Skip to main content
Top
Published in: Journal of Computational Neuroscience 2/2020

19-04-2020

Modelling acute and lasting effects of tDCS on epileptic activity

Authors: Yves Denoyer, Isabelle Merlet, Fabrice Wendling, Pascal Benquet

Published in: Journal of Computational Neuroscience | Issue 2/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Transcranial Direct brain stimulation (tDCS) is commonly used in order to modulate cortical networks activity during physiological processes through the application of weak electrical fields with scalp electrodes. Cathodal stimulation has been shown to decrease brain excitability in the context of epilepsy, with variable success. However, the cellular mechanisms responsible for the acute and the long-lasting effect of tDCS remain elusive. Using a novel approach of computational modeling that combines detailed but functionally integrated neurons we built a physiologically-based thalamocortical column. This model comprises 10,000 individual neurons made of pyramidal cells, and 3 types of gamma-aminobutyric acid (GABA) -ergic cells (VIP, PV, and SST) respecting the anatomy, layers, projection, connectivity and neurites orientation. Simulating realistic electric fields in term of intensity, main results showed that 1) tDCS effects are best explained by modulation of the presynaptic probability of release 2) tDCS affects the dynamic of cortical network only if a sufficient number of neurons are modulated 3)VIP GABAergic interneurons of the superficial layer of the cortex are especially affected by tDCS 4) Long lasting effect depends on glutamatergic synaptic plasticity.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Biabani, M., Aminitehrani, M., Zoghi, M., Farrell, M., Egan, G., & Jaberzadeh, S. (2018). The effects of transcranial direct current stimulation on short-interval intracortical inhibition and intracortical facilitation: A systematic review and meta-analysis. Reviews in the Neurosciences, 29(1), 99–114. https://doi.org/10.1515/revneuro-2017-0023.CrossRefPubMed Biabani, M., Aminitehrani, M., Zoghi, M., Farrell, M., Egan, G., & Jaberzadeh, S. (2018). The effects of transcranial direct current stimulation on short-interval intracortical inhibition and intracortical facilitation: A systematic review and meta-analysis. Reviews in the Neurosciences, 29(1), 99–114. https://​doi.​org/​10.​1515/​revneuro-2017-0023.CrossRefPubMed
go back to reference Bienenstock, E. L., Cooper, L. N., & Munro, P. W. (1982). Theory for the development of neuron selectivity: Orientation specificity and binocular interaction in visual cortex. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 2(1), 32–48.CrossRef Bienenstock, E. L., Cooper, L. N., & Munro, P. W. (1982). Theory for the development of neuron selectivity: Orientation specificity and binocular interaction in visual cortex. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 2(1), 32–48.CrossRef
go back to reference Bikson, M., Ghai, R. S., Baraban, S. C., & Durand, D. M. (1999). Modulation of burst frequency, duration, and amplitude in the zero-Ca(2+) model of epileptiform activity. Journal of Neurophysiology, 82, 2262–2270.CrossRef Bikson, M., Ghai, R. S., Baraban, S. C., & Durand, D. M. (1999). Modulation of burst frequency, duration, and amplitude in the zero-Ca(2+) model of epileptiform activity. Journal of Neurophysiology, 82, 2262–2270.CrossRef
go back to reference Braitenberg, V., & Schüz, A. (2013). Cortex: Statistics and geometry of neuronal connectivity. Springer Science & Business Media. Braitenberg, V., & Schüz, A. (2013). Cortex: Statistics and geometry of neuronal connectivity. Springer Science & Business Media.
go back to reference Branco, T., & Staras, K. (2009). The probability of neurotransmitter release: Variability and feedback control at single synapses. Nature Reviews Neuroscience, 10(5), 373–383.CrossRef Branco, T., & Staras, K. (2009). The probability of neurotransmitter release: Variability and feedback control at single synapses. Nature Reviews Neuroscience, 10(5), 373–383.CrossRef
go back to reference Cooper, L. N., & Bear, M. F. (2012). The BCM theory of synapse modification at 30: Interaction of theory with experiment. Nature Reviews Neuroscience, 13(11), 798–810.CrossRef Cooper, L. N., & Bear, M. F. (2012). The BCM theory of synapse modification at 30: Interaction of theory with experiment. Nature Reviews Neuroscience, 13(11), 798–810.CrossRef
go back to reference Datta, A., Bansal, V., Diaz, J., Patel, J., Reato, D., & Bikson, M. (2009). Gyri-precise head model of transcranial direct current stimulation: Improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimulation, 2, 201–207.e1. Datta, A., Bansal, V., Diaz, J., Patel, J., Reato, D., & Bikson, M. (2009). Gyri-precise head model of transcranial direct current stimulation: Improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimulation, 2, 201–207.e1.
go back to reference Esmaeilpour, Z., Marangolo, P., Hampstead, B. M., Bestmann, S., Galletta, E., Knotkova, H., et al. (2018). Incomplete evidence that increasing current intensity of tDCS boosts outcomes. Brain Stimulation, 11, 310–321.CrossRef Esmaeilpour, Z., Marangolo, P., Hampstead, B. M., Bestmann, S., Galletta, E., Knotkova, H., et al. (2018). Incomplete evidence that increasing current intensity of tDCS boosts outcomes. Brain Stimulation, 11, 310–321.CrossRef
go back to reference Ghai, R. S., Bikson, M., & Durand, D. M. (2000). Effects of applied electric fields on low-calcium epileptiform activity in the CA1 region of rat hippocampal slices. Journal of Neurophysiology, 84, 274–280.CrossRef Ghai, R. S., Bikson, M., & Durand, D. M. (2000). Effects of applied electric fields on low-calcium epileptiform activity in the CA1 region of rat hippocampal slices. Journal of Neurophysiology, 84, 274–280.CrossRef
go back to reference Jefferys, J. G. R., Deans, J., Bikson, M., & Fox, J. (2003). Effects of weak electric fields on the activity of neurons and neuronal networks. Radiation Protection Dosimetry, 106, 321–323. Jefferys, J. G. R., Deans, J., Bikson, M., & Fox, J. (2003). Effects of weak electric fields on the activity of neurons and neuronal networks. Radiation Protection Dosimetry, 106, 321–323.
go back to reference Lefaucheur, J.-P., Antal, A., Ayache, S. S., Benninger, D. H., Brunelin, J., Cogiamanian, F., Cotelli, M., de Ridder, D., Ferrucci, R., Langguth, B., Marangolo, P., Mylius, V., Nitsche, M. A., Padberg, F., Palm, U., Poulet, E., Priori, A., Rossi, S., Schecklmann, M., Vanneste, S., Ziemann, U., Garcia-Larrea, L., & Paulus, W. (2017). Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology, 128(1), 56–92. https://doi.org/10.1016/j.clinph.2016.10.087.CrossRef Lefaucheur, J.-P., Antal, A., Ayache, S. S., Benninger, D. H., Brunelin, J., Cogiamanian, F., Cotelli, M., de Ridder, D., Ferrucci, R., Langguth, B., Marangolo, P., Mylius, V., Nitsche, M. A., Padberg, F., Palm, U., Poulet, E., Priori, A., Rossi, S., Schecklmann, M., Vanneste, S., Ziemann, U., Garcia-Larrea, L., & Paulus, W. (2017). Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology, 128(1), 56–92. https://​doi.​org/​10.​1016/​j.​clinph.​2016.​10.​087.CrossRef
go back to reference Leite, J. P., Neder, L., Arisi, G. M., Carlotti, C. G., Assirati, J. A., & Moreira, J. E. (2005). Plasticity, synaptic strength, and epilepsy: What can we learn from ultrastructural data? Epilepsia, 46(s5), 134–141.CrossRef Leite, J. P., Neder, L., Arisi, G. M., Carlotti, C. G., Assirati, J. A., & Moreira, J. E. (2005). Plasticity, synaptic strength, and epilepsy: What can we learn from ultrastructural data? Epilepsia, 46(s5), 134–141.CrossRef
go back to reference Liebetanz, D., Nitsche, M. A., Tergau, F., & Paulus, W. (2002). Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability. Brain: A Journal of Neurology, 125(Pt 10), 2238–2247.CrossRef Liebetanz, D., Nitsche, M. A., Tergau, F., & Paulus, W. (2002). Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability. Brain: A Journal of Neurology, 125(Pt 10), 2238–2247.CrossRef
go back to reference Malenka, R. C., & Bear, M. F. (2004). LTP and LTD: An embarrassment of riches. Neuron, 44(1), 5–21.CrossRef Malenka, R. C., & Bear, M. F. (2004). LTP and LTD: An embarrassment of riches. Neuron, 44(1), 5–21.CrossRef
go back to reference Márquez-Ruiz, J., Leal-Campanario, R., Sánchez-Campusano, R., Molaee-Ardekani, B., Wendling, F., Miranda, P. C., Ruffini, G., Gruart, A., & Delgado-García, J. M. (2012). Transcranial direct-current stimulation modulates synaptic mechanisms involved in associative learning in behaving rabbits. Proceedings of the National Academy of Sciences of the United States of America, 109(17), 6710–6715. https://doi.org/10.1073/pnas.1121147109.CrossRefPubMedPubMedCentral Márquez-Ruiz, J., Leal-Campanario, R., Sánchez-Campusano, R., Molaee-Ardekani, B., Wendling, F., Miranda, P. C., Ruffini, G., Gruart, A., & Delgado-García, J. M. (2012). Transcranial direct-current stimulation modulates synaptic mechanisms involved in associative learning in behaving rabbits. Proceedings of the National Academy of Sciences of the United States of America, 109(17), 6710–6715. https://​doi.​org/​10.​1073/​pnas.​1121147109.CrossRefPubMedPubMedCentral
go back to reference McGuire, B. A., Wiesel, T. N., & Gilbert, C. D. (1984). Input to layer 4 of cat striate. The Journal of Neuroscience, 4(12), 13. McGuire, B. A., Wiesel, T. N., & Gilbert, C. D. (1984). Input to layer 4 of cat striate. The Journal of Neuroscience, 4(12), 13.
go back to reference Miranda, P. C., Lomarev, M., & Hallett, M. (2006). Modeling the current distribution during transcranial direct current stimulation. Clinical Neurophysiology, 117, 1623–1629. Miranda, P. C., Lomarev, M., & Hallett, M. (2006). Modeling the current distribution during transcranial direct current stimulation. Clinical Neurophysiology, 117, 1623–1629.
go back to reference Modolo, J., Denoyer, Y., Wendling, F., Benquet, P. (2018). Physiological effects of low-magnitude electric fields on brain activity: advances from in vitro, in vivo and in silico models. Current Opinion Biomedical Engineering, 8, 38–44.CrossRef Modolo, J., Denoyer, Y., Wendling, F., Benquet, P. (2018). Physiological effects of low-magnitude electric fields on brain activity: advances from in vitro, in vivo and in silico models. Current Opinion Biomedical Engineering, 8, 38–44.CrossRef
go back to reference Mohan, H., Verhoog, M. B., Doreswamy, K. K., Eyal, G., Aardse, R., Lodder, B. N., Goriounova, N. A., Asamoah, B., B Brakspear, A. B., Groot, C., van der Sluis, S., Testa-Silva, G., Obermayer, J., Boudewijns, Z. S., Narayanan, R. T., Baayen, J. C., Segev, I., Mansvelder, H. D., & de Kock, C. P. (2015). Dendritic and axonal architecture of individual pyramidal neurons across layers of adult human Neocortex. Cerebral Cortex, 25(12), 4839–4853. https://doi.org/10.1093/cercor/bhv188.CrossRef Mohan, H., Verhoog, M. B., Doreswamy, K. K., Eyal, G., Aardse, R., Lodder, B. N., Goriounova, N. A., Asamoah, B., B Brakspear, A. B., Groot, C., van der Sluis, S., Testa-Silva, G., Obermayer, J., Boudewijns, Z. S., Narayanan, R. T., Baayen, J. C., Segev, I., Mansvelder, H. D., & de Kock, C. P. (2015). Dendritic and axonal architecture of individual pyramidal neurons across layers of adult human Neocortex. Cerebral Cortex, 25(12), 4839–4853. https://​doi.​org/​10.​1093/​cercor/​bhv188.CrossRef
go back to reference Nitsche, M. A., & Paulus, W. (2001). Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology, 57(10), 1899–1901.CrossRef Nitsche, M. A., & Paulus, W. (2001). Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology, 57(10), 1899–1901.CrossRef
go back to reference Pelletier, S. J., Lagacé, M., St-Amour, I., Arsenault, D., Cisbani, G., Chabrat, A., et al. (2015). The morphological and molecular changes of brain cells exposed to direct current electric field stimulation. International Journal of Neuropsychopharmacology, 18(5). https://doi.org/10.1093/ijnp/pyu090.CrossRef Pelletier, S. J., Lagacé, M., St-Amour, I., Arsenault, D., Cisbani, G., Chabrat, A., et al. (2015). The morphological and molecular changes of brain cells exposed to direct current electric field stimulation. International Journal of Neuropsychopharmacology, 18(5). https://​doi.​org/​10.​1093/​ijnp/​pyu090.CrossRef
go back to reference Rahman, A., Reato, D., Arlotti, M., Gasca, F., Datta, A., Parra, L. C., & Bikson, M. (2013). Cellular effects of acute direct current stimulation: Somatic and synaptic terminal effects. The Journal of Physiology, 591(10), 2563–2578.CrossRef Rahman, A., Reato, D., Arlotti, M., Gasca, F., Datta, A., Parra, L. C., & Bikson, M. (2013). Cellular effects of acute direct current stimulation: Somatic and synaptic terminal effects. The Journal of Physiology, 591(10), 2563–2578.CrossRef
go back to reference Sadleir, R. J., Vannorsdall, T. D., Schretlen, D. J., & Gordon, B. (2010). Transcranial direct current stimulation (tDCS) in a realistic head model. NeuroImage, 51, 1310–1318. Sadleir, R. J., Vannorsdall, T. D., Schretlen, D. J., & Gordon, B. (2010). Transcranial direct current stimulation (tDCS) in a realistic head model. NeuroImage, 51, 1310–1318.
go back to reference Squire, L. R. (2013). Fundamental Neuroscience. Academic Press. Squire, L. R. (2013). Fundamental Neuroscience. Academic Press.
go back to reference Stagg, C. J., Best, J. G., Stephenson, M. C., O’Shea, J., Wylezinska, M., Kincses, Z. T., et al. (2009). Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 29(16), 5202–5206. https://doi.org/10.1523/JNEUROSCI.4432-08.2009.CrossRef Stagg, C. J., Best, J. G., Stephenson, M. C., O’Shea, J., Wylezinska, M., Kincses, Z. T., et al. (2009). Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 29(16), 5202–5206. https://​doi.​org/​10.​1523/​JNEUROSCI.​4432-08.​2009.CrossRef
go back to reference Thomson, A. M., & Bannister, A. P. (2003). Interlaminar connections in the neocortex. Cerebral Cortex, 13(1), 5–14.CrossRef Thomson, A. M., & Bannister, A. P. (2003). Interlaminar connections in the neocortex. Cerebral Cortex, 13(1), 5–14.CrossRef
go back to reference Wendling, F., Bartolomei, F., Bellanger, J. J., & Chauvel, P. (2002). Epileptic fast activity can be explained by a model of impaired GABAergic dendritic inhibition. The European Journal of Neuroscience, 15(9), 1499–1508.CrossRef Wendling, F., Bartolomei, F., Bellanger, J. J., & Chauvel, P. (2002). Epileptic fast activity can be explained by a model of impaired GABAergic dendritic inhibition. The European Journal of Neuroscience, 15(9), 1499–1508.CrossRef
Metadata
Title
Modelling acute and lasting effects of tDCS on epileptic activity
Authors
Yves Denoyer
Isabelle Merlet
Fabrice Wendling
Pascal Benquet
Publication date
19-04-2020
Publisher
Springer US
Published in
Journal of Computational Neuroscience / Issue 2/2020
Print ISSN: 0929-5313
Electronic ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-020-00745-6

Other articles of this Issue 2/2020

Journal of Computational Neuroscience 2/2020 Go to the issue

Premium Partner