Skip to main content
Erschienen in: Journal of Computational Neuroscience 2/2020

03.03.2020

A computational model for grid maps in neural populations

verfasst von: Fabio Anselmi, Micah M. Murray, Benedetta Franceschiello

Erschienen in: Journal of Computational Neuroscience | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Grid cells in the entorhinal cortex, together with head direction, place, speed and border cells, are major contributors to the organization of spatial representations in the brain. In this work we introduce a novel theoretical and algorithmic framework able to explain the optimality of hexagonal grid-like response patterns. We show that this pattern is a result of minimal variance encoding of neurons together with maximal robustness to neurons’ noise and minimal number of encoding neurons. The novelty lies in the formulation of the encoding problem considering neurons as an overcomplete basis (a frame) where the position information is encoded. Through the modern Frame Theory language, specifically that of tight and equiangular frames, we provide new insights about the optimality of hexagonal grid receptive fields. The proposed model is based on the well-accepted and tested hypothesis of Hebbian learning, providing a simplified cortical-based framework that does not require the presence of velocity-driven oscillations (oscillatory model) or translational symmetries in the synaptic connections (attractor model). We moreover demonstrate that the proposed encoding mechanism naturally explains axis alignment of neighbor grid cells and maps shifts, rotations and scaling of the stimuli onto the shape of grid cells’ receptive fields, giving a straightforward explanation of the experimental evidence of grid cells remapping under transformations of environmental cues.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Aapo, H., Hoyer, P.O., Hurri, J. (2009). Natural image statistics: a probabilistic approach to early computational vision. Book. Aapo, H., Hoyer, P.O., Hurri, J. (2009). Natural image statistics: a probabilistic approach to early computational vision. Book.
Zurück zum Zitat Banino, A, & et al. (2018). Vector-based navigation using grid-like representations in artificial agents. Nature, 557, 05. Banino, A, & et al. (2018). Vector-based navigation using grid-like representations in artificial agents. Nature, 557, 05.
Zurück zum Zitat Bicanski, A, & Burgess, N. (2019). A computational model of visual recognition memory via grid cells. Current Biology, 29(6), 979–990, e4.PubMedPubMedCentral Bicanski, A, & Burgess, N. (2019). A computational model of visual recognition memory via grid cells. Current Biology, 29(6), 979–990, e4.PubMedPubMedCentral
Zurück zum Zitat Blair, H.T., Welday, A.C., Zhang, K. (2007). Scale-invariant memory representations emerge from moire interference between grid fields that produce theta oscillations: a computational model. Journal of Neuroscience, 27, 3211–3229.PubMed Blair, H.T., Welday, A.C., Zhang, K. (2007). Scale-invariant memory representations emerge from moire interference between grid fields that produce theta oscillations: a computational model. Journal of Neuroscience, 27, 3211–3229.PubMed
Zurück zum Zitat Burak, Y., & Fiete, I.R. (2009). Accurate path integration in continuous attractor network models of grid cells. PLoS Computational Biology, 5. Burak, Y., & Fiete, I.R. (2009). Accurate path integration in continuous attractor network models of grid cells. PLoS Computational Biology, 5.
Zurück zum Zitat Burgess, N., Barry, C., O’Keefe, J. (2007). An oscillatory interference model of grid cell firing. Hippocampus, 17, 801–812.PubMedPubMedCentral Burgess, N., Barry, C., O’Keefe, J. (2007). An oscillatory interference model of grid cell firing. Hippocampus, 17, 801–812.PubMedPubMedCentral
Zurück zum Zitat Carandini, M, & Heeger, D.J. (2011). Normalization as a canonical neural computation. Nature Reviews Neuroscience, 13(1), 51–62.PubMedPubMedCentral Carandini, M, & Heeger, D.J. (2011). Normalization as a canonical neural computation. Nature Reviews Neuroscience, 13(1), 51–62.PubMedPubMedCentral
Zurück zum Zitat Casazza, G.P., Fickus, M., Kovačević, J., Leon, M.T., Tremain, C.J. (2006). A physical interpretation of tight frames. Harmonic analysis and applications. Applied and Numerical Harmonic Analysis. Casazza, G.P., Fickus, M., Kovačević, J., Leon, M.T., Tremain, C.J. (2006). A physical interpretation of tight frames. Harmonic analysis and applications. Applied and Numerical Harmonic Analysis.
Zurück zum Zitat Castro, L, & Aguiar, P. (2014). A feedforward model for the formation of a grid field where spatial information is provided solely from place cells. Biological Cybernetics, 108(2), 133–143.PubMed Castro, L, & Aguiar, P. (2014). A feedforward model for the formation of a grid field where spatial information is provided solely from place cells. Biological Cybernetics, 108(2), 133–143.PubMed
Zurück zum Zitat Cheng, D. (2018). Hexadirectional modulation of theta power in human entorhinal cortex during spatial navigation. Current Biology, 28, 20, 3310–3315. Cheng, D. (2018). Hexadirectional modulation of theta power in human entorhinal cortex during spatial navigation. Current Biology, 28, 20, 3310–3315.
Zurück zum Zitat Constantinescu, A.O., O’Reilly, J.X., Behrens, T.E.J. (2016). Organizing conceptual knowledge in humans with a gridlike code. Science, 352, 1464–1468.PubMedPubMedCentral Constantinescu, A.O., O’Reilly, J.X., Behrens, T.E.J. (2016). Organizing conceptual knowledge in humans with a gridlike code. Science, 352, 1464–1468.PubMedPubMedCentral
Zurück zum Zitat Deneve, S., Peter, E., Latham, Alexandre, P. (1999). Reading population codes: a neural implementation of ideal observers. Nature Neuroscience, 2(8), 740–745.PubMed Deneve, S., Peter, E., Latham, Alexandre, P. (1999). Reading population codes: a neural implementation of ideal observers. Nature Neuroscience, 2(8), 740–745.PubMed
Zurück zum Zitat Dordek, Y, Soudry, D, Meir, R, Derdikman, D. (2016). Extracting grid cell characteristics from place cell inputs using non-negative principal component analysis. eLife, 5, e10094.PubMedPubMedCentral Dordek, Y, Soudry, D, Meir, R, Derdikman, D. (2016). Extracting grid cell characteristics from place cell inputs using non-negative principal component analysis. eLife, 5, e10094.PubMedPubMedCentral
Zurück zum Zitat Eagleson, R. (1992). Measurement of the 2D affine Lie group parameters for visual motion analysis. Spatial Vision, 6, 3. Eagleson, R. (1992). Measurement of the 2D affine Lie group parameters for visual motion analysis. Spatial Vision, 6, 3.
Zurück zum Zitat Field, D.J. (1999). Wavelets, vision and the statistics of natural scenes. Philosophical Transactions, Mathematical, Physical and Engineering Sciences, 357(1760), 2527. Field, D.J. (1999). Wavelets, vision and the statistics of natural scenes. Philosophical Transactions, Mathematical, Physical and Engineering Sciences, 357(1760), 2527.
Zurück zum Zitat Fiete, I.R., Burak, Y, Brookings, T. (2008). What grid cells convey about rat location. Journal of Neuroscience, 28(27), 6858–6871.PubMed Fiete, I.R., Burak, Y, Brookings, T. (2008). What grid cells convey about rat location. Journal of Neuroscience, 28(27), 6858–6871.PubMed
Zurück zum Zitat Franzius, M, Sprekeler, H, Wiskott, L. (2007). Slowness and sparseness lead to place, head-direction, and spatial-view cells. Plos Computational Biology, 3(8), 1605–1622. Franzius, M, Sprekeler, H, Wiskott, L. (2007). Slowness and sparseness lead to place, head-direction, and spatial-view cells. Plos Computational Biology, 3(8), 1605–1622.
Zurück zum Zitat Fuhs, M.C., & Touretzky, D.S. (2006). A spin glass model of path integration in rat medial entorhinal cortex. Journal of Neuroscience, 6, 4266–4276. Fuhs, M.C., & Touretzky, D.S. (2006). A spin glass model of path integration in rat medial entorhinal cortex. Journal of Neuroscience, 6, 4266–4276.
Zurück zum Zitat Goyal, V.K., & Kovacevic, J. (2001). Quantized frame expansions with erasures. Applied and Computational Harmonic Analysis, 10, 203–233. Goyal, V.K., & Kovacevic, J. (2001). Quantized frame expansions with erasures. Applied and Computational Harmonic Analysis, 10, 203–233.
Zurück zum Zitat Hafting, T., Fyhn, M., Molden, S., Moser, M.-B., Moser, E.I. (2005). Microstructure of a spatial map in the entorhinal cortex. Nature, 436, 801–806.PubMed Hafting, T., Fyhn, M., Molden, S., Moser, M.-B., Moser, E.I. (2005). Microstructure of a spatial map in the entorhinal cortex. Nature, 436, 801–806.PubMed
Zurück zum Zitat Hasselmo, M.E., Giocomo, L.M., Zilli, E.A. (2007). Grid cell firing may arise from interference of theta frequency membrane potential oscillations in single neurons. Hippocampus, 17, 1252–1271.PubMedPubMedCentral Hasselmo, M.E., Giocomo, L.M., Zilli, E.A. (2007). Grid cell firing may arise from interference of theta frequency membrane potential oscillations in single neurons. Hippocampus, 17, 1252–1271.PubMedPubMedCentral
Zurück zum Zitat Hebb, D.O. (1949). The organization of behavior: a neuropsychological theory. Wiley. Hebb, D.O. (1949). The organization of behavior: a neuropsychological theory. Wiley.
Zurück zum Zitat Heys, J.G., MacLeod, K.M., Moss, C.F., Hasselmo, M.E. (2013). Bat and rat neurons differ in theta frequency resonance despite similar coding of space. Science, 340, 363–367.PubMed Heys, J.G., MacLeod, K.M., Moss, C.F., Hasselmo, M.E. (2013). Bat and rat neurons differ in theta frequency resonance despite similar coding of space. Science, 340, 363–367.PubMed
Zurück zum Zitat Hubel, DH, & Wiesel, TN. (1965). Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat. Journal of Neurophysiology, 28(2), 229.PubMed Hubel, DH, & Wiesel, TN. (1965). Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat. Journal of Neurophysiology, 28(2), 229.PubMed
Zurück zum Zitat Hubel, DH, & Wiesel, TN. (1968). Receptive fields and functional architecture of monkey striate cortex. The Journal of Physiology, 195(1), 215.PubMedPubMedCentral Hubel, DH, & Wiesel, TN. (1968). Receptive fields and functional architecture of monkey striate cortex. The Journal of Physiology, 195(1), 215.PubMedPubMedCentral
Zurück zum Zitat Jacobs, J. (2013). Direct recordings of grid-like neuronal activity in human spatial navigation. Nature Neuroscience, 16, 1188–1190.PubMedPubMedCentral Jacobs, J. (2013). Direct recordings of grid-like neuronal activity in human spatial navigation. Nature Neuroscience, 16, 1188–1190.PubMedPubMedCentral
Zurück zum Zitat Kay, S.M. (1993). Fundamentals of statistical signal processing: estimation theory. New Jersey: Englewood Cliffs. Kay, S.M. (1993). Fundamentals of statistical signal processing: estimation theory. New Jersey: Englewood Cliffs.
Zurück zum Zitat Keinath, A, Epstein, R.A., Balasubramanian, V. (2018). Environmental deformations dynamically shift the grid cell spatial metric. eLife, 7, 10. Keinath, A, Epstein, R.A., Balasubramanian, V. (2018). Environmental deformations dynamically shift the grid cell spatial metric. eLife, 7, 10.
Zurück zum Zitat Kim, M. (2019). Can we study 3d grid codes non-invasively in the human brain? Methodological considerations and fmri findings. NeuroImage, 186, 667–678.PubMedPubMedCentral Kim, M. (2019). Can we study 3d grid codes non-invasively in the human brain? Methodological considerations and fmri findings. NeuroImage, 186, 667–678.PubMedPubMedCentral
Zurück zum Zitat Kovacevic, J., & Chebira, A. (2007). Life beyond bases: the advent of frames (part i). IEEE Signal Processing Magazine, 24(4), 86–104. Kovacevic, J., & Chebira, A. (2007). Life beyond bases: the advent of frames (part i). IEEE Signal Processing Magazine, 24(4), 86–104.
Zurück zum Zitat Kropff, E., & Treves, A. (2008). The emergence of grid cells: intelligent design or just adaptation? Hippocampus, 18, 1256–1269.PubMed Kropff, E., & Treves, A. (2008). The emergence of grid cells: intelligent design or just adaptation? Hippocampus, 18, 1256–1269.PubMed
Zurück zum Zitat Krupic, J., Bauza, M., Burton, S., Lever, C., O’Keefe, J. (2014). How environment geometry affects grid cell symmetry and what we can learn from it. Philosophical Transactions of the Royal Society of London, 369. Krupic, J., Bauza, M., Burton, S., Lever, C., O’Keefe, J. (2014). How environment geometry affects grid cell symmetry and what we can learn from it. Philosophical Transactions of the Royal Society of London, 369.
Zurück zum Zitat Krupic, J, Burgess, N, O’Keefe, J. (2012). Neural representations of location composed of spatially periodic bands. Science, 337(6096), 853–857.PubMedPubMedCentral Krupic, J, Burgess, N, O’Keefe, J. (2012). Neural representations of location composed of spatially periodic bands. Science, 337(6096), 853–857.PubMedPubMedCentral
Zurück zum Zitat Mathis, A, Herz, A.V.M., Stemmler, M. (2012). Optimal population codes for space: grid cells outperform place cells. Neural Computation, 24(9), 2280–2317.PubMed Mathis, A, Herz, A.V.M., Stemmler, M. (2012). Optimal population codes for space: grid cells outperform place cells. Neural Computation, 24(9), 2280–2317.PubMed
Zurück zum Zitat McNaughton, B.L., Battaglia, F.P., Jensen, O., Moser, E.I., Moser, M.B. (2006). Path integration and the neural basis of the ’cognitive map’. Nature Reviews in the Neurosciences, 7, 663–678. McNaughton, B.L., Battaglia, F.P., Jensen, O., Moser, E.I., Moser, M.B. (2006). Path integration and the neural basis of the ’cognitive map’. Nature Reviews in the Neurosciences, 7, 663–678.
Zurück zum Zitat Mhatre, H, Gorchetchnikov, A, Grossberg, S. (2012). Grid cell hexagonal patterns formed by fast self-organized learning within entorhinal cortex. Hippocampus, 22(2), 320–334.PubMed Mhatre, H, Gorchetchnikov, A, Grossberg, S. (2012). Grid cell hexagonal patterns formed by fast self-organized learning within entorhinal cortex. Hippocampus, 22(2), 320–334.PubMed
Zurück zum Zitat Moser, E.I., & Moser, M.-B. (2013). Grid cells and neural coding in high-end cortices. Neuron, 80. Moser, E.I., & Moser, M.-B. (2013). Grid cells and neural coding in high-end cortices. Neuron, 80.
Zurück zum Zitat Moser, E.I., Roudi, Y., Witter, M.P., Kentros, C, Bonhoeffer, T, Moser, M.-B. (2014). Grid cells and cortical representation. Nature Reviews Neuroscience, 15, 466–481.PubMed Moser, E.I., Roudi, Y., Witter, M.P., Kentros, C, Bonhoeffer, T, Moser, M.-B. (2014). Grid cells and cortical representation. Nature Reviews Neuroscience, 15, 466–481.PubMed
Zurück zum Zitat Oja, E. (1982). Simplified neuron model as a principal component analyzer. Journal of Mathematical Biology, 15(3), 267–273.PubMed Oja, E. (1982). Simplified neuron model as a principal component analyzer. Journal of Mathematical Biology, 15(3), 267–273.PubMed
Zurück zum Zitat Oja, E. (1992). Principal components, minor components, and linear neural networks. Neural Networks, 5(6), 927–935. Oja, E. (1992). Principal components, minor components, and linear neural networks. Neural Networks, 5(6), 927–935.
Zurück zum Zitat Orchard, J, Yang, H, Ji, X. (2013). Does the entorhinal cortex use the fourier transform? Frontiers in Computational Neuroscience, 7, 179.PubMedPubMedCentral Orchard, J, Yang, H, Ji, X. (2013). Does the entorhinal cortex use the fourier transform? Frontiers in Computational Neuroscience, 7, 179.PubMedPubMedCentral
Zurück zum Zitat Renart, A., Song, P., Wang, X.J. (2003). Robust spatial working memory through homeostatic synaptic scaling in heterogeneous cortical networks. Neuron, 38, 473–485.PubMed Renart, A., Song, P., Wang, X.J. (2003). Robust spatial working memory through homeostatic synaptic scaling in heterogeneous cortical networks. Neuron, 38, 473–485.PubMed
Zurück zum Zitat Domínguez, U.R., & Caplan, J.B. (2018). A hexagonal fourier model of grid cells. Hippocampus, 09. Domínguez, U.R., & Caplan, J.B. (2018). A hexagonal fourier model of grid cells. Hippocampus, 09.
Zurück zum Zitat Sargolini, F, Fyhn, M, Hafting, T, McNaughton, B.L., Witter, M.P., Moser, M -B, Moser, E.I. (2006). Conjunctive representation of position, direction, and velocity in entorhinal cortex. Science, 312(5774), 758–762.PubMed Sargolini, F, Fyhn, M, Hafting, T, McNaughton, B.L., Witter, M.P., Moser, M -B, Moser, E.I. (2006). Conjunctive representation of position, direction, and velocity in entorhinal cortex. Science, 312(5774), 758–762.PubMed
Zurück zum Zitat Schmidt-Hieber, C., & Häusser, M. (2013). Cellular mechanisms of spatial navigation in the medial entorhinal cortex. Nature Neuroscience, 16, 325–331.PubMed Schmidt-Hieber, C., & Häusser, M. (2013). Cellular mechanisms of spatial navigation in the medial entorhinal cortex. Nature Neuroscience, 16, 325–331.PubMed
Zurück zum Zitat Botvinick, M. M., Stachenfeld, K. L., Gershman, S. J. (2017). The hippocampus as a predictive map. Nature Neuroscisnce. Botvinick, M. M., Stachenfeld, K. L., Gershman, S. J. (2017). The hippocampus as a predictive map. Nature Neuroscisnce.
Zurück zum Zitat Stachenfeld, K.L., Botvinick, MM, Gershman, SJ. (2017). The hippocampus as a predictive map. Nature Neuroscience, 20, 1643–1653.PubMed Stachenfeld, K.L., Botvinick, MM, Gershman, SJ. (2017). The hippocampus as a predictive map. Nature Neuroscience, 20, 1643–1653.PubMed
Zurück zum Zitat Staudigl, T, Leszczynski, M, Jacobs, J, Sheth, S.A., Schroeder, C.E., Jensen, O, Doeller, C.F. (2018). Hexadirectional modulation of high-frequency electrophysiological activity in the human anterior medial temporal lobe maps visual space. Current Biology, 28(20), 3325–3329.e4.PubMed Staudigl, T, Leszczynski, M, Jacobs, J, Sheth, S.A., Schroeder, C.E., Jensen, O, Doeller, C.F. (2018). Hexadirectional modulation of high-frequency electrophysiological activity in the human anterior medial temporal lobe maps visual space. Current Biology, 28(20), 3325–3329.e4.PubMed
Zurück zum Zitat Urdapilleta, E., Troiani, F., Stella, F., Treves, A. (2015). Can rodents conceive hyperbolic spaces? Journal of the Royal Society Interface, 12, 107. Urdapilleta, E., Troiani, F., Stella, F., Treves, A. (2015). Can rodents conceive hyperbolic spaces? Journal of the Royal Society Interface, 12, 107.
Zurück zum Zitat Vágó, L., & Ujfalussy, B.B. (2018). Robust and efficient coding with grid cells. PLOS Computational Biology, 14(1), 1–28. Vágó, L., & Ujfalussy, B.B. (2018). Robust and efficient coding with grid cells. PLOS Computational Biology, 14(1), 1–28.
Zurück zum Zitat Yartsev, M.M., Witter, M.P., Ulanovsky, N. (2011). Grid cells without theta oscillations in the entorhinal cortex of bats. Nature, 479, 103–107.PubMed Yartsev, M.M., Witter, M.P., Ulanovsky, N. (2011). Grid cells without theta oscillations in the entorhinal cortex of bats. Nature, 479, 103–107.PubMed
Zurück zum Zitat Yoon, H, & Sompolinsky, H. (1998). The effect of correlations on the fisher information of population codes. In Proceedings of the 11th International Conference on Neural Information Processing Systems, NIPS 98 (pp. 167–173). Cambridge: MIT Press. Yoon, H, & Sompolinsky, H. (1998). The effect of correlations on the fisher information of population codes. In Proceedings of the 11th International Conference on Neural Information Processing Systems, NIPS 98 (pp. 167–173). Cambridge: MIT Press.
Metadaten
Titel
A computational model for grid maps in neural populations
verfasst von
Fabio Anselmi
Micah M. Murray
Benedetta Franceschiello
Publikationsdatum
03.03.2020
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 2/2020
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-020-00742-9

Weitere Artikel der Ausgabe 2/2020

Journal of Computational Neuroscience 2/2020 Zur Ausgabe