Skip to main content
Erschienen in: Journal of Computational Neuroscience 2/2020

21.02.2020

Inference of synaptic connectivity and external variability in neural microcircuits

verfasst von: Cody Baker, Emmanouil Froudarakis, Dimitri Yatsenko, Andreas S. Tolias, Robert Rosenbaum

Erschienen in: Journal of Computational Neuroscience | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A major goal in neuroscience is to estimate neural connectivity from large scale extracellular recordings of neural activity in vivo. This is challenging in part because any such activity is modulated by the unmeasured external synaptic input to the network, known as the common input problem. Many different measures of functional connectivity have been proposed in the literature, but their direct relationship to synaptic connectivity is often assumed or ignored. For in vivo data, measurements of this relationship would require a knowledge of ground truth connectivity, which is nearly always unavailable. Instead, many studies use in silico simulations as benchmarks for investigation, but such approaches necessarily rely upon a variety of simplifying assumptions about the simulated network and can depend on numerous simulation parameters. We combine neuronal network simulations, mathematical analysis, and calcium imaging data to address the question of when and how functional connectivity, synaptic connectivity, and latent external input variability can be untangled. We show numerically and analytically that, even though the precision matrix of recorded spiking activity does not uniquely determine synaptic connectivity, it is in practice often closely related to synaptic connectivity. This relation becomes more pronounced when the spatial structure of neuronal variability is jointly considered.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Baker, C., Ebsch, C., Lampl, I., Rosenbaum, R. (2019). Correlated states in balanced neuronal networks. Physical Review E 99 5. Baker, C., Ebsch, C., Lampl, I., Rosenbaum, R. (2019). Correlated states in balanced neuronal networks. Physical Review E 99 5.
Zurück zum Zitat Barral, J., & D’Reyes, A. (2016). Synaptic scaling rule preserves excitatory-inhibitory balance and salient neuronal network dynamics. Nature Neuroscience, 19(12), 1690–1696.PubMed Barral, J., & D’Reyes, A. (2016). Synaptic scaling rule preserves excitatory-inhibitory balance and salient neuronal network dynamics. Nature Neuroscience, 19(12), 1690–1696.PubMed
Zurück zum Zitat Bishop, C.M. (2007). Pattern Recognition and Machine Learning. Bishop, C.M. (2007). Pattern Recognition and Machine Learning.
Zurück zum Zitat Brinkman, B.A.W., Rieke, F., Shea-Brown, E., Buice, M.A. (2017). Predicting how and when hidden neurons skew measured synaptic interactions, 1–50. Brinkman, B.A.W., Rieke, F., Shea-Brown, E., Buice, M.A. (2017). Predicting how and when hidden neurons skew measured synaptic interactions, 1–50.
Zurück zum Zitat Chambers, B., Levy, M., Dechery1, J.B., Maclean, J.N. (2017). Ensemble stacking mitigates biases in inference of synaptic connectivity. Network Neuroscience Ensemble stacking mitigates biases in inference of synaptic connectivity. JN. Chambers, B., Levy, M., Dechery1, J.B., Maclean, J.N. (2017). Ensemble stacking mitigates biases in inference of synaptic connectivity. Network Neuroscience Ensemble stacking mitigates biases in inference of synaptic connectivity. JN.
Zurück zum Zitat Chiang, A.S., Lin, C.Y., Chuang, C.C., Chang, H.M., Hsieh, C.H., Yeh, C.W., Shih, C.T., Wu, J.J., Wang, G.T., Chen, Y.C., Wu, C.C., Chen, G.Y., Ching, Y.T., Lee, P.C., Lin, C.Y., Lin, H.H., Wu, C.C., Hsu, H.W., Huang, Y.A., Chen, J.Y., Chiang, H.J., Lu, C.F., Ni, R.F., Yeh, C.Y., Hwang, J.K. (2011). Three-dimensional reconstruction of brain-wide wiring networks in drosophila at single-cell resolution. Current Biology, 21(1), 1–11.PubMed Chiang, A.S., Lin, C.Y., Chuang, C.C., Chang, H.M., Hsieh, C.H., Yeh, C.W., Shih, C.T., Wu, J.J., Wang, G.T., Chen, Y.C., Wu, C.C., Chen, G.Y., Ching, Y.T., Lee, P.C., Lin, C.Y., Lin, H.H., Wu, C.C., Hsu, H.W., Huang, Y.A., Chen, J.Y., Chiang, H.J., Lu, C.F., Ni, R.F., Yeh, C.Y., Hwang, J.K. (2011). Three-dimensional reconstruction of brain-wide wiring networks in drosophila at single-cell resolution. Current Biology, 21(1), 1–11.PubMed
Zurück zum Zitat Cohen, M.R., & Kohn, A. (2011). Measuring and interpreting neuronal correlations. Nature Neuroscience, 14 (7), 811–819.PubMedPubMedCentral Cohen, M.R., & Kohn, A. (2011). Measuring and interpreting neuronal correlations. Nature Neuroscience, 14 (7), 811–819.PubMedPubMedCentral
Zurück zum Zitat Cotton, R.J., Froudarakis, E., Storer, P., Saggau, P., Tolias, A. (2013). Three-dimensional mapping of microcircuit correlation structure. Frontiers in Neural Circuits. Cotton, R.J., Froudarakis, E., Storer, P., Saggau, P., Tolias, A. (2013). Three-dimensional mapping of microcircuit correlation structure. Frontiers in Neural Circuits.
Zurück zum Zitat Dayan, P., & Abbott, L.F. (2001). Theoretical neuroscience: computational and mathematical modeling of neural systems. Cambridge: MIT Press. Dayan, P., & Abbott, L.F. (2001). Theoretical neuroscience: computational and mathematical modeling of neural systems. Cambridge: MIT Press.
Zurück zum Zitat Doiron, B., Litwin-Kumar, A., Rosenbaum, R., Ocker, G.K., Josic, K. (2016). The mechanics of state-dependent neural correlations. Nature Neuroscience, 19(3), 383–393.PubMedPubMedCentral Doiron, B., Litwin-Kumar, A., Rosenbaum, R., Ocker, G.K., Josic, K. (2016). The mechanics of state-dependent neural correlations. Nature Neuroscience, 19(3), 383–393.PubMedPubMedCentral
Zurück zum Zitat Ebsch, C., & Rosenbaum, R. (2018). Imbalanced amplification: a mechanism of amplification and suppression from local imbalance of excitation and inhibition in cortical circuits. PLoS Computational Biology, 14(3), 1–28. Ebsch, C., & Rosenbaum, R. (2018). Imbalanced amplification: a mechanism of amplification and suppression from local imbalance of excitation and inhibition in cortical circuits. PLoS Computational Biology, 14(3), 1–28.
Zurück zum Zitat Feldt, S., Bonifazi, P., Cossart, R. (2011). Dissecting functional connectivity of neuronal microcircuits: experimental and theoretical insights.PubMed Feldt, S., Bonifazi, P., Cossart, R. (2011). Dissecting functional connectivity of neuronal microcircuits: experimental and theoretical insights.PubMed
Zurück zum Zitat Friedrich, J., Zhou, P., Paninski, L. (2017). Fast online deconvolution of calcium imaging data. PLoS Computational Biology. Friedrich, J., Zhou, P., Paninski, L. (2017). Fast online deconvolution of calcium imaging data. PLoS Computational Biology.
Zurück zum Zitat Garaschuk, O., Milos, R.I., Konnerth, A. (2006). Targeted bulk-loading of fluorescent indicators for two-photon brain imaging in vivo. Nature Protocols. Garaschuk, O., Milos, R.I., Konnerth, A. (2006). Targeted bulk-loading of fluorescent indicators for two-photon brain imaging in vivo. Nature Protocols.
Zurück zum Zitat Gardiner, C. (2009). Stochastic methods - a handbook for the natural and social sciences. Gardiner, C. (2009). Stochastic methods - a handbook for the natural and social sciences.
Zurück zum Zitat Gerhard, F., Kispersky, T., Gutierrez, G.J., Marder, E., Kramer, M., Eden, U. (2013). Successful reconstruction of a physiological circuit with known connectivity from spiking activity alone. PLos Computational Biology, 9(7), e1003138.PubMedPubMedCentral Gerhard, F., Kispersky, T., Gutierrez, G.J., Marder, E., Kramer, M., Eden, U. (2013). Successful reconstruction of a physiological circuit with known connectivity from spiking activity alone. PLos Computational Biology, 9(7), e1003138.PubMedPubMedCentral
Zurück zum Zitat Jiang, X., Shen, S., Cadwell, C.R., Berens, P., Sinz, F., Ecker, A., Patel, S., Tolias, A. (2016). Principles of connectivity among morphologically defined cell types in adult neocortex. Science, 350(6264), 1–21. Jiang, X., Shen, S., Cadwell, C.R., Berens, P., Sinz, F., Ecker, A., Patel, S., Tolias, A. (2016). Principles of connectivity among morphologically defined cell types in adult neocortex. Science, 350(6264), 1–21.
Zurück zum Zitat Kadirvelu, B., Hayashi, Y., Nasuto, S.J. (2017). Inferring structural connectivity using Ising couplings in models of neuronal networks. Scientific Reports, 7(1), 1–12. Kadirvelu, B., Hayashi, Y., Nasuto, S.J. (2017). Inferring structural connectivity using Ising couplings in models of neuronal networks. Scientific Reports, 7(1), 1–12.
Zurück zum Zitat Kalatsky, V.A., & Stryker, M.P. (2003). New paradigm for optical imaging: temporally encoded maps of intrinsic signal. Neuron. Kalatsky, V.A., & Stryker, M.P. (2003). New paradigm for optical imaging: temporally encoded maps of intrinsic signal. Neuron.
Zurück zum Zitat Kohn, A. (2005). Stimulus dependence of neuronal correlation in primary visual cortex of the macaque. Journal of Neuroscience. Kohn, A. (2005). Stimulus dependence of neuronal correlation in primary visual cortex of the macaque. Journal of Neuroscience.
Zurück zum Zitat Krumin, M., Reutsky, I., Shoham, S. (2010). Correlation-based analysis and generation of multiple spike trains using hawkes models with an exogenous input. Frontiers in Computational Neuroscience 4. Krumin, M., Reutsky, I., Shoham, S. (2010). Correlation-based analysis and generation of multiple spike trains using hawkes models with an exogenous input. Frontiers in Computational Neuroscience 4.
Zurück zum Zitat Ladenbauer, J., McKenzie, S., English, D.F., Hagens, O., Ostojic, S. (2019). Inferring and validating mechanistic models of neural microcircuits based on spike-train data. Nat Communications, 10, 4933. Ladenbauer, J., McKenzie, S., English, D.F., Hagens, O., Ostojic, S. (2019). Inferring and validating mechanistic models of neural microcircuits based on spike-train data. Nat Communications, 10, 4933.
Zurück zum Zitat Levy, R.B., & Reyes, A. (2012). . Mouse Primary Auditory Cortex, 32(16), 5609–5619. Levy, R.B., & Reyes, A. (2012). . Mouse Primary Auditory Cortex, 32(16), 5609–5619.
Zurück zum Zitat Lin, T.W., Das, A., Krishnan, G.P., Bazhenov, M., Sejnowski, T.J. (2017). Differential covariance: a new class of methods to estimate sparse connectivity from neural recordings. Neural Computation, 29(10), 2581–2632.PubMedPubMedCentral Lin, T.W., Das, A., Krishnan, G.P., Bazhenov, M., Sejnowski, T.J. (2017). Differential covariance: a new class of methods to estimate sparse connectivity from neural recordings. Neural Computation, 29(10), 2581–2632.PubMedPubMedCentral
Zurück zum Zitat Lütcke, H., Gerhard, F., Zenke, F., Gerstner, W., Helmchen, F. (2013). Inference of neuronal network spike dynamics and topology from calcium imaging data. Frontiers in Neural Circuits, 7(December), 1–20. Lütcke, H., Gerhard, F., Zenke, F., Gerstner, W., Helmchen, F. (2013). Inference of neuronal network spike dynamics and topology from calcium imaging data. Frontiers in Neural Circuits, 7(December), 1–20.
Zurück zum Zitat Magrans de Abril, I., Yoshimoto, J., Doya, K. (2018). Connectivity inference from neural recording data: challenges, mathematical bases and research directions. Neural Networks, 102, 120–137.PubMed Magrans de Abril, I., Yoshimoto, J., Doya, K. (2018). Connectivity inference from neural recording data: challenges, mathematical bases and research directions. Neural Networks, 102, 120–137.PubMed
Zurück zum Zitat Maswadeh, W.M., & Snyder, P.S. (2012). Multivariable and multigroup receiver operating characteristics curve analyses for qualitative and quantitative analysis. Edgewood Chemical Biological Center ECBC-TR-92(US Army Research, Development and Engineering Command). Maswadeh, W.M., & Snyder, P.S. (2012). Multivariable and multigroup receiver operating characteristics curve analyses for qualitative and quantitative analysis. Edgewood Chemical Biological Center ECBC-TR-92(US Army Research, Development and Engineering Command).
Zurück zum Zitat Mishchencko, Y., Vogelstein, J., Paninski, L. (2007). a Bayesian Approach for Inferring Neuronal. Statistics. Mishchencko, Y., Vogelstein, J., Paninski, L. (2007). a Bayesian Approach for Inferring Neuronal. Statistics.
Zurück zum Zitat Nykamp, D.Q. (2007). A mathematical framework for inferring connectivity in probabilistic neuronal networks. Mathematical Biosciences, 205(2), 204–251.PubMed Nykamp, D.Q. (2007). A mathematical framework for inferring connectivity in probabilistic neuronal networks. Mathematical Biosciences, 205(2), 204–251.PubMed
Zurück zum Zitat Paninski, L. (2004). Maximum likelihood estimation of cascade point-process neural encoding models. Network: Computation in Neural Systems. Paninski, L. (2004). Maximum likelihood estimation of cascade point-process neural encoding models. Network: Computation in Neural Systems.
Zurück zum Zitat Pernice, V., & Rotter, S. (2013). Reconstruction of sparse connectivity in neural networks from spike train covariances. Journal of Statistical Mechanics: Theory and Experiment 2013(3). Pernice, V., & Rotter, S. (2013). Reconstruction of sparse connectivity in neural networks from spike train covariances. Journal of Statistical Mechanics: Theory and Experiment 2013(3).
Zurück zum Zitat Pernice, V., Staude, B., Cardanobile, S., Rotter, S. (2011). How structure determines correlations in neuronal networks. PLoS Computational Biology 7(5).PubMedPubMedCentral Pernice, V., Staude, B., Cardanobile, S., Rotter, S. (2011). How structure determines correlations in neuronal networks. PLoS Computational Biology 7(5).PubMedPubMedCentral
Zurück zum Zitat Pillow, J.W., Shlens, J., Paninski, L., Sher, A., Litke, A.M., Chichilnisky, E.J., Simoncelli, E.P. (2008). Spatio-temporal correlations and visual signalling in a complete neuronal population. Nature. Pillow, J.W., Shlens, J., Paninski, L., Sher, A., Litke, A.M., Chichilnisky, E.J., Simoncelli, E.P. (2008). Spatio-temporal correlations and visual signalling in a complete neuronal population. Nature.
Zurück zum Zitat Pnevmatikakis, E.A., Soudry, D., Gao, Y., Machado, T.A., Merel, J., Pfau, D., Reardon, T., Mu, Y., Lacefield, C., Yang, W., Ahrens, M., Bruno, R., Jessell, T.M., Peterka, D.S., Yuste, R. (2017). Simultaneous denoising, deconvolution, and demixing of calcium imaging data. HHS Public Access, 89(2), 285–299. Pnevmatikakis, E.A., Soudry, D., Gao, Y., Machado, T.A., Merel, J., Pfau, D., Reardon, T., Mu, Y., Lacefield, C., Yang, W., Ahrens, M., Bruno, R., Jessell, T.M., Peterka, D.S., Yuste, R. (2017). Simultaneous denoising, deconvolution, and demixing of calcium imaging data. HHS Public Access, 89(2), 285–299.
Zurück zum Zitat Poli, D., Pastore, V.P., Martinoia, S., Massobrio, P. (2016). From functional to structural connectivity using partial correlation in neuronal assemblies. Journal of Neural Engineering, 13(2), 26, 023. Poli, D., Pastore, V.P., Martinoia, S., Massobrio, P. (2016). From functional to structural connectivity using partial correlation in neuronal assemblies. Journal of Neural Engineering, 13(2), 26, 023.
Zurück zum Zitat Pyle, R., & Rosenbaum, R. (2016). Highly connected neurons spike less frequently in balanced networks. Physical Review E, 93(4), 1–6. Pyle, R., & Rosenbaum, R. (2016). Highly connected neurons spike less frequently in balanced networks. Physical Review E, 93(4), 1–6.
Zurück zum Zitat Renart, A., Rocha, J.D., Bartho, P., Hollender, L., Reyes, A., Harris, K.D. (2010). The asynchronus state in cortical circuits. Science, 327(5965), 587–590.PubMedPubMedCentral Renart, A., Rocha, J.D., Bartho, P., Hollender, L., Reyes, A., Harris, K.D. (2010). The asynchronus state in cortical circuits. Science, 327(5965), 587–590.PubMedPubMedCentral
Zurück zum Zitat Rosenbaum, R., Smith, M.A., Kohn, A., Rubin, J.E., Doiron, B. (2017). The spatial structure of correlated neuronal variability. Nature Neuroscience, 20(1), 107–114.PubMed Rosenbaum, R., Smith, M.A., Kohn, A., Rubin, J.E., Doiron, B. (2017). The spatial structure of correlated neuronal variability. Nature Neuroscience, 20(1), 107–114.PubMed
Zurück zum Zitat Singh, R., Ghosh, D., Adhikari, R. (2017). Fast Bayesian inference of the multivariate Ornstein-Uhlenbeck process 012136:1–9. Singh, R., Ghosh, D., Adhikari, R. (2017). Fast Bayesian inference of the multivariate Ornstein-Uhlenbeck process 012136:1–9.
Zurück zum Zitat Smith, M.A., & Kohn, A. (2008). Spatial and temporal scales of neuronal correlation in primary visual cortex. Journal of Neuroscience. Smith, M.A., & Kohn, A. (2008). Spatial and temporal scales of neuronal correlation in primary visual cortex. Journal of Neuroscience.
Zurück zum Zitat Soudry, D., Keshri, S., Stinson, P., Oh, M.H., Iyengar, G., Paninski, L. (2013). A shotgun sampling solution for the common input problem in neural connectivity inference, arXiv. Soudry, D., Keshri, S., Stinson, P., Oh, M.H., Iyengar, G., Paninski, L. (2013). A shotgun sampling solution for the common input problem in neural connectivity inference, arXiv.
Zurück zum Zitat Stevenson, I.H., Rebesco, J.M., Hatsopoulos, N.G., Haga, Z., Miller, L.E., Körding, K.P. (2009). Bayesian inference of functional connectivity and network structure from spikes. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 17(3), 203–213.PubMed Stevenson, I.H., Rebesco, J.M., Hatsopoulos, N.G., Haga, Z., Miller, L.E., Körding, K.P. (2009). Bayesian inference of functional connectivity and network structure from spikes. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 17(3), 203–213.PubMed
Zurück zum Zitat Trousdale, J., Hu, Y., Shea-Brown, E., Josić, K. (2012). Impact of network structure and cellular response on spike time correlations. PLoS Computational Biology 8(3).PubMedPubMedCentral Trousdale, J., Hu, Y., Shea-Brown, E., Josić, K. (2012). Impact of network structure and cellular response on spike time correlations. PLoS Computational Biology 8(3).PubMedPubMedCentral
Zurück zum Zitat van Vreeswijk, C., & Sompolinsky, H. (1998). Chaotic balanced state in a model of cortical circuits. Neural Computation, 10(6), 1321–1371.PubMed van Vreeswijk, C., & Sompolinsky, H. (1998). Chaotic balanced state in a model of cortical circuits. Neural Computation, 10(6), 1321–1371.PubMed
Zurück zum Zitat Vogelstein, J.T., Packer, A.M., Machado, T.A., Sippy, T., Yuste, R., Paninski l, Babadi B. (2012). Fast nonnegative deconvolution for spike train inference from population calcium imaging fast nonnegative deconvolution for spike train inference from population calcium imaging. Journal of Neurophysiology. Vogelstein, J.T., Packer, A.M., Machado, T.A., Sippy, T., Yuste, R., Paninski l, Babadi B. (2012). Fast nonnegative deconvolution for spike train inference from population calcium imaging fast nonnegative deconvolution for spike train inference from population calcium imaging. Journal of Neurophysiology.
Zurück zum Zitat Yaglom, A. (1962). An introduction to the theory of stationary random functions. Yaglom, A. (1962). An introduction to the theory of stationary random functions.
Zurück zum Zitat Yatsenko, D., Froudarakis, E., Ecker, A., Rosenbaum, R., Josić, K, Tolias, A. (2016). Strong functional connectivity of parvalbumin-expressing cortical interneurons. Computational and Systems Neuroscience Meeting (COSYNE 2016). Yatsenko, D., Froudarakis, E., Ecker, A., Rosenbaum, R., Josić, K, Tolias, A. (2016). Strong functional connectivity of parvalbumin-expressing cortical interneurons. Computational and Systems Neuroscience Meeting (COSYNE 2016).
Zurück zum Zitat Yatsenko, D., Josić, K., Ecker, A., Froudarakis, E., Cotton, R.J., Tolias, A. (2015). Improved estimation and interpretation of correlations in neural circuits. PLoS Computational Biology, 11(3), 1–28. Yatsenko, D., Josić, K., Ecker, A., Froudarakis, E., Cotton, R.J., Tolias, A. (2015). Improved estimation and interpretation of correlations in neural circuits. PLoS Computational Biology, 11(3), 1–28.
Zurück zum Zitat Zaytsev, Y.V., Morrison, A., Deger, M. (2015). Reconstruction of recurrent synaptic connectivity of thousands of neurons from simulated spiking activity. Journal of Computational Neuroscience, 39(1), 77–103.PubMedPubMedCentral Zaytsev, Y.V., Morrison, A., Deger, M. (2015). Reconstruction of recurrent synaptic connectivity of thousands of neurons from simulated spiking activity. Journal of Computational Neuroscience, 39(1), 77–103.PubMedPubMedCentral
Metadaten
Titel
Inference of synaptic connectivity and external variability in neural microcircuits
verfasst von
Cody Baker
Emmanouil Froudarakis
Dimitri Yatsenko
Andreas S. Tolias
Robert Rosenbaum
Publikationsdatum
21.02.2020
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 2/2020
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-020-00739-4

Weitere Artikel der Ausgabe 2/2020

Journal of Computational Neuroscience 2/2020 Zur Ausgabe