. Seleznev (MAKS Press, Moscow, 2007) [in Russian]. V. E. Seleznev, V. V. Aleshin, and S. N. Pryalov, Mathematical Simulation of Gas Pipeline Networks and Channel Systems: Methods, Models and Algorithms, Ed. by V. E. Seleznev (MAKS Press, Moscow, 2007) [in Russian].
9.
go back to reference O. Sh. Bazarov, I. K. Khujaev, and A. A. Ismailov, “An iterative method for solving the problem of pipeline transportation of gas along a relief track,” Int. J. Adv. Res. Sci., Eng. Technol. 7 (5), 13840–13849 (2020). O. Sh. Bazarov, I. K. Khujaev, and A. A. Ismailov, “An iterative method for solving the problem of pipeline transportation of gas along a relief track,” Int. J. Adv. Res. Sci., Eng. Technol. 7 (5), 13840–13849 (2020).
12.
go back to reference M. Bogdevičius, J. Janutėnienė, K. Jonikas, E. Guseinovienė, and M. Drakšas, “Mathematical modeling of oil transportation by pipelines using anti-turbulent additives,” J. Vibroeng. 15 (1), 419–427 (2013). M. Bogdevičius, J. Janutėnienė, K. Jonikas, E. Guseinovienė, and M. Drakšas, “Mathematical modeling of oil transportation by pipelines using anti-turbulent additives,” J. Vibroeng. 15 (1), 419–427 (2013).
15.
go back to reference M. Kh. Khairullin, M. N. Shamsiev, and L. A. Tulupov, “Modeling of hydrate formation in gas pipelines,” Neftegazov. Delo, No. 1 (2005). M. Kh. Khairullin, M. N. Shamsiev, and L. A. Tulupov, “Modeling of hydrate formation in gas pipelines,” Neftegazov. Delo, No. 1 (2005).
22.
go back to reference B. M. Budak, A. A. Samarskii, and A. N. Tikhonov, A Collection of Problems in Mathematical Physics, 2nd ed. (Nauka, Moscow, 1972) [in Russian]. B. M. Budak, A. A. Samarskii, and A. N. Tikhonov, A Collection of Problems in Mathematical Physics, 2nd ed. (Nauka, Moscow, 1972) [in Russian].
23.
go back to reference A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics (Nauka, Moscow, 1977; Dover, New York, 1990). A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics (Nauka, Moscow, 1977; Dover, New York, 1990).
24.
go back to reference G. B. Whitham, Linear and Nonlinear Waves (Wiley, New York, 1974; Mir, Moscow, 1977). G. B. Whitham, Linear and Nonlinear Waves (Wiley, New York, 1974; Mir, Moscow, 1977).
25.
go back to reference O. V. Rudenko, Fundamentals of Nonlinear Acoustics (Mosk. Gos. Univ., Moscow, 1983) [in Russian]. O. V. Rudenko, Fundamentals of Nonlinear Acoustics (Mosk. Gos. Univ., Moscow, 1983) [in Russian].
26.
go back to reference O. Sh. Bozorov and M. M. Mamatkulov, Analytical Studies of Nonlinear Hydrodynamic Phenomena in Media with Slowly Varying Parameters (TITLP, Tashkent, 2015) [in Russian]. O. Sh. Bozorov and M. M. Mamatkulov, Analytical Studies of Nonlinear Hydrodynamic Phenomena in Media with Slowly Varying Parameters (TITLP, Tashkent, 2015) [in Russian].
28.
go back to reference I. K. Khujaev, Kh. A. Mamadaliev, and M. A. Kukanova, “Analytical solution of the propagation of seal wave in an inclined pipeline, due to the liquid deceleration,” Probl. Vychisl. Prikl. Mat. Tashkent, No. 2, 65–79 (2015). I. K. Khujaev, Kh. A. Mamadaliev, and M. A. Kukanova, “Analytical solution of the propagation of seal wave in an inclined pipeline, due to the liquid deceleration,” Probl. Vychisl. Prikl. Mat. Tashkent, No. 2, 65–79 (2015).
29.
go back to reference I. K. Khuzhaev, S. S. Akhmadzhonov, and Kh. Kh. Aminov, “ Application of the method of characteristics to solve the problem of an elementary section of a gas pipeline when gas flows from its end into the environment,” Probl. Mekh., Tashkent, No. 1 (30), 65–75 (2021). I. K. Khuzhaev, S. S. Akhmadzhonov, and Kh. Kh. Aminov, “ Application of the method of characteristics to solve the problem of an elementary section of a gas pipeline when gas flows from its end into the environment,” Probl. Mekh., Tashkent, No. 1 (30), 65–75 (2021).
30.
go back to reference V. E. Seleznev, V. V. Aleshin, and S. N. Pryalov, Modern Computer Simulators in Pipeline Transport. Mathematical Modeling Methods and Practical Application (MAKS Press, Moscow, 2007) [in Russian]. V. E. Seleznev, V. V. Aleshin, and S. N. Pryalov, Modern Computer Simulators in Pipeline Transport. Mathematical Modeling Methods and Practical Application (MAKS Press, Moscow, 2007) [in Russian].
31.
go back to reference A. A. Samarskii and Yu. P. Popov, Difference Schemes for Gas Dynamics (Nauka, Moscow, 1975) [in Russian]. A. A. Samarskii and Yu. P. Popov, Difference Schemes for Gas Dynamics (Nauka, Moscow, 1975) [in Russian].
Metadata
Title
Modeling the Stages of Verification of the Suitability of a Short Section of a Gas Pipeline for Operation
Authors
I. K. Khujaev
S. S. Akhmadjonov
M. K. Mahkamov
Publication date
01-12-2022
Publisher
Pleiades Publishing
Published in
Mathematical Models and Computer Simulations / Issue 6/2022
Print ISSN: 2070-0482
Electronic ISSN: 2070-0490
DOI
https://doi.org/10.1134/S2070048222060084

Other articles of this Issue 6/2022

Mathematical Models and Computer Simulations 6/2022 Go to the issue

Premium Partner