Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 9/2021

26-05-2021

Modeling the Tensile Behavior of Specimens Manufactured by the Selective Laser Melting Method Using Continuum Damage Mechanics Theory

Authors: H. Rokhgireh, M. Kästner, A. Nayebi

Published in: Journal of Materials Engineering and Performance | Issue 9/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Selective laser melting (SLM) has been developed in recent decades. It is capable of manufacturing components with complex geometries. However, there is no reliable model to predict the failure of parts made by this technique. In this study, the continuum damage model (CDM) of Lemaitre and the Gurson-Tavergaard-Needleman (GTN) model are employed to simulate the tensile stress–strain behavior of SLM manufactured specimens and to study the specimen size effect. The numerical results are compared with experimental results of tensile tests of SLM manufactured specimens. It is shown that the two models appropriately simulate the tensile tests in the hardening part. However, when softening occurs, the modified CDM can better predict failure and size effect. It is also observed that the GTN model needs modifications of the parameters to be able to simulate the size dependency of the mechanical properties of the SLM manufactured parts, which is attributed to different initial values of porosity.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference A. Mitchell, U. Lafont, M. Holynska and C,, Semprimoschnig, Additive Manufacturing—A Review of 4D Printing and Future Applications, Additive Manufacturing, 2018, 24, p 606–626.CrossRef A. Mitchell, U. Lafont, M. Holynska and C,, Semprimoschnig, Additive Manufacturing—A Review of 4D Printing and Future Applications, Additive Manufacturing, 2018, 24, p 606–626.CrossRef
2.
go back to reference T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De and W. Zhang, Additive Manufacturing of Metallic Components–Process Structure and Properties, Prog. Mater Sci., 2018, 92, p 112–224.CrossRef T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De and W. Zhang, Additive Manufacturing of Metallic Components–Process Structure and Properties, Prog. Mater Sci., 2018, 92, p 112–224.CrossRef
3.
go back to reference E. Cyr, A. Lloyd and M. Mohammadi, Fatigue Behavior and Cyclic Deformation of Additive Manufactured NiTi, J. of Manufacturing Proc., 2018, 35, p 289–294.CrossRef E. Cyr, A. Lloyd and M. Mohammadi, Fatigue Behavior and Cyclic Deformation of Additive Manufactured NiTi, J. of Manufacturing Proc., 2018, 35, p 289–294.CrossRef
4.
go back to reference Z. Wang and P. Li, Characterisation and Constitutive Model of Tensile Properties of Selective Laser Melted Ti-6Al-4V Struts for Microlattice Structures, Mater. Sci. Eng., A, 2018, 725, p 350–358.CrossRef Z. Wang and P. Li, Characterisation and Constitutive Model of Tensile Properties of Selective Laser Melted Ti-6Al-4V Struts for Microlattice Structures, Mater. Sci. Eng., A, 2018, 725, p 350–358.CrossRef
5.
go back to reference M. Guo, Y. Ye, X. Jiang and L. Wang, Microstructure, Mechanical Properties and Residual Stress of Selective Laser Melted AlSi10Mg, J. of Materials Engineering and Performance, 2019, 28, p 6753–6760.CrossRef M. Guo, Y. Ye, X. Jiang and L. Wang, Microstructure, Mechanical Properties and Residual Stress of Selective Laser Melted AlSi10Mg, J. of Materials Engineering and Performance, 2019, 28, p 6753–6760.CrossRef
6.
go back to reference A. Kiani, S. Khazaee, M. Badrossamay, E. Foroozmehr and M. Karevan, An Investigation into Thermal History and Its Correlation with Mechanical Properties of PA12 Parts Produced by Selective Laser Sintering Process, J. Mater. Eng. Perf., 2020, 29, p 832–840.CrossRef A. Kiani, S. Khazaee, M. Badrossamay, E. Foroozmehr and M. Karevan, An Investigation into Thermal History and Its Correlation with Mechanical Properties of PA12 Parts Produced by Selective Laser Sintering Process, J. Mater. Eng. Perf., 2020, 29, p 832–840.CrossRef
7.
go back to reference S. Romano, P.D. Nezhadfar, N. Shamsaei, M. Seifid and S. Beretta, High Cycle Fatigue Behavior and Life Prediction for Additively Manufactured 17–4 PH Stainless Steel: Effect of Sub-Surface Porosity and Surface Roughness, Theoret. Appl. Fract. Mech., 2020, 106, p 102477.CrossRef S. Romano, P.D. Nezhadfar, N. Shamsaei, M. Seifid and S. Beretta, High Cycle Fatigue Behavior and Life Prediction for Additively Manufactured 17–4 PH Stainless Steel: Effect of Sub-Surface Porosity and Surface Roughness, Theoret. Appl. Fract. Mech., 2020, 106, p 102477.CrossRef
8.
go back to reference V. A. Klimenov, V. V. Fedorov, M. S. Slobodyan, N. S. Pushilina, et al. Microstructure and Compressive Behavior of Ti-6Al-4V Alloy Built by Electron Beam Free-Form Fabrication. J. Mater. Eng. Perf. (2020) In Press. V. A. Klimenov, V. V. Fedorov, M. S. Slobodyan, N. S. Pushilina, et al. Microstructure and Compressive Behavior of Ti-6Al-4V Alloy Built by Electron Beam Free-Form Fabrication. J. Mater. Eng. Perf. (2020) In Press.
9.
go back to reference R.O.a.E. C., Rapid Manufacturing of Lattice Structures with Selective Laser Melting, Proc. of SPIE 6107, Laser-Based Micropackaging, 2005. R.O.a.E. C., Rapid Manufacturing of Lattice Structures with Selective Laser Melting, Proc. of SPIE 6107, Laser-Based Micropackaging, 2005.
10.
go back to reference F.G. Bachmann, et al., Rapid Manufacturing of Lattice Structures with Selective Laser Melting, Lasers and Applications in Science and Engineering, 2006 (6107: p.61070K-61070K-12). F.G. Bachmann, et al., Rapid Manufacturing of Lattice Structures with Selective Laser Melting, Lasers and Applications in Science and Engineering, 2006 (6107: p.61070K-61070K-12).
11.
go back to reference M. Leary, M. Mazur, J. Elambasseril, M. McMillan, T. Chirent, Y. Sun, M. Qian, M. Easton and M. Brandt, Selective Laser Melting (SLM) of AlSi12Mg Lattice Structures, Mater. Des., 2016, 98, p 344–357.CrossRef M. Leary, M. Mazur, J. Elambasseril, M. McMillan, T. Chirent, Y. Sun, M. Qian, M. Easton and M. Brandt, Selective Laser Melting (SLM) of AlSi12Mg Lattice Structures, Mater. Des., 2016, 98, p 344–357.CrossRef
12.
go back to reference H.-W. Mindt, O. Desmaison, M. Megahed, A. Peralta and J. Neumann, Modeling of Powder Bed Manufacturing Defects, J. of Mater. Eng. Perf., 2018, 28, p 32–43.CrossRef H.-W. Mindt, O. Desmaison, M. Megahed, A. Peralta and J. Neumann, Modeling of Powder Bed Manufacturing Defects, J. of Mater. Eng. Perf., 2018, 28, p 32–43.CrossRef
13.
go back to reference Z. Zhang, X.X. Yao and P. Ge, Phase-Field-Model-Based Analysis of the Effects of Powder Particle on Porosities and Densities in Selective Laser Sintering Additive Manufacturing, Int. J. Mech. Sci., 2020, 166, p 105230.CrossRef Z. Zhang, X.X. Yao and P. Ge, Phase-Field-Model-Based Analysis of the Effects of Powder Particle on Porosities and Densities in Selective Laser Sintering Additive Manufacturing, Int. J. Mech. Sci., 2020, 166, p 105230.CrossRef
14.
go back to reference P. Wang, M. Hao, G. Qiang, L. Mui, L. Sharon Nie and J. Wei, Effect of Defects and Specimen Size with Rectangular Cross-Section on the Tensile Properties of Additively Manufactured Components, J. Virtual Phys. Prototyp., 2020, 15, p 1–14.CrossRef P. Wang, M. Hao, G. Qiang, L. Mui, L. Sharon Nie and J. Wei, Effect of Defects and Specimen Size with Rectangular Cross-Section on the Tensile Properties of Additively Manufactured Components, J. Virtual Phys. Prototyp., 2020, 15, p 1–14.CrossRef
18.
go back to reference F.A. McClintock, A criterion Of Ductile Fracture by the Growth of Holes, J Appl. Mech., 1968, 35, p 363–371.CrossRef F.A. McClintock, A criterion Of Ductile Fracture by the Growth of Holes, J Appl. Mech., 1968, 35, p 363–371.CrossRef
19.
go back to reference J.R. Rice and D.M. Tracey, On the Ductile Enlargement of Voids in Triaxial Stress Fields, J. Mechan. Phys. Solids, 1969, 17, p 201–217.CrossRef J.R. Rice and D.M. Tracey, On the Ductile Enlargement of Voids in Triaxial Stress Fields, J. Mechan. Phys. Solids, 1969, 17, p 201–217.CrossRef
20.
go back to reference A. Gurson, Continuum Theory of Ductile Rupture by Void Nucleation and Growth, Part I—Yield Criteria and Flow Rules for Porous Ductile Media, J. Eng. Mater. Technol., 1977, 99, p 2–15.CrossRef A. Gurson, Continuum Theory of Ductile Rupture by Void Nucleation and Growth, Part I—Yield Criteria and Flow Rules for Porous Ductile Media, J. Eng. Mater. Technol., 1977, 99, p 2–15.CrossRef
21.
go back to reference V. Tvergaard and A. Needleman, Analysis of the Cup-Cone Fracture in a Round Tensile Bar, Acta Metall., 1984, 32, p 157–169.CrossRef V. Tvergaard and A. Needleman, Analysis of the Cup-Cone Fracture in a Round Tensile Bar, Acta Metall., 1984, 32, p 157–169.CrossRef
22.
go back to reference M. Kachanov, Continuum Model of Medium with Cracks, J. Engng Mech. Div., Trans. ASCE, 106 (1980), 1039–1051. M. Kachanov, Continuum Model of Medium with Cracks, J. Engng Mech. Div., Trans. ASCE, 106 (1980), 1039–1051.
23.
go back to reference J. Lemaitre, A Course on Damage Mechanics, Springer, Berlin, Germany, 1996.CrossRef J. Lemaitre, A Course on Damage Mechanics, Springer, Berlin, Germany, 1996.CrossRef
24.
go back to reference H. Badreddine, K. Saanouni and T.D. Nguyen, Damage Anisotropy and its Effect on the Plastic Anisotropy Evolution Under Finite Strains, Int. J. of Solids and Struct., 2015, 63, p 11–31.CrossRef H. Badreddine, K. Saanouni and T.D. Nguyen, Damage Anisotropy and its Effect on the Plastic Anisotropy Evolution Under Finite Strains, Int. J. of Solids and Struct., 2015, 63, p 11–31.CrossRef
25.
go back to reference J. L. Chaboche, The Concept of Effective Stress Applied to Elasticity and Viscoplasticity in the Presence of Anisotropic Damage, in: Mechanical Behavior, of Anisotropic Solids (Ed. J.-P.Boehler ), Martinus Nijhoff, The Hague (1982), 737–760. J. L. Chaboche, The Concept of Effective Stress Applied to Elasticity and Viscoplasticity in the Presence of Anisotropic Damage, in: Mechanical Behavior, of Anisotropic Solids (Ed. J.-P.Boehler ), Martinus Nijhoff, The Hague (1982), 737–760.
26.
go back to reference N. Bonora, G. Testa, A. Ruggiero, G. Iannitti and D. Gentile, Continuum Damage Mechanics Modelling Incorporating Stress Triaxiality Effect on Ductile Damage Initiation, Fatigue Fract. Eng. Mech. Struct., 2020, 43, p 1755–1768.CrossRef N. Bonora, G. Testa, A. Ruggiero, G. Iannitti and D. Gentile, Continuum Damage Mechanics Modelling Incorporating Stress Triaxiality Effect on Ductile Damage Initiation, Fatigue Fract. Eng. Mech. Struct., 2020, 43, p 1755–1768.CrossRef
27.
go back to reference U. Gebhardt, R. Gärtner, S. Holtzhausen, M. Kästner, Private Communication, (2019) U. Gebhardt, R. Gärtner, S. Holtzhausen, M. Kästner, Private Communication, (2019)
29.
go back to reference K. Mertová, J. Džugan, M. Roudnická, M. Daniel, D. Vojtech, M. Seifi and J.J. Lewandowski, Build Size and Orientation Influence on Mechanical Properties of Powder Bed Fusion Deposited Titanium Parts, Metals, 2020, 10, p 1340.CrossRef K. Mertová, J. Džugan, M. Roudnická, M. Daniel, D. Vojtech, M. Seifi and J.J. Lewandowski, Build Size and Orientation Influence on Mechanical Properties of Powder Bed Fusion Deposited Titanium Parts, Metals, 2020, 10, p 1340.CrossRef
30.
go back to reference A.M. Roach, B.C. White, A. Garland, B.H. Jared, J.D. Carroll and B.L. Boyce, Size-Dependent Stochastic Tensile Properties In Additively Manufactured 316L Stainless Steel, Addit. Manuf., 2020, 32, p 101090. A.M. Roach, B.C. White, A. Garland, B.H. Jared, J.D. Carroll and B.L. Boyce, Size-Dependent Stochastic Tensile Properties In Additively Manufactured 316L Stainless Steel, Addit. Manuf., 2020, 32, p 101090.
31.
go back to reference Y. Amani, S. Dancette, P. Delroisse, A. Simar and E. Maire, Compression Behavior of Lattice Structures Produced by Selective Laser Melting: X-ray Tomography Based Experimental and Finite Element Approaches, Acta Mater., 2018, 159, p 395–407.CrossRef Y. Amani, S. Dancette, P. Delroisse, A. Simar and E. Maire, Compression Behavior of Lattice Structures Produced by Selective Laser Melting: X-ray Tomography Based Experimental and Finite Element Approaches, Acta Mater., 2018, 159, p 395–407.CrossRef
32.
go back to reference S. Zhongji et al., Simultaneously Enhanced Strength and Ductility for 3D-Printed Stainless Steel 316L by Selective Laser Melting, NPG Asia Mater., 2018, 104, p 127–136. S. Zhongji et al., Simultaneously Enhanced Strength and Ductility for 3D-Printed Stainless Steel 316L by Selective Laser Melting, NPG Asia Mater., 2018, 104, p 127–136.
33.
go back to reference W.Y. Morris et al., Additively Manufactured Hierarchical Stainless Steels with High Strength and Ductility, Nat. Mater., 2018, 17.1, p 63–71. W.Y. Morris et al., Additively Manufactured Hierarchical Stainless Steels with High Strength and Ductility, Nat. Mater., 2018, 17.1, p 63–71.
34.
go back to reference D. Kong, C. Dong, X. Ni, L. et al., Mechanical Properties And Corrosion Behavior of Selective Laser Melted 316L Stainless Steel After Different Heat Treatment Processes, J. Mater. Sci. Technol., 2019, 35(7), p 1499–1507.CrossRef D. Kong, C. Dong, X. Ni, L. et al., Mechanical Properties And Corrosion Behavior of Selective Laser Melted 316L Stainless Steel After Different Heat Treatment Processes, J. Mater. Sci. Technol., 2019, 35(7), p 1499–1507.CrossRef
35.
go back to reference D. Kong, C. Dong, X. Ni, Z. Liang, C. Man and X. Li, Hetero-Deformation Induced Stress in Additively Manufactured 316L Stainless Steel, Mater. Res. Lett., 2020, 8, p 390–397.CrossRef D. Kong, C. Dong, X. Ni, Z. Liang, C. Man and X. Li, Hetero-Deformation Induced Stress in Additively Manufactured 316L Stainless Steel, Mater. Res. Lett., 2020, 8, p 390–397.CrossRef
36.
go back to reference X. Wang, L. Zhao, J.Y.H. Fuh and H.P. Lee, Experimental Characterization and Micromechanical-Statistical Modeling of 316L Stainless Steel Processed by Selective Laser Melting, Comput. Mat. Sci., 2020, 177, p 109595.CrossRef X. Wang, L. Zhao, J.Y.H. Fuh and H.P. Lee, Experimental Characterization and Micromechanical-Statistical Modeling of 316L Stainless Steel Processed by Selective Laser Melting, Comput. Mat. Sci., 2020, 177, p 109595.CrossRef
37.
go back to reference D. Kong, X. Ni, C. Dong, X. Lei et al., Bio-Functional And Anti-Corrosive 3D Printing 316L Stainless Steel Fabricated by Selective Laser Melting, Mater. Des., 2018, 152, p 88–101.CrossRef D. Kong, X. Ni, C. Dong, X. Lei et al., Bio-Functional And Anti-Corrosive 3D Printing 316L Stainless Steel Fabricated by Selective Laser Melting, Mater. Des., 2018, 152, p 88–101.CrossRef
38.
go back to reference Y. Kok, X.P. Tan, P. Wang, M.L.S. Nai, N.H. Loh, E. Liu and S.B. Tor, Anisotropy and Heterogeneity of Microstructure and Mechanical Properties in Metal Additive Manufacturing: A Critical Review, Mater. Des., 2018, 139, p 565–586.CrossRef Y. Kok, X.P. Tan, P. Wang, M.L.S. Nai, N.H. Loh, E. Liu and S.B. Tor, Anisotropy and Heterogeneity of Microstructure and Mechanical Properties in Metal Additive Manufacturing: A Critical Review, Mater. Des., 2018, 139, p 565–586.CrossRef
39.
go back to reference H. Rokhgireh and A. Nayebi, Non-Proportional Stress and Stress-Strain Controlled Paths Cyclic Loading Modeling by Using Anisotropic Continuum Damage Model, Theor. Appl. Fract. Mech., 2019, 103, p 102311.CrossRef H. Rokhgireh and A. Nayebi, Non-Proportional Stress and Stress-Strain Controlled Paths Cyclic Loading Modeling by Using Anisotropic Continuum Damage Model, Theor. Appl. Fract. Mech., 2019, 103, p 102311.CrossRef
Metadata
Title
Modeling the Tensile Behavior of Specimens Manufactured by the Selective Laser Melting Method Using Continuum Damage Mechanics Theory
Authors
H. Rokhgireh
M. Kästner
A. Nayebi
Publication date
26-05-2021
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 9/2021
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-05896-w

Other articles of this Issue 9/2021

Journal of Materials Engineering and Performance 9/2021 Go to the issue

Premium Partners