Skip to main content
Top
Published in: Journal of Computational Neuroscience 2/2020

21-02-2020

Inference of synaptic connectivity and external variability in neural microcircuits

Authors: Cody Baker, Emmanouil Froudarakis, Dimitri Yatsenko, Andreas S. Tolias, Robert Rosenbaum

Published in: Journal of Computational Neuroscience | Issue 2/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A major goal in neuroscience is to estimate neural connectivity from large scale extracellular recordings of neural activity in vivo. This is challenging in part because any such activity is modulated by the unmeasured external synaptic input to the network, known as the common input problem. Many different measures of functional connectivity have been proposed in the literature, but their direct relationship to synaptic connectivity is often assumed or ignored. For in vivo data, measurements of this relationship would require a knowledge of ground truth connectivity, which is nearly always unavailable. Instead, many studies use in silico simulations as benchmarks for investigation, but such approaches necessarily rely upon a variety of simplifying assumptions about the simulated network and can depend on numerous simulation parameters. We combine neuronal network simulations, mathematical analysis, and calcium imaging data to address the question of when and how functional connectivity, synaptic connectivity, and latent external input variability can be untangled. We show numerically and analytically that, even though the precision matrix of recorded spiking activity does not uniquely determine synaptic connectivity, it is in practice often closely related to synaptic connectivity. This relation becomes more pronounced when the spatial structure of neuronal variability is jointly considered.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Baker, C., Ebsch, C., Lampl, I., Rosenbaum, R. (2019). Correlated states in balanced neuronal networks. Physical Review E 99 5. Baker, C., Ebsch, C., Lampl, I., Rosenbaum, R. (2019). Correlated states in balanced neuronal networks. Physical Review E 99 5.
go back to reference Barral, J., & D’Reyes, A. (2016). Synaptic scaling rule preserves excitatory-inhibitory balance and salient neuronal network dynamics. Nature Neuroscience, 19(12), 1690–1696.PubMed Barral, J., & D’Reyes, A. (2016). Synaptic scaling rule preserves excitatory-inhibitory balance and salient neuronal network dynamics. Nature Neuroscience, 19(12), 1690–1696.PubMed
go back to reference Bishop, C.M. (2007). Pattern Recognition and Machine Learning. Bishop, C.M. (2007). Pattern Recognition and Machine Learning.
go back to reference Brinkman, B.A.W., Rieke, F., Shea-Brown, E., Buice, M.A. (2017). Predicting how and when hidden neurons skew measured synaptic interactions, 1–50. Brinkman, B.A.W., Rieke, F., Shea-Brown, E., Buice, M.A. (2017). Predicting how and when hidden neurons skew measured synaptic interactions, 1–50.
go back to reference Chambers, B., Levy, M., Dechery1, J.B., Maclean, J.N. (2017). Ensemble stacking mitigates biases in inference of synaptic connectivity. Network Neuroscience Ensemble stacking mitigates biases in inference of synaptic connectivity. JN. Chambers, B., Levy, M., Dechery1, J.B., Maclean, J.N. (2017). Ensemble stacking mitigates biases in inference of synaptic connectivity. Network Neuroscience Ensemble stacking mitigates biases in inference of synaptic connectivity. JN.
go back to reference Chiang, A.S., Lin, C.Y., Chuang, C.C., Chang, H.M., Hsieh, C.H., Yeh, C.W., Shih, C.T., Wu, J.J., Wang, G.T., Chen, Y.C., Wu, C.C., Chen, G.Y., Ching, Y.T., Lee, P.C., Lin, C.Y., Lin, H.H., Wu, C.C., Hsu, H.W., Huang, Y.A., Chen, J.Y., Chiang, H.J., Lu, C.F., Ni, R.F., Yeh, C.Y., Hwang, J.K. (2011). Three-dimensional reconstruction of brain-wide wiring networks in drosophila at single-cell resolution. Current Biology, 21(1), 1–11.PubMed Chiang, A.S., Lin, C.Y., Chuang, C.C., Chang, H.M., Hsieh, C.H., Yeh, C.W., Shih, C.T., Wu, J.J., Wang, G.T., Chen, Y.C., Wu, C.C., Chen, G.Y., Ching, Y.T., Lee, P.C., Lin, C.Y., Lin, H.H., Wu, C.C., Hsu, H.W., Huang, Y.A., Chen, J.Y., Chiang, H.J., Lu, C.F., Ni, R.F., Yeh, C.Y., Hwang, J.K. (2011). Three-dimensional reconstruction of brain-wide wiring networks in drosophila at single-cell resolution. Current Biology, 21(1), 1–11.PubMed
go back to reference Cohen, M.R., & Kohn, A. (2011). Measuring and interpreting neuronal correlations. Nature Neuroscience, 14 (7), 811–819.PubMedPubMedCentral Cohen, M.R., & Kohn, A. (2011). Measuring and interpreting neuronal correlations. Nature Neuroscience, 14 (7), 811–819.PubMedPubMedCentral
go back to reference Cotton, R.J., Froudarakis, E., Storer, P., Saggau, P., Tolias, A. (2013). Three-dimensional mapping of microcircuit correlation structure. Frontiers in Neural Circuits. Cotton, R.J., Froudarakis, E., Storer, P., Saggau, P., Tolias, A. (2013). Three-dimensional mapping of microcircuit correlation structure. Frontiers in Neural Circuits.
go back to reference Dayan, P., & Abbott, L.F. (2001). Theoretical neuroscience: computational and mathematical modeling of neural systems. Cambridge: MIT Press. Dayan, P., & Abbott, L.F. (2001). Theoretical neuroscience: computational and mathematical modeling of neural systems. Cambridge: MIT Press.
go back to reference Doiron, B., Litwin-Kumar, A., Rosenbaum, R., Ocker, G.K., Josic, K. (2016). The mechanics of state-dependent neural correlations. Nature Neuroscience, 19(3), 383–393.PubMedPubMedCentral Doiron, B., Litwin-Kumar, A., Rosenbaum, R., Ocker, G.K., Josic, K. (2016). The mechanics of state-dependent neural correlations. Nature Neuroscience, 19(3), 383–393.PubMedPubMedCentral
go back to reference Ebsch, C., & Rosenbaum, R. (2018). Imbalanced amplification: a mechanism of amplification and suppression from local imbalance of excitation and inhibition in cortical circuits. PLoS Computational Biology, 14(3), 1–28. Ebsch, C., & Rosenbaum, R. (2018). Imbalanced amplification: a mechanism of amplification and suppression from local imbalance of excitation and inhibition in cortical circuits. PLoS Computational Biology, 14(3), 1–28.
go back to reference Feldt, S., Bonifazi, P., Cossart, R. (2011). Dissecting functional connectivity of neuronal microcircuits: experimental and theoretical insights.PubMed Feldt, S., Bonifazi, P., Cossart, R. (2011). Dissecting functional connectivity of neuronal microcircuits: experimental and theoretical insights.PubMed
go back to reference Friedrich, J., Zhou, P., Paninski, L. (2017). Fast online deconvolution of calcium imaging data. PLoS Computational Biology. Friedrich, J., Zhou, P., Paninski, L. (2017). Fast online deconvolution of calcium imaging data. PLoS Computational Biology.
go back to reference Garaschuk, O., Milos, R.I., Konnerth, A. (2006). Targeted bulk-loading of fluorescent indicators for two-photon brain imaging in vivo. Nature Protocols. Garaschuk, O., Milos, R.I., Konnerth, A. (2006). Targeted bulk-loading of fluorescent indicators for two-photon brain imaging in vivo. Nature Protocols.
go back to reference Gardiner, C. (2009). Stochastic methods - a handbook for the natural and social sciences. Gardiner, C. (2009). Stochastic methods - a handbook for the natural and social sciences.
go back to reference Gerhard, F., Kispersky, T., Gutierrez, G.J., Marder, E., Kramer, M., Eden, U. (2013). Successful reconstruction of a physiological circuit with known connectivity from spiking activity alone. PLos Computational Biology, 9(7), e1003138.PubMedPubMedCentral Gerhard, F., Kispersky, T., Gutierrez, G.J., Marder, E., Kramer, M., Eden, U. (2013). Successful reconstruction of a physiological circuit with known connectivity from spiking activity alone. PLos Computational Biology, 9(7), e1003138.PubMedPubMedCentral
go back to reference Jiang, X., Shen, S., Cadwell, C.R., Berens, P., Sinz, F., Ecker, A., Patel, S., Tolias, A. (2016). Principles of connectivity among morphologically defined cell types in adult neocortex. Science, 350(6264), 1–21. Jiang, X., Shen, S., Cadwell, C.R., Berens, P., Sinz, F., Ecker, A., Patel, S., Tolias, A. (2016). Principles of connectivity among morphologically defined cell types in adult neocortex. Science, 350(6264), 1–21.
go back to reference Kadirvelu, B., Hayashi, Y., Nasuto, S.J. (2017). Inferring structural connectivity using Ising couplings in models of neuronal networks. Scientific Reports, 7(1), 1–12. Kadirvelu, B., Hayashi, Y., Nasuto, S.J. (2017). Inferring structural connectivity using Ising couplings in models of neuronal networks. Scientific Reports, 7(1), 1–12.
go back to reference Kalatsky, V.A., & Stryker, M.P. (2003). New paradigm for optical imaging: temporally encoded maps of intrinsic signal. Neuron. Kalatsky, V.A., & Stryker, M.P. (2003). New paradigm for optical imaging: temporally encoded maps of intrinsic signal. Neuron.
go back to reference Kohn, A. (2005). Stimulus dependence of neuronal correlation in primary visual cortex of the macaque. Journal of Neuroscience. Kohn, A. (2005). Stimulus dependence of neuronal correlation in primary visual cortex of the macaque. Journal of Neuroscience.
go back to reference Krumin, M., Reutsky, I., Shoham, S. (2010). Correlation-based analysis and generation of multiple spike trains using hawkes models with an exogenous input. Frontiers in Computational Neuroscience 4. Krumin, M., Reutsky, I., Shoham, S. (2010). Correlation-based analysis and generation of multiple spike trains using hawkes models with an exogenous input. Frontiers in Computational Neuroscience 4.
go back to reference Ladenbauer, J., McKenzie, S., English, D.F., Hagens, O., Ostojic, S. (2019). Inferring and validating mechanistic models of neural microcircuits based on spike-train data. Nat Communications, 10, 4933. Ladenbauer, J., McKenzie, S., English, D.F., Hagens, O., Ostojic, S. (2019). Inferring and validating mechanistic models of neural microcircuits based on spike-train data. Nat Communications, 10, 4933.
go back to reference Levy, R.B., & Reyes, A. (2012). . Mouse Primary Auditory Cortex, 32(16), 5609–5619. Levy, R.B., & Reyes, A. (2012). . Mouse Primary Auditory Cortex, 32(16), 5609–5619.
go back to reference Lin, T.W., Das, A., Krishnan, G.P., Bazhenov, M., Sejnowski, T.J. (2017). Differential covariance: a new class of methods to estimate sparse connectivity from neural recordings. Neural Computation, 29(10), 2581–2632.PubMedPubMedCentral Lin, T.W., Das, A., Krishnan, G.P., Bazhenov, M., Sejnowski, T.J. (2017). Differential covariance: a new class of methods to estimate sparse connectivity from neural recordings. Neural Computation, 29(10), 2581–2632.PubMedPubMedCentral
go back to reference Lütcke, H., Gerhard, F., Zenke, F., Gerstner, W., Helmchen, F. (2013). Inference of neuronal network spike dynamics and topology from calcium imaging data. Frontiers in Neural Circuits, 7(December), 1–20. Lütcke, H., Gerhard, F., Zenke, F., Gerstner, W., Helmchen, F. (2013). Inference of neuronal network spike dynamics and topology from calcium imaging data. Frontiers in Neural Circuits, 7(December), 1–20.
go back to reference Magrans de Abril, I., Yoshimoto, J., Doya, K. (2018). Connectivity inference from neural recording data: challenges, mathematical bases and research directions. Neural Networks, 102, 120–137.PubMed Magrans de Abril, I., Yoshimoto, J., Doya, K. (2018). Connectivity inference from neural recording data: challenges, mathematical bases and research directions. Neural Networks, 102, 120–137.PubMed
go back to reference Maswadeh, W.M., & Snyder, P.S. (2012). Multivariable and multigroup receiver operating characteristics curve analyses for qualitative and quantitative analysis. Edgewood Chemical Biological Center ECBC-TR-92(US Army Research, Development and Engineering Command). Maswadeh, W.M., & Snyder, P.S. (2012). Multivariable and multigroup receiver operating characteristics curve analyses for qualitative and quantitative analysis. Edgewood Chemical Biological Center ECBC-TR-92(US Army Research, Development and Engineering Command).
go back to reference Mishchencko, Y., Vogelstein, J., Paninski, L. (2007). a Bayesian Approach for Inferring Neuronal. Statistics. Mishchencko, Y., Vogelstein, J., Paninski, L. (2007). a Bayesian Approach for Inferring Neuronal. Statistics.
go back to reference Nykamp, D.Q. (2007). A mathematical framework for inferring connectivity in probabilistic neuronal networks. Mathematical Biosciences, 205(2), 204–251.PubMed Nykamp, D.Q. (2007). A mathematical framework for inferring connectivity in probabilistic neuronal networks. Mathematical Biosciences, 205(2), 204–251.PubMed
go back to reference Paninski, L. (2004). Maximum likelihood estimation of cascade point-process neural encoding models. Network: Computation in Neural Systems. Paninski, L. (2004). Maximum likelihood estimation of cascade point-process neural encoding models. Network: Computation in Neural Systems.
go back to reference Pernice, V., & Rotter, S. (2013). Reconstruction of sparse connectivity in neural networks from spike train covariances. Journal of Statistical Mechanics: Theory and Experiment 2013(3). Pernice, V., & Rotter, S. (2013). Reconstruction of sparse connectivity in neural networks from spike train covariances. Journal of Statistical Mechanics: Theory and Experiment 2013(3).
go back to reference Pernice, V., Staude, B., Cardanobile, S., Rotter, S. (2011). How structure determines correlations in neuronal networks. PLoS Computational Biology 7(5).PubMedPubMedCentral Pernice, V., Staude, B., Cardanobile, S., Rotter, S. (2011). How structure determines correlations in neuronal networks. PLoS Computational Biology 7(5).PubMedPubMedCentral
go back to reference Pillow, J.W., Shlens, J., Paninski, L., Sher, A., Litke, A.M., Chichilnisky, E.J., Simoncelli, E.P. (2008). Spatio-temporal correlations and visual signalling in a complete neuronal population. Nature. Pillow, J.W., Shlens, J., Paninski, L., Sher, A., Litke, A.M., Chichilnisky, E.J., Simoncelli, E.P. (2008). Spatio-temporal correlations and visual signalling in a complete neuronal population. Nature.
go back to reference Pnevmatikakis, E.A., Soudry, D., Gao, Y., Machado, T.A., Merel, J., Pfau, D., Reardon, T., Mu, Y., Lacefield, C., Yang, W., Ahrens, M., Bruno, R., Jessell, T.M., Peterka, D.S., Yuste, R. (2017). Simultaneous denoising, deconvolution, and demixing of calcium imaging data. HHS Public Access, 89(2), 285–299. Pnevmatikakis, E.A., Soudry, D., Gao, Y., Machado, T.A., Merel, J., Pfau, D., Reardon, T., Mu, Y., Lacefield, C., Yang, W., Ahrens, M., Bruno, R., Jessell, T.M., Peterka, D.S., Yuste, R. (2017). Simultaneous denoising, deconvolution, and demixing of calcium imaging data. HHS Public Access, 89(2), 285–299.
go back to reference Poli, D., Pastore, V.P., Martinoia, S., Massobrio, P. (2016). From functional to structural connectivity using partial correlation in neuronal assemblies. Journal of Neural Engineering, 13(2), 26, 023. Poli, D., Pastore, V.P., Martinoia, S., Massobrio, P. (2016). From functional to structural connectivity using partial correlation in neuronal assemblies. Journal of Neural Engineering, 13(2), 26, 023.
go back to reference Pyle, R., & Rosenbaum, R. (2016). Highly connected neurons spike less frequently in balanced networks. Physical Review E, 93(4), 1–6. Pyle, R., & Rosenbaum, R. (2016). Highly connected neurons spike less frequently in balanced networks. Physical Review E, 93(4), 1–6.
go back to reference Renart, A., Rocha, J.D., Bartho, P., Hollender, L., Reyes, A., Harris, K.D. (2010). The asynchronus state in cortical circuits. Science, 327(5965), 587–590.PubMedPubMedCentral Renart, A., Rocha, J.D., Bartho, P., Hollender, L., Reyes, A., Harris, K.D. (2010). The asynchronus state in cortical circuits. Science, 327(5965), 587–590.PubMedPubMedCentral
go back to reference Rosenbaum, R., Smith, M.A., Kohn, A., Rubin, J.E., Doiron, B. (2017). The spatial structure of correlated neuronal variability. Nature Neuroscience, 20(1), 107–114.PubMed Rosenbaum, R., Smith, M.A., Kohn, A., Rubin, J.E., Doiron, B. (2017). The spatial structure of correlated neuronal variability. Nature Neuroscience, 20(1), 107–114.PubMed
go back to reference Singh, R., Ghosh, D., Adhikari, R. (2017). Fast Bayesian inference of the multivariate Ornstein-Uhlenbeck process 012136:1–9. Singh, R., Ghosh, D., Adhikari, R. (2017). Fast Bayesian inference of the multivariate Ornstein-Uhlenbeck process 012136:1–9.
go back to reference Smith, M.A., & Kohn, A. (2008). Spatial and temporal scales of neuronal correlation in primary visual cortex. Journal of Neuroscience. Smith, M.A., & Kohn, A. (2008). Spatial and temporal scales of neuronal correlation in primary visual cortex. Journal of Neuroscience.
go back to reference Soudry, D., Keshri, S., Stinson, P., Oh, M.H., Iyengar, G., Paninski, L. (2013). A shotgun sampling solution for the common input problem in neural connectivity inference, arXiv. Soudry, D., Keshri, S., Stinson, P., Oh, M.H., Iyengar, G., Paninski, L. (2013). A shotgun sampling solution for the common input problem in neural connectivity inference, arXiv.
go back to reference Stevenson, I.H., Rebesco, J.M., Hatsopoulos, N.G., Haga, Z., Miller, L.E., Körding, K.P. (2009). Bayesian inference of functional connectivity and network structure from spikes. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 17(3), 203–213.PubMed Stevenson, I.H., Rebesco, J.M., Hatsopoulos, N.G., Haga, Z., Miller, L.E., Körding, K.P. (2009). Bayesian inference of functional connectivity and network structure from spikes. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 17(3), 203–213.PubMed
go back to reference Trousdale, J., Hu, Y., Shea-Brown, E., Josić, K. (2012). Impact of network structure and cellular response on spike time correlations. PLoS Computational Biology 8(3).PubMedPubMedCentral Trousdale, J., Hu, Y., Shea-Brown, E., Josić, K. (2012). Impact of network structure and cellular response on spike time correlations. PLoS Computational Biology 8(3).PubMedPubMedCentral
go back to reference van Vreeswijk, C., & Sompolinsky, H. (1998). Chaotic balanced state in a model of cortical circuits. Neural Computation, 10(6), 1321–1371.PubMed van Vreeswijk, C., & Sompolinsky, H. (1998). Chaotic balanced state in a model of cortical circuits. Neural Computation, 10(6), 1321–1371.PubMed
go back to reference Vogelstein, J.T., Packer, A.M., Machado, T.A., Sippy, T., Yuste, R., Paninski l, Babadi B. (2012). Fast nonnegative deconvolution for spike train inference from population calcium imaging fast nonnegative deconvolution for spike train inference from population calcium imaging. Journal of Neurophysiology. Vogelstein, J.T., Packer, A.M., Machado, T.A., Sippy, T., Yuste, R., Paninski l, Babadi B. (2012). Fast nonnegative deconvolution for spike train inference from population calcium imaging fast nonnegative deconvolution for spike train inference from population calcium imaging. Journal of Neurophysiology.
go back to reference Yaglom, A. (1962). An introduction to the theory of stationary random functions. Yaglom, A. (1962). An introduction to the theory of stationary random functions.
go back to reference Yatsenko, D., Froudarakis, E., Ecker, A., Rosenbaum, R., Josić, K, Tolias, A. (2016). Strong functional connectivity of parvalbumin-expressing cortical interneurons. Computational and Systems Neuroscience Meeting (COSYNE 2016). Yatsenko, D., Froudarakis, E., Ecker, A., Rosenbaum, R., Josić, K, Tolias, A. (2016). Strong functional connectivity of parvalbumin-expressing cortical interneurons. Computational and Systems Neuroscience Meeting (COSYNE 2016).
go back to reference Yatsenko, D., Josić, K., Ecker, A., Froudarakis, E., Cotton, R.J., Tolias, A. (2015). Improved estimation and interpretation of correlations in neural circuits. PLoS Computational Biology, 11(3), 1–28. Yatsenko, D., Josić, K., Ecker, A., Froudarakis, E., Cotton, R.J., Tolias, A. (2015). Improved estimation and interpretation of correlations in neural circuits. PLoS Computational Biology, 11(3), 1–28.
go back to reference Zaytsev, Y.V., Morrison, A., Deger, M. (2015). Reconstruction of recurrent synaptic connectivity of thousands of neurons from simulated spiking activity. Journal of Computational Neuroscience, 39(1), 77–103.PubMedPubMedCentral Zaytsev, Y.V., Morrison, A., Deger, M. (2015). Reconstruction of recurrent synaptic connectivity of thousands of neurons from simulated spiking activity. Journal of Computational Neuroscience, 39(1), 77–103.PubMedPubMedCentral
Metadata
Title
Inference of synaptic connectivity and external variability in neural microcircuits
Authors
Cody Baker
Emmanouil Froudarakis
Dimitri Yatsenko
Andreas S. Tolias
Robert Rosenbaum
Publication date
21-02-2020
Publisher
Springer US
Published in
Journal of Computational Neuroscience / Issue 2/2020
Print ISSN: 0929-5313
Electronic ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-020-00739-4

Other articles of this Issue 2/2020

Journal of Computational Neuroscience 2/2020 Go to the issue

Premium Partner