Skip to main content
Top
Published in: Journal of Engineering Mathematics 1/2018

08-05-2018

Modeling transient magnetohydrodynamic peristaltic pumping of electroconductive viscoelastic fluids through a deformable curved channel

Authors: V. K. Narla, D. Tripathi, O. A. Bég, A. Kadir

Published in: Journal of Engineering Mathematics | Issue 1/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A mathematical model is presented to analyze the unsteady peristaltic flow of magnetized viscoelastic fluids through a deformable curved channel. The study simulates the bio-inspired pumping of electroconductive rheological polymers which possess both electroconductive and viscoelastic properties. The Jeffrey viscoelastic model is utilized which features both relaxation and retardation terms of relevance to real polymers. A magnetic body force is incorporated for the influence of static radial magnetic field. The mass and momentum conservation equations are formulated in an intrinsic coordinate system and transformed with appropriate variables into a nondimensional system between the wave and the laboratory frames, under lubrication (i.e., low Reynolds number and long wavelength) approximations. Kinematic and no-slip boundary conditions are imposed at the channel walls. A magnetic body force is incorporated for the influence of static radial magnetic field in the primary momentum equation. An analytic approach is employed to determine closed-form solutions for stream function, axial pressure gradient, and volumetric flow rate. Spatiotemporal plots for pressure distribution along the channel (passage) length are presented to study the influences of curvature parameter, relaxation-to-retardation time ratio (Jeffrey first viscoelastic parameter) and Hartmann number (magnetic field parameter). The effects of these parameters on radial velocity distributions are also visualized. Cases of trapping and reflux in a curved channel are discussed. Streamline distributions are included to study trapping phenomena and to investigate more closely the impact of curvature, magnetic field, and viscoelastic properties on bolus evolution. The reflux or retrograde motion of the particles is studied by particle advection based on Lagrangian viewpoint. The simulations provide new insight into the mechanisms of pumping of electroconductive non-Newtonian liquids in realistic geometries.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kalia S, Kango S, Kumar A, Haldorai Y, Kumari B, Kumar R (2014) Magnetic polymer nanocomposites for environmental and biomedical applications. Colloid Polym Sci 292:2025–2052CrossRef Kalia S, Kango S, Kumar A, Haldorai Y, Kumari B, Kumar R (2014) Magnetic polymer nanocomposites for environmental and biomedical applications. Colloid Polym Sci 292:2025–2052CrossRef
2.
go back to reference Watarai H, Namba M (2001) Magnetophoretic behavior of single polystyrene particles in aqueous manganese(II) chloride. Anal Sci 17(10):1233–1236CrossRef Watarai H, Namba M (2001) Magnetophoretic behavior of single polystyrene particles in aqueous manganese(II) chloride. Anal Sci 17(10):1233–1236CrossRef
3.
go back to reference Kim SH, Kim SJ, Park SJ, Mun JH, Kang TG, Park JM (2012) Rheological behavior of magnetic powder mixtures for magnetic PIM. Korea Aust Rheol J 24:121–127CrossRef Kim SH, Kim SJ, Park SJ, Mun JH, Kang TG, Park JM (2012) Rheological behavior of magnetic powder mixtures for magnetic PIM. Korea Aust Rheol J 24:121–127CrossRef
4.
go back to reference Wilson MJ, Fuchs M, Gordaninejad F (2002) Characterization of magnetorheological polymer gels. J Appl Polym Sci 84(14):2733–2742CrossRef Wilson MJ, Fuchs M, Gordaninejad F (2002) Characterization of magnetorheological polymer gels. J Appl Polym Sci 84(14):2733–2742CrossRef
5.
go back to reference Xu Y, Gong X, Xuan S (2013) Soft magnetorheological polymer gels with controllable rheological properties. Smart Mater Struct 22:075029CrossRef Xu Y, Gong X, Xuan S (2013) Soft magnetorheological polymer gels with controllable rheological properties. Smart Mater Struct 22:075029CrossRef
6.
go back to reference Baker RS, Tessier MJ (1987) Handbook of electromagnetic pump technology. Elsevier, New York Baker RS, Tessier MJ (1987) Handbook of electromagnetic pump technology. Elsevier, New York
7.
go back to reference Youngquist R, Lane J, Immer C, Simpson J (2004) Pumping liquid oxygen by use of pulsed magnetic fields no moving parts are in contact with the oxygen. John F. Kennedy Space Center Youngquist R, Lane J, Immer C, Simpson J (2004) Pumping liquid oxygen by use of pulsed magnetic fields no moving parts are in contact with the oxygen. John F. Kennedy Space Center
8.
go back to reference Mao L, Elborai S, He X, Zahn M, Koser H (2011) Direct observation of closed-loop ferrohydrodynamic pumping under traveling magnetic fields. Phys Rev B 84:104431CrossRef Mao L, Elborai S, He X, Zahn M, Koser H (2011) Direct observation of closed-loop ferrohydrodynamic pumping under traveling magnetic fields. Phys Rev B 84:104431CrossRef
9.
go back to reference Hartshorne H, Backhouse CJ, Lee WE (2004) Ferrofluid-based microchip pump and valve. Sens Actuators B 99:592–600CrossRef Hartshorne H, Backhouse CJ, Lee WE (2004) Ferrofluid-based microchip pump and valve. Sens Actuators B 99:592–600CrossRef
10.
go back to reference Atencia J, Beebe DJ (2004) Magnetically-driven biomimetic micro pumping using vortices. Lab Chip 4(6):598–602CrossRef Atencia J, Beebe DJ (2004) Magnetically-driven biomimetic micro pumping using vortices. Lab Chip 4(6):598–602CrossRef
11.
go back to reference Hesketh P, Hanasoge S, Ballard M, Erickson M, Xu J, Alexeev A (2016) Pumping induced by bio-mimetic magnetic micro-cilia in creeping flows. In: PRiME 2016/230th Electrochemical Society (ECS) meeting MA2016-02, p 3822 Hesketh P, Hanasoge S, Ballard M, Erickson M, Xu J, Alexeev A (2016) Pumping induced by bio-mimetic magnetic micro-cilia in creeping flows. In: PRiME 2016/230th Electrochemical Society (ECS) meeting MA2016-02, p 3822
12.
go back to reference Bach D, Schmich F, Masselter T, Speck T (2015) A review of selected pumping systems in nature and engineering—potential biomimetic concepts for improving displacement pumps and pulsation damping. Bioinspir Biomim 10:051001CrossRef Bach D, Schmich F, Masselter T, Speck T (2015) A review of selected pumping systems in nature and engineering—potential biomimetic concepts for improving displacement pumps and pulsation damping. Bioinspir Biomim 10:051001CrossRef
13.
go back to reference Wu Y, Zhou D, Spinks GM, Innis PC, Megill WM, Wallace GG (2005) Titan: a conducting polymer based microfluidic pump. Smart Mater Struct 14:1511–1516CrossRef Wu Y, Zhou D, Spinks GM, Innis PC, Megill WM, Wallace GG (2005) Titan: a conducting polymer based microfluidic pump. Smart Mater Struct 14:1511–1516CrossRef
14.
go back to reference Bar-Cohen Y (2005) Artificial muscles using electroactive polymers (EAP): capabilities, challenges and potential. Tech. rep. Biomimetics: Biologically Inspired Technologies Bar-Cohen Y (2005) Artificial muscles using electroactive polymers (EAP): capabilities, challenges and potential. Tech. rep. Biomimetics: Biologically Inspired Technologies
15.
go back to reference Jaffrin MY, Shapiro AH (1971) Peristaltic pumping. Annu Rev Fluid Mech 3:13–16CrossRef Jaffrin MY, Shapiro AH (1971) Peristaltic pumping. Annu Rev Fluid Mech 3:13–16CrossRef
16.
go back to reference Dodds WJ, Stewart ET, Hodges D, Zhoralske FF (1972) Movement of the feline esophagus associated with respiration and peristalsis. J Clin Investig 52:1–13CrossRef Dodds WJ, Stewart ET, Hodges D, Zhoralske FF (1972) Movement of the feline esophagus associated with respiration and peristalsis. J Clin Investig 52:1–13CrossRef
17.
go back to reference Takabatake S, Ayukawa K (1982) Numerical study of two dimensional peristaltic flows. J Fluid Mech 122:439–465CrossRefMATH Takabatake S, Ayukawa K (1982) Numerical study of two dimensional peristaltic flows. J Fluid Mech 122:439–465CrossRefMATH
18.
go back to reference Tang D, Shen MC (1989) Peristaltic transport of a heat conducting fluid subject to Newton’s cooling law at the boundary. Int J Eng Sci 27:809–825MathSciNetCrossRefMATH Tang D, Shen MC (1989) Peristaltic transport of a heat conducting fluid subject to Newton’s cooling law at the boundary. Int J Eng Sci 27:809–825MathSciNetCrossRefMATH
19.
go back to reference Li M, Brasseur JG (1993) Non steady peristaltic transport in finite length tubes. J Fluid Mech 248:129–151CrossRefMATH Li M, Brasseur JG (1993) Non steady peristaltic transport in finite length tubes. J Fluid Mech 248:129–151CrossRefMATH
20.
go back to reference Kumar BVR, Naidu KB (1995) A numerical study of peristaltic flows. Comput Fluids 24:161–176CrossRefMATH Kumar BVR, Naidu KB (1995) A numerical study of peristaltic flows. Comput Fluids 24:161–176CrossRefMATH
21.
go back to reference Pal A, Brasseur JG (2002) The mechanical advantage of local longitudinal shortening on peristaltic transport. J Biomech Eng 124:94–100CrossRef Pal A, Brasseur JG (2002) The mechanical advantage of local longitudinal shortening on peristaltic transport. J Biomech Eng 124:94–100CrossRef
22.
go back to reference Hariharan P, Seshadri V, Banerjee R (2008) Peristaltic transport of non-Newtonian fluid in a diverging tube with different wave forms. Math Comput Model 48:998–1017MathSciNetCrossRefMATH Hariharan P, Seshadri V, Banerjee R (2008) Peristaltic transport of non-Newtonian fluid in a diverging tube with different wave forms. Math Comput Model 48:998–1017MathSciNetCrossRefMATH
23.
go back to reference Tripathi D, Bég OA (2012) A numerical study of oscillating peristaltic flow of generalized Maxwell viscoelastic fluids through a porous medium. Transp Porous Media 95:337–348MathSciNetCrossRef Tripathi D, Bég OA (2012) A numerical study of oscillating peristaltic flow of generalized Maxwell viscoelastic fluids through a porous medium. Transp Porous Media 95:337–348MathSciNetCrossRef
24.
go back to reference Kiran GR, Radhakrishnamacharya G, Bég OA (2017) Peristaltic flow and hydrodynamic dispersion of a reactive micropolar fluid: simulation of chemical effects in the digestive process. J Mech Med Biol 17:1750013CrossRef Kiran GR, Radhakrishnamacharya G, Bég OA (2017) Peristaltic flow and hydrodynamic dispersion of a reactive micropolar fluid: simulation of chemical effects in the digestive process. J Mech Med Biol 17:1750013CrossRef
25.
go back to reference Rao AR, Mishra M (2004) Nonlinear and curvature effects on peristaltic flow of a viscous fluid in an asymmetric channel. Acta Mech 168:35–59CrossRefMATH Rao AR, Mishra M (2004) Nonlinear and curvature effects on peristaltic flow of a viscous fluid in an asymmetric channel. Acta Mech 168:35–59CrossRefMATH
26.
go back to reference Usha S, Rao AR (1995) Peristaltic transport of a biofluid in a pipe of elliptic cross section. J Biomech 28:45–52CrossRef Usha S, Rao AR (1995) Peristaltic transport of a biofluid in a pipe of elliptic cross section. J Biomech 28:45–52CrossRef
27.
go back to reference Tripathi D, Ali N, dan Chaube MK, Hayat T, Hendi AA (2011) Peristaltic flow of MHD Jeffrey fluid through finite length cylindrical tube. Appl Math Mech Engl Ed 32:1231–1244MathSciNetCrossRefMATH Tripathi D, Ali N, dan Chaube MK, Hayat T, Hendi AA (2011) Peristaltic flow of MHD Jeffrey fluid through finite length cylindrical tube. Appl Math Mech Engl Ed 32:1231–1244MathSciNetCrossRefMATH
28.
go back to reference Latif T, Alvi N, Hussain Q, Asghar S (2016) Variable properties of MHD third order fluid with peristalsis. Results Phys 6:963–972CrossRef Latif T, Alvi N, Hussain Q, Asghar S (2016) Variable properties of MHD third order fluid with peristalsis. Results Phys 6:963–972CrossRef
29.
go back to reference Bhatti MM, Zeeshan A, Ijaz N, Bég OA, Kadir A (2017) Mathematical modelling of nonlinear thermal radiation effects on EMHD peristaltic pumping of viscoelastic dusty fluid through a porous medium channel. Eng Sci Technol Int J 20(3):1129–1139CrossRef Bhatti MM, Zeeshan A, Ijaz N, Bég OA, Kadir A (2017) Mathematical modelling of nonlinear thermal radiation effects on EMHD peristaltic pumping of viscoelastic dusty fluid through a porous medium channel. Eng Sci Technol Int J 20(3):1129–1139CrossRef
30.
go back to reference Sato H, Kawai T, Fujita T, Okabe M (2000) Two dimensional peristaltic flow in curved channels. Trans Jpn Soc Mech Eng B 66:679–685CrossRef Sato H, Kawai T, Fujita T, Okabe M (2000) Two dimensional peristaltic flow in curved channels. Trans Jpn Soc Mech Eng B 66:679–685CrossRef
31.
go back to reference Ali N, Sajid M, Javed T, Abbas Z (2010) Heat transfer analysis of peristaltic flow in a curved channel. Int J Heat Mass Transf 53:3319–3325CrossRefMATH Ali N, Sajid M, Javed T, Abbas Z (2010) Heat transfer analysis of peristaltic flow in a curved channel. Int J Heat Mass Transf 53:3319–3325CrossRefMATH
32.
go back to reference Hayat T, Javed M, Hendi AA (2011) Peristaltic transport of viscous fluid in a curved channel with compliant walls. Int J Heat Mass Transf 54:1615–1621CrossRefMATH Hayat T, Javed M, Hendi AA (2011) Peristaltic transport of viscous fluid in a curved channel with compliant walls. Int J Heat Mass Transf 54:1615–1621CrossRefMATH
33.
go back to reference Ramanamurthy JV, Prasad KM, Narla VK (2013) Unsteady peristaltic transport in curved channels. Phys Fluids 25(1–20):091903CrossRefMATH Ramanamurthy JV, Prasad KM, Narla VK (2013) Unsteady peristaltic transport in curved channels. Phys Fluids 25(1–20):091903CrossRefMATH
34.
go back to reference Tripathi D, Akbar NS, Khan ZH, Bég OA (2016) Peristaltic transport of bi-viscosity fluids through a curved tube: a mathematical model for intestinal flow. Proc IMechE H 230(9):817–828CrossRef Tripathi D, Akbar NS, Khan ZH, Bég OA (2016) Peristaltic transport of bi-viscosity fluids through a curved tube: a mathematical model for intestinal flow. Proc IMechE H 230(9):817–828CrossRef
35.
go back to reference Ali N, Sajid M, Abbas Z, Javed T (2010) Non-Newtonian fluid flow induced by peristaltic waves in a curved channel. Eur J Mech B 5:387–394MathSciNetCrossRefMATH Ali N, Sajid M, Abbas Z, Javed T (2010) Non-Newtonian fluid flow induced by peristaltic waves in a curved channel. Eur J Mech B 5:387–394MathSciNetCrossRefMATH
36.
go back to reference Norouzi M, Davoodi M, Bég OA, Joneidi A (2013) Analysis of the effect of normal stress differences on heat transfer in creeping viscoelastic dean flow. Int J Therm Sci 69:61–69CrossRef Norouzi M, Davoodi M, Bég OA, Joneidi A (2013) Analysis of the effect of normal stress differences on heat transfer in creeping viscoelastic dean flow. Int J Therm Sci 69:61–69CrossRef
37.
go back to reference Bakalis PA, Hatzikonstantinou PM (2015) Effect of curvature and magnetic field on MHD flow of a liquid metal in a curved annular duct. Int J Numer Methods Heat Fluid Flow 25(8):1818–1833MathSciNetCrossRefMATH Bakalis PA, Hatzikonstantinou PM (2015) Effect of curvature and magnetic field on MHD flow of a liquid metal in a curved annular duct. Int J Numer Methods Heat Fluid Flow 25(8):1818–1833MathSciNetCrossRefMATH
38.
go back to reference Bég OA, Hoque MM, Wahiuzzaman M, Mahmud M, Ferdows M (2014) Spectral numerical simulation of laminar magneto-physiological dean flow. J Mech Med Biol 14:1450047CrossRef Bég OA, Hoque MM, Wahiuzzaman M, Mahmud M, Ferdows M (2014) Spectral numerical simulation of laminar magneto-physiological dean flow. J Mech Med Biol 14:1450047CrossRef
39.
go back to reference Hoque MM, Alam MM, Ferdows M, Bég OA (2013) Numerical simulation of dean number and curvature effects on magneto-biofluid flow through a curved conduit. Proc IMECHE H 227(11):1155–1170CrossRef Hoque MM, Alam MM, Ferdows M, Bég OA (2013) Numerical simulation of dean number and curvature effects on magneto-biofluid flow through a curved conduit. Proc IMECHE H 227(11):1155–1170CrossRef
40.
go back to reference Hayat T, Ali N (2008) Peristaltic motion of a Jeffrey fluid under the effect of a magnetic field in a tube. Nonlinear Sci Numer Simul 13:1343–1352MathSciNetCrossRefMATH Hayat T, Ali N (2008) Peristaltic motion of a Jeffrey fluid under the effect of a magnetic field in a tube. Nonlinear Sci Numer Simul 13:1343–1352MathSciNetCrossRefMATH
41.
go back to reference Noreen S, Hayat T, Alsaedi A (2013) Magnetohydrodynamic peristaltic flow of a pseudoplastic fluid in a curved channel. Z Nat A 68a(5):380–390 Noreen S, Hayat T, Alsaedi A (2013) Magnetohydrodynamic peristaltic flow of a pseudoplastic fluid in a curved channel. Z Nat A 68a(5):380–390
42.
go back to reference Noreen S, Hayat T, Alsaedi A (2013) Flow of MHD Carreau fluid in a curved channel. Appl Bionics Biomech 10:29–39CrossRef Noreen S, Hayat T, Alsaedi A (2013) Flow of MHD Carreau fluid in a curved channel. Appl Bionics Biomech 10:29–39CrossRef
43.
go back to reference Noreen S, Qasim M, Khan ZH (2015) MHD pressure driven flow of nanofluid in curved channel. J Magn Magn Mater 393:490–497CrossRef Noreen S, Qasim M, Khan ZH (2015) MHD pressure driven flow of nanofluid in curved channel. J Magn Magn Mater 393:490–497CrossRef
44.
go back to reference Ali N, Javid K, Sajid M (2016) Simulations of peristaltic slip-flow of hydromagnetic bio-fluid in a curved channel. AIP Adv 6(1–14):025111CrossRef Ali N, Javid K, Sajid M (2016) Simulations of peristaltic slip-flow of hydromagnetic bio-fluid in a curved channel. AIP Adv 6(1–14):025111CrossRef
45.
go back to reference Ali N, Javid K, Sajid M, Bég OA (2016) Numerical simulation of peristaltic flow of a biorheological fluid with shear-dependent viscosity in a curved channel. Comput Methods Biomech Biomed Eng 19(6):614–627CrossRef Ali N, Javid K, Sajid M, Bég OA (2016) Numerical simulation of peristaltic flow of a biorheological fluid with shear-dependent viscosity in a curved channel. Comput Methods Biomech Biomed Eng 19(6):614–627CrossRef
46.
go back to reference Philippova O, Barabanova A, Molchanov V, Khokhlova A (2011) Magnetic polymer beads: recent trends and developments in synthetic design and applications. Eur Polym J 47:542–559CrossRef Philippova O, Barabanova A, Molchanov V, Khokhlova A (2011) Magnetic polymer beads: recent trends and developments in synthetic design and applications. Eur Polym J 47:542–559CrossRef
47.
go back to reference Yamaguchi H, Zhang XR, Higashi S, Li M (2008) Study on power generation using electro-conductive polymer and its mixture with magnetic fluid. J Magn Magn Mater 320:1406–1411CrossRef Yamaguchi H, Zhang XR, Higashi S, Li M (2008) Study on power generation using electro-conductive polymer and its mixture with magnetic fluid. J Magn Magn Mater 320:1406–1411CrossRef
48.
go back to reference Ali N, Sajid M, Hayat T (2010) Long wave length flow analysis in a curved channel. Z Nat 65a:191–196 Ali N, Sajid M, Hayat T (2010) Long wave length flow analysis in a curved channel. Z Nat 65a:191–196
Metadata
Title
Modeling transient magnetohydrodynamic peristaltic pumping of electroconductive viscoelastic fluids through a deformable curved channel
Authors
V. K. Narla
D. Tripathi
O. A. Bég
A. Kadir
Publication date
08-05-2018
Publisher
Springer Netherlands
Published in
Journal of Engineering Mathematics / Issue 1/2018
Print ISSN: 0022-0833
Electronic ISSN: 1573-2703
DOI
https://doi.org/10.1007/s10665-018-9958-6

Other articles of this Issue 1/2018

Journal of Engineering Mathematics 1/2018 Go to the issue

Premium Partners