Skip to main content
Erschienen in: Journal of Computational Neuroscience 2/2020

27.04.2020

A hierarchical model of perceptual multistability involving interocular grouping

verfasst von: Yunjiao Wang, Zachary P. Kilpatrick, Krešimir Josić

Erschienen in: Journal of Computational Neuroscience | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Ambiguous visual images can generate dynamic and stochastic switches in perceptual interpretation known as perceptual rivalry. Such dynamics have primarily been studied in the context of rivalry between two percepts, but there is growing interest in the neural mechanisms that drive rivalry between more than two percepts. In recent experiments, we showed that split images presented to each eye lead to subjects perceiving four stochastically alternating percepts (Jacot-Guillarmod et al. Vision research, 133, 37–46, 2017): two single eye images and two interocularly grouped images. Here we propose a hierarchical neural network model that exhibits dynamics consistent with our experimental observations. The model consists of two levels, with the first representing monocular activity, and the second representing activity in higher visual areas. The model produces stochastically switching solutions, whose dependence on task parameters is consistent with four generalized Levelt Propositions, and with experiments. Moreover, dynamics restricted to invariant subspaces of the model demonstrate simpler forms of bistable rivalry. Thus, our hierarchical model generalizes past, validated models of binocular rivalry. This neuromechanistic model also allows us to probe the roles of interactions between populations at the network level. Generalized Levelt’s Propositions hold as long as feedback from the higher to lower visual areas is weak, and the adaptation and mutual inhibition at the higher level is not too strong. Our results suggest constraints on the architecture of the visual system and show that complex visual stimuli can be used in perceptual rivalry experiments to develop more detailed mechanistic models of perceptual processing.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Alias, D., & Blake, R. (2004). Binocular rivalry. Cambridge: MIT Press.CrossRef Alias, D., & Blake, R. (2004). Binocular rivalry. Cambridge: MIT Press.CrossRef
Zurück zum Zitat Andrew, T.J., & Lotto, R.B. (2004). Fusion and rivalry are dependent on the perceptual meaning of visual stimuli. Current Biology, 14, 418–423.CrossRef Andrew, T.J., & Lotto, R.B. (2004). Fusion and rivalry are dependent on the perceptual meaning of visual stimuli. Current Biology, 14, 418–423.CrossRef
Zurück zum Zitat Angelucci, A., Levitt, J.B., Walton, E.J., Hupe, J.M., Bullier, J., & Lund, J.S. (2002). Circuits for local and global signal integration in primary visual cortex. The Journal of Neuroscience, 22(19), 8633–8646.PubMedPubMedCentralCrossRef Angelucci, A., Levitt, J.B., Walton, E.J., Hupe, J.M., Bullier, J., & Lund, J.S. (2002). Circuits for local and global signal integration in primary visual cortex. The Journal of Neuroscience, 22(19), 8633–8646.PubMedPubMedCentralCrossRef
Zurück zum Zitat Arrington, K.F. (1993). Neural network models for color brightness percception and binocular rivalry. PhD thesis, Boston University. Arrington, K.F. (1993). Neural network models for color brightness percception and binocular rivalry. PhD thesis, Boston University.
Zurück zum Zitat Bartels, A., & Logothetis, N.K. (2010). Binocular rivalry: a time-depedence of eye and stimulus contributions. Journal of Vision, 10, 1–14.CrossRef Bartels, A., & Logothetis, N.K. (2010). Binocular rivalry: a time-depedence of eye and stimulus contributions. Journal of Vision, 10, 1–14.CrossRef
Zurück zum Zitat Beaudot, W.H., & Mullen, K.T. (2003). How long range is contour integration in human color vision? Visual Neuroscience, 20(01), 51–64.PubMedCrossRef Beaudot, W.H., & Mullen, K.T. (2003). How long range is contour integration in human color vision? Visual Neuroscience, 20(01), 51–64.PubMedCrossRef
Zurück zum Zitat Benda, J., & Herz, A.V. (2003). A universal model for spike-frequency adaptation. Neural Computation, 15 (11), 2523–2564.PubMedCrossRef Benda, J., & Herz, A.V. (2003). A universal model for spike-frequency adaptation. Neural Computation, 15 (11), 2523–2564.PubMedCrossRef
Zurück zum Zitat Blake, R. (2001). A primer on binocular rivalry, including current controversies. Brain and Mind, 2, 5–38.CrossRef Blake, R. (2001). A primer on binocular rivalry, including current controversies. Brain and Mind, 2, 5–38.CrossRef
Zurück zum Zitat Blake, R., & Logothetis, N.K. (2002). Visual competition. Nature Reviews Neuroscience, 3, 13–21.PubMedCrossRef Blake, R., & Logothetis, N.K. (2002). Visual competition. Nature Reviews Neuroscience, 3, 13–21.PubMedCrossRef
Zurück zum Zitat Blake, R., & Overton, R. (1979). The site of binocular rivalry suppression. Perception, 8(2), 143–152.PubMedCrossRef Blake, R., & Overton, R. (1979). The site of binocular rivalry suppression. Perception, 8(2), 143–152.PubMedCrossRef
Zurück zum Zitat Blake, R., Westendorf, D., & Fox, R. (1990). Temporal perturbations of binocular rivalry. Perception & Psychophysics, 48(6), 593–602.CrossRef Blake, R., Westendorf, D., & Fox, R. (1990). Temporal perturbations of binocular rivalry. Perception & Psychophysics, 48(6), 593–602.CrossRef
Zurück zum Zitat Bosking, W., Zhang, Y., Schofield, B., & Fitzpatrick, D. (1997). Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. Journal of Neuroscience, 17, 2112– 2127.PubMedCrossRef Bosking, W., Zhang, Y., Schofield, B., & Fitzpatrick, D. (1997). Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. Journal of Neuroscience, 17, 2112– 2127.PubMedCrossRef
Zurück zum Zitat Bossink, C., Stalmeier, P., & De Weert, C. (1993). A test of Levelt’s second proposition for binocular rivalry. Vision Research, 33(10), 1413–1419.PubMedCrossRef Bossink, C., Stalmeier, P., & De Weert, C. (1993). A test of Levelt’s second proposition for binocular rivalry. Vision Research, 33(10), 1413–1419.PubMedCrossRef
Zurück zum Zitat van Boxtel, J.J.A., Alais, D., & van Ee, R. (2008). Retinotopic and non-retinotopic stimulus encoding in binocular rivalry and the involvement of feedback. Journal of Vision, 8(5), 17–17.PubMedCrossRef van Boxtel, J.J.A., Alais, D., & van Ee, R. (2008). Retinotopic and non-retinotopic stimulus encoding in binocular rivalry and the involvement of feedback. Journal of Vision, 8(5), 17–17.PubMedCrossRef
Zurück zum Zitat Brascamp, J., Pearson, J., Blake, R., & Van Den Berg, A. (2009). Intermittent ambiguous stimuli: Implicit memory causes periodic perceptual alternations. Journal of Vision, 9(3), 3.PubMedCrossRef Brascamp, J., Pearson, J., Blake, R., & Van Den Berg, A. (2009). Intermittent ambiguous stimuli: Implicit memory causes periodic perceptual alternations. Journal of Vision, 9(3), 3.PubMedCrossRef
Zurück zum Zitat Brascamp, J., Klink, P., & Levelt, W.J. (2015). The ‘laws’ of binocular rivalry: 50 years of Levelt’s propositions. Vision research, 109, 20–37.PubMedCrossRef Brascamp, J., Klink, P., & Levelt, W.J. (2015). The ‘laws’ of binocular rivalry: 50 years of Levelt’s propositions. Vision research, 109, 20–37.PubMedCrossRef
Zurück zum Zitat Brascamp, J.W., Van, R.E., Noest, A.J., Jacobs, R.H., & van den Berg, A.V. (2006). The time course of binocular rivalry reveals a fundamental role of noise. Journal of Vision, 6, 1244–1256.PubMedCrossRef Brascamp, J.W., Van, R.E., Noest, A.J., Jacobs, R.H., & van den Berg, A.V. (2006). The time course of binocular rivalry reveals a fundamental role of noise. Journal of Vision, 6, 1244–1256.PubMedCrossRef
Zurück zum Zitat Brascamp, J.W., Sohn, H., Lee, S.H., & Blake, R.H. (2013). A monocular contribution to stimulus rivalry. PNAS. Brascamp, J.W., Sohn, H., Lee, S.H., & Blake, R.H. (2013). A monocular contribution to stimulus rivalry. PNAS.
Zurück zum Zitat Braun, J., & Mattia, M. (2010). Attractors and noise: twin drivers of decisions and multistability. NeuroImage, 52(3), 740–751.PubMedCrossRef Braun, J., & Mattia, M. (2010). Attractors and noise: twin drivers of decisions and multistability. NeuroImage, 52(3), 740–751.PubMedCrossRef
Zurück zum Zitat Bressler, D.W., Denison, R.N., & Silver, M.A. (2013). The constitution of visual consciousness: lessons from binocular rivalry 90, 253. Bressler, D.W., Denison, R.N., & Silver, M.A. (2013). The constitution of visual consciousness: lessons from binocular rivalry 90, 253.
Zurück zum Zitat Brincat, S.L., & Connor, C.E. (2006). Dynamic shape synthesis in posterior inferotemporal cortex. Neuron, 49(1), 17–24.PubMedCrossRef Brincat, S.L., & Connor, C.E. (2006). Dynamic shape synthesis in posterior inferotemporal cortex. Neuron, 49(1), 17–24.PubMedCrossRef
Zurück zum Zitat Carlson, T.A., & He, S. (2004). Competing global representations fail to initiate binocular rivalry. Neuron, 43, 970–914.CrossRef Carlson, T.A., & He, S. (2004). Competing global representations fail to initiate binocular rivalry. Neuron, 43, 970–914.CrossRef
Zurück zum Zitat Curtu, R., Shpiro, A., Rubin, N., & Rinzel, J. (2008). Mechanisms for frequency control in neuronal competition models. SIAM J Appl Dyn Sys, 7, 609–649.CrossRef Curtu, R., Shpiro, A., Rubin, N., & Rinzel, J. (2008). Mechanisms for frequency control in neuronal competition models. SIAM J Appl Dyn Sys, 7, 609–649.CrossRef
Zurück zum Zitat Dayan, P. (1998). A hierarchical model of binocular rivalry. Neural Computation, 10, 1119–1135.PubMedCrossRef Dayan, P. (1998). A hierarchical model of binocular rivalry. Neural Computation, 10, 1119–1135.PubMedCrossRef
Zurück zum Zitat Diekman, C.O., Golubitsky, M., & McMillen, T. (2012). Reduction and dynamics of a generalized rivalry network with two learned patterns. SIAM J Appl Dyn Sys, 11, 1270–1309.CrossRef Diekman, C.O., Golubitsky, M., & McMillen, T. (2012). Reduction and dynamics of a generalized rivalry network with two learned patterns. SIAM J Appl Dyn Sys, 11, 1270–1309.CrossRef
Zurück zum Zitat Diekman, C.O., Golubitsky, M., & Wang, Y. (2013). Derived patterns in binocular rivalry networks. Journal of Mathematical Neuroscience,3(6). Diekman, C.O., Golubitsky, M., & Wang, Y. (2013). Derived patterns in binocular rivalry networks. Journal of Mathematical Neuroscience,3(6).
Zurück zum Zitat van Ee, R., Noest, A.J., Brascamp, J.W., & van den Berg, A.V. (2006). Attentional control over either of the two competing percepts of ambiguous stimuli revealed by a two-parameter analysis: Means do notmake the difference. Vision Research, 46, 3129– 3141.PubMedCrossRef van Ee, R., Noest, A.J., Brascamp, J.W., & van den Berg, A.V. (2006). Attentional control over either of the two competing percepts of ambiguous stimuli revealed by a two-parameter analysis: Means do notmake the difference. Vision Research, 46, 3129– 3141.PubMedCrossRef
Zurück zum Zitat Ferster, D., & Miller, K.D. (2000). Neural mechanisms of orientation selectivity in the visual cortex. Annual Review of Neuroscience, 23(1), 441–471.PubMedCrossRef Ferster, D., & Miller, K.D. (2000). Neural mechanisms of orientation selectivity in the visual cortex. Annual Review of Neuroscience, 23(1), 441–471.PubMedCrossRef
Zurück zum Zitat Freeman, A.W. (2005). Multistage model for binocular rivalry. Journal of Neurophysiology, 94, 4412–4420.PubMedCrossRef Freeman, A.W. (2005). Multistage model for binocular rivalry. Journal of Neurophysiology, 94, 4412–4420.PubMedCrossRef
Zurück zum Zitat Gilbert, C.D., & Sigman, M. (2007). Brain states: top-down influences in sensory processing. Neuron, 54(5), 677–696.PubMedCrossRef Gilbert, C.D., & Sigman, M. (2007). Brain states: top-down influences in sensory processing. Neuron, 54(5), 677–696.PubMedCrossRef
Zurück zum Zitat Golubitsky, M., Zhao, Y., Wang, Y., & Lu ZL. (2019). The symmetry of generalized rivalry network models determines patterns of interocular grouping in four-location binocular rivalry. Journal of Neurophysiology. Golubitsky, M., Zhao, Y., Wang, Y., & Lu ZL. (2019). The symmetry of generalized rivalry network models determines patterns of interocular grouping in four-location binocular rivalry. Journal of Neurophysiology.
Zurück zum Zitat Häusser, M, & Roth, A. (1997). Estimating the time course of the excitatory synaptic conductance in neocortical pyramidal cells using a novel voltage jump method. The Journal of Neuroscience, 17(20), 7606–7625.PubMedPubMedCentralCrossRef Häusser, M, & Roth, A. (1997). Estimating the time course of the excitatory synaptic conductance in neocortical pyramidal cells using a novel voltage jump method. The Journal of Neuroscience, 17(20), 7606–7625.PubMedPubMedCentralCrossRef
Zurück zum Zitat Haynes, J.D., & Rees, G. (2005). Predicting the stream of consciousness from activity in human visual cortex. Current Biology, 15(14), 1301–7.PubMedCrossRef Haynes, J.D., & Rees, G. (2005). Predicting the stream of consciousness from activity in human visual cortex. Current Biology, 15(14), 1301–7.PubMedCrossRef
Zurück zum Zitat Hollins, M., & Hudnell, K. (1980). Adaptation of the binocular rivalry mechanism. Investigative Ophthalmology & Visual Science, 19(9), 1117–1120. Hollins, M., & Hudnell, K. (1980). Adaptation of the binocular rivalry mechanism. Investigative Ophthalmology & Visual Science, 19(9), 1117–1120.
Zurück zum Zitat Huguet, G., Rinzel, J., & Hupé, J M. (2014). Noise and adaptation in multistable perception: Noise drives when to switch, adaptation determines percept choice. Journal of Vision, 14(3). Huguet, G., Rinzel, J., & Hupé, J M. (2014). Noise and adaptation in multistable perception: Noise drives when to switch, adaptation determines percept choice. Journal of Vision, 14(3).
Zurück zum Zitat Jacot-Guillarmod, A., Wang, Y., Pedroza, C., Ogmen, H., Kilpatrick, Z., & Josić, K. (2017). Extending levelt’s propositions to perceptual multistability involving interocular grouping. Vision research, 133, 37–46.PubMedCrossRef Jacot-Guillarmod, A., Wang, Y., Pedroza, C., Ogmen, H., Kilpatrick, Z., & Josić, K. (2017). Extending levelt’s propositions to perceptual multistability involving interocular grouping. Vision research, 133, 37–46.PubMedCrossRef
Zurück zum Zitat Kalarickal, G.J., & Marshall, J.A. (2000). Neural model of temporal and stochastic properties of binocular rivalry. Neurocomputing, 32, 843–853.CrossRef Kalarickal, G.J., & Marshall, J.A. (2000). Neural model of temporal and stochastic properties of binocular rivalry. Neurocomputing, 32, 843–853.CrossRef
Zurück zum Zitat Kilpatrick, Z.P. (2013). Short term synaptic depression improves information transfer in perceptual multistability. Frontiers in Computational Neuroscience, 7(85). Kilpatrick, Z.P. (2013). Short term synaptic depression improves information transfer in perceptual multistability. Frontiers in Computational Neuroscience, 7(85).
Zurück zum Zitat Kim, C.Y., & Blake, R. (2007). Illusory color promotes interocular grouping during binocular rivalry. Psychonomic Bulletin & Review, 14(2), 356–362.CrossRef Kim, C.Y., & Blake, R. (2007). Illusory color promotes interocular grouping during binocular rivalry. Psychonomic Bulletin & Review, 14(2), 356–362.CrossRef
Zurück zum Zitat Klink, P.C., van Ee, R., Nijs, M.M., Brouwer, G.J., Noest, A.J., & van Wezel, R.J.A. (2008). Early interacions between neuronal adaptation and voluntary control determine perceptual choices in bistable vision. Journal of Vision, 8(16), 1–18.PubMedCrossRef Klink, P.C., van Ee, R., Nijs, M.M., Brouwer, G.J., Noest, A.J., & van Wezel, R.J.A. (2008). Early interacions between neuronal adaptation and voluntary control determine perceptual choices in bistable vision. Journal of Vision, 8(16), 1–18.PubMedCrossRef
Zurück zum Zitat Klink, P.C., Brascamp, J.W., Blake, R., & Wezel, R.J.A.V. (2010). Experience-driven plasticity in binocular vision. Current Biology, 20. Klink, P.C., Brascamp, J.W., Blake, R., & Wezel, R.J.A.V. (2010). Experience-driven plasticity in binocular vision. Current Biology, 20.
Zurück zum Zitat Kohler, W. (2015). The task of Gestalt psychology. Princeton: Princeton University Press.CrossRef Kohler, W. (2015). The task of Gestalt psychology. Princeton: Princeton University Press.CrossRef
Zurück zum Zitat Kovacs, I., Papathomas, T.V., Yang, M., & Feher, A. (1996). When the brain changes its mind: Interocular grouping during binocular rivalry. PNAS, 93, 15508–15511.PubMedCrossRefPubMedCentral Kovacs, I., Papathomas, T.V., Yang, M., & Feher, A. (1996). When the brain changes its mind: Interocular grouping during binocular rivalry. PNAS, 93, 15508–15511.PubMedCrossRefPubMedCentral
Zurück zum Zitat Lago-Fernandez, L.F., & Deco, G. (2002). A model of binocular rivalry based on competition in it. Neurocomputing, 44-46, 503–507.CrossRef Lago-Fernandez, L.F., & Deco, G. (2002). A model of binocular rivalry based on competition in it. Neurocomputing, 44-46, 503–507.CrossRef
Zurück zum Zitat Laing, C., & Chow, C.C. (2002). A spiking neuron model for binocular rivalry. J Comput Neurosci, 12, 39–53.PubMedCrossRef Laing, C., & Chow, C.C. (2002). A spiking neuron model for binocular rivalry. J Comput Neurosci, 12, 39–53.PubMedCrossRef
Zurück zum Zitat Lamme, V.A., & Roelfsema, P.R. (2000). The distinct modes of vision offered by feedforward and recurrent processing. Trends in Neurosciences, 23(11), 571–579.PubMedCrossRef Lamme, V.A., & Roelfsema, P.R. (2000). The distinct modes of vision offered by feedforward and recurrent processing. Trends in Neurosciences, 23(11), 571–579.PubMedCrossRef
Zurück zum Zitat Lee, S.H., & Blake, R. (2002). V1 activity is reduced during binocular rivalry. Journal of Vision, 2(9), 4.CrossRef Lee, S.H., & Blake, R. (2002). V1 activity is reduced during binocular rivalry. Journal of Vision, 2(9), 4.CrossRef
Zurück zum Zitat Lehky, S.R. (1988). An astable multivibrator model of binocular rivalry. Perception, 17, 215–228.PubMedCrossRef Lehky, S.R. (1988). An astable multivibrator model of binocular rivalry. Perception, 17, 215–228.PubMedCrossRef
Zurück zum Zitat Leopold, D., & Logothetis, N.K. (1999). Multistable phenomena: changing views in perception. Trends in Cognitive Sciences, 3, 254–264.PubMedCrossRef Leopold, D., & Logothetis, N.K. (1999). Multistable phenomena: changing views in perception. Trends in Cognitive Sciences, 3, 254–264.PubMedCrossRef
Zurück zum Zitat Leopold, D.A., & Logothetis, N.K. (1996). Activity changes in early visual cortex refect monkeys’ percepts during binocular rivalry. Nature, 379, 549–553.PubMedCrossRef Leopold, D.A., & Logothetis, N.K. (1996). Activity changes in early visual cortex refect monkeys’ percepts during binocular rivalry. Nature, 379, 549–553.PubMedCrossRef
Zurück zum Zitat Levelt, W.J.M. (1965). On binocular rivalry. PhD thesis, Institute for Perception RVO-TNO Soeterberg (Netherlands). Levelt, W.J.M. (1965). On binocular rivalry. PhD thesis, Institute for Perception RVO-TNO Soeterberg (Netherlands).
Zurück zum Zitat Li, H.H., Rankin, J., Rinzel, J., Carrasco, M., & Heeger, D.J. (2017). Attention model of binocular rivalry. PNAS, 114(30). Li, H.H., Rankin, J., Rinzel, J., Carrasco, M., & Heeger, D.J. (2017). Attention model of binocular rivalry. PNAS, 114(30).
Zurück zum Zitat Logothetis, N.K., & Schall, J.D. (1989). Neuronal correlates of subjective visual perception. Science, 245 (4919), 761–763.PubMedCrossRef Logothetis, N.K., & Schall, J.D. (1989). Neuronal correlates of subjective visual perception. Science, 245 (4919), 761–763.PubMedCrossRef
Zurück zum Zitat Lumer, E.D. (1998). A neural model of binocular intergration and rivalry based on the coordination of action-potential timing in primary visual cortex. Cerebral Cortex, 8, 553–561.PubMedCrossRef Lumer, E.D. (1998). A neural model of binocular intergration and rivalry based on the coordination of action-potential timing in primary visual cortex. Cerebral Cortex, 8, 553–561.PubMedCrossRef
Zurück zum Zitat Matsuoka, K. (1984). The dynamic model of binocular rivalry. Biological Cybernetics, 49, 201–208.PubMedCrossRef Matsuoka, K. (1984). The dynamic model of binocular rivalry. Biological Cybernetics, 49, 201–208.PubMedCrossRef
Zurück zum Zitat Moreno-Bote, R., Rinzel, J., & Rubin, N. (2007). Noise-induced alternations in an attractor network model of perceptual bistability. Journal of Neurophysiology, 98, 1125–1139.PubMedCrossRef Moreno-Bote, R., Rinzel, J., & Rubin, N. (2007). Noise-induced alternations in an attractor network model of perceptual bistability. Journal of Neurophysiology, 98, 1125–1139.PubMedCrossRef
Zurück zum Zitat Moreno-Bote, R., Shapiro, A., Rinzel, J., & Rubin, N. (2010). Alternation rate in perceptual bistability is maximal at and symmetric around equi-dominance. Journal of Vision, 10(11), 1–18.PubMedCrossRef Moreno-Bote, R., Shapiro, A., Rinzel, J., & Rubin, N. (2010). Alternation rate in perceptual bistability is maximal at and symmetric around equi-dominance. Journal of Vision, 10(11), 1–18.PubMedCrossRef
Zurück zum Zitat Noest, A.J., van Ee, R., Nijs, M.M., & van Wezel, R.J.A. (2007). Percept-choice sequences driven by interrupted ambiguous stimuli: a low-levl neural model. Journal of Vision, 7(8), 1–14.CrossRef Noest, A.J., van Ee, R., Nijs, M.M., & van Wezel, R.J.A. (2007). Percept-choice sequences driven by interrupted ambiguous stimuli: a low-levl neural model. Journal of Vision, 7(8), 1–14.CrossRef
Zurück zum Zitat Pearson, J., Tadin, D., & Blake, R. (2007). The effects of transcranial maganetic stimulation on visual rivalry. Journal of Vision, 7(7), 1–11.PubMedCrossRef Pearson, J., Tadin, D., & Blake, R. (2007). The effects of transcranial maganetic stimulation on visual rivalry. Journal of Vision, 7(7), 1–11.PubMedCrossRef
Zurück zum Zitat Platonov, A., & Goossens, J. (2013). Influence of contrast and coherence on the temporal dynamics of binocular motion rivalry. PloS One, 8(8), e71931.PubMedPubMedCentralCrossRef Platonov, A., & Goossens, J. (2013). Influence of contrast and coherence on the temporal dynamics of binocular motion rivalry. PloS One, 8(8), e71931.PubMedPubMedCentralCrossRef
Zurück zum Zitat Polonsky, A., Blake, R., Braun, J., & Heeger, D. (2000). Neuronal activity in human primary visual cortex correlates with perception during binocular rivalry. Nature Neuroscience, 3, 1153–1159.CrossRefPubMed Polonsky, A., Blake, R., Braun, J., & Heeger, D. (2000). Neuronal activity in human primary visual cortex correlates with perception during binocular rivalry. Nature Neuroscience, 3, 1153–1159.CrossRefPubMed
Zurück zum Zitat Ramachandran, V.S., Rao, V.M., Sriram, S., & Vidyasagar, T.R. (1973). The role of colour perception and “pattern” recognition in stereopsis. Vision Research, 13, 505–509.PubMedCrossRef Ramachandran, V.S., Rao, V.M., Sriram, S., & Vidyasagar, T.R. (1973). The role of colour perception and “pattern” recognition in stereopsis. Vision Research, 13, 505–509.PubMedCrossRef
Zurück zum Zitat Renart, A., De La Rocha, J., Bartho, P., Hollender, L., Parga, N., Reyes, A., & Harris, K.D. (2010). The asynchronous state in cortical circuits. Science, 327(5965), 587–590.PubMedPubMedCentralCrossRef Renart, A., De La Rocha, J., Bartho, P., Hollender, L., Parga, N., Reyes, A., & Harris, K.D. (2010). The asynchronous state in cortical circuits. Science, 327(5965), 587–590.PubMedPubMedCentralCrossRef
Zurück zum Zitat Riesenhuber, M., & Poggio, T. (1999). Hierarchical models of object recognition in cortex. Nature Neuroscience, 2(11), 1019–1025.PubMedCrossRef Riesenhuber, M., & Poggio, T. (1999). Hierarchical models of object recognition in cortex. Nature Neuroscience, 2(11), 1019–1025.PubMedCrossRef
Zurück zum Zitat Ringach, D.L., Hawken, M.J., Shapley, R., & et al. (1997). Dynamics of orientation tuning in macaque primary visual cortex. Nature, 387(6630), 281–284.PubMedCrossRef Ringach, D.L., Hawken, M.J., Shapley, R., & et al. (1997). Dynamics of orientation tuning in macaque primary visual cortex. Nature, 387(6630), 281–284.PubMedCrossRef
Zurück zum Zitat Roelfsema, P.R. (2006). Cortical algorithms for perceptual grouping. Annual Review of Neuroscience, 29, 203–227.PubMedCrossRef Roelfsema, P.R. (2006). Cortical algorithms for perceptual grouping. Annual Review of Neuroscience, 29, 203–227.PubMedCrossRef
Zurück zum Zitat Roumani, D., & Moutoussis, K. (2012). Binocular rivalry alternations and their relation to visual adaptation. Frontiers in Human Neuroscience, 6, 35–35.PubMedPubMedCentralCrossRef Roumani, D., & Moutoussis, K. (2012). Binocular rivalry alternations and their relation to visual adaptation. Frontiers in Human Neuroscience, 6, 35–35.PubMedPubMedCentralCrossRef
Zurück zum Zitat Salinas, E., & Abbott, L. (1996). A model of multiplicative neural responses in parietal cortex. Proceedings of the National Academy of Sciences, 93(21), 11956–11961.CrossRef Salinas, E., & Abbott, L. (1996). A model of multiplicative neural responses in parietal cortex. Proceedings of the National Academy of Sciences, 93(21), 11956–11961.CrossRef
Zurück zum Zitat Sheinberg, D.L., & Logothetis, N.K. (1997). The role of temporal cortical areas in perceptual organization. Proceedings of the National Academy of Sciences, 94(7), 3408–3413.CrossRef Sheinberg, D.L., & Logothetis, N.K. (1997). The role of temporal cortical areas in perceptual organization. Proceedings of the National Academy of Sciences, 94(7), 3408–3413.CrossRef
Zurück zum Zitat Shiraishi, S. (1977). A test of Levelt’s model on binocular rivalry. Japanese Psychological Research, 19(3), 129–135.CrossRef Shiraishi, S. (1977). A test of Levelt’s model on binocular rivalry. Japanese Psychological Research, 19(3), 129–135.CrossRef
Zurück zum Zitat Shpiro, A., Curtu, R., Rinzel, J., & Rubin, N. (2007). Dynamical characteristics common to neuronal competition models. Journal of Neurophysiology, 97(1), 462–473.CrossRefPubMed Shpiro, A., Curtu, R., Rinzel, J., & Rubin, N. (2007). Dynamical characteristics common to neuronal competition models. Journal of Neurophysiology, 97(1), 462–473.CrossRefPubMed
Zurück zum Zitat Sincich, L.C., & Horton, J.C. (2005). The circuitry of v1 and v2: integration of color, form, and motion. Annual Review of Neuroscience, 28, 303–326.PubMedCrossRef Sincich, L.C., & Horton, J.C. (2005). The circuitry of v1 and v2: integration of color, form, and motion. Annual Review of Neuroscience, 28, 303–326.PubMedCrossRef
Zurück zum Zitat Sterzer, P., Kleinschmit, A., & Rees, G. (2009). The neural bases of multistable perception. Trends in Cognitive Sciences, 13(7). Sterzer, P., Kleinschmit, A., & Rees, G. (2009). The neural bases of multistable perception. Trends in Cognitive Sciences, 13(7).
Zurück zum Zitat Stettler, D.D., Das, A., Bennett, J., & Gilbert, C.D. (2002). Lateral connectivity and contextual interactions in macaque primary visual cortex. Neuron, 36(4), 739–750.PubMedCrossRef Stettler, D.D., Das, A., Bennett, J., & Gilbert, C.D. (2002). Lateral connectivity and contextual interactions in macaque primary visual cortex. Neuron, 36(4), 739–750.PubMedCrossRef
Zurück zum Zitat Stollenwerk, L., & Bode, M. (2003). Lateral neural model of binocular rivalry. Neural Computation, 15, 2863–2882.PubMedCrossRef Stollenwerk, L., & Bode, M. (2003). Lateral neural model of binocular rivalry. Neural Computation, 15, 2863–2882.PubMedCrossRef
Zurück zum Zitat Suzuki, S., & Grabowecky, M. (2002). Evidence for perceptual “trapping” and adaptation in multistable binocular rivalry. Neuron, 36, 143–157.PubMedCrossRef Suzuki, S., & Grabowecky, M. (2002). Evidence for perceptual “trapping” and adaptation in multistable binocular rivalry. Neuron, 36, 143–157.PubMedCrossRef
Zurück zum Zitat Tong, F. (2001). Competing theories of binocular rivalry. Brain and Mind, 2, 55083.CrossRef Tong, F. (2001). Competing theories of binocular rivalry. Brain and Mind, 2, 55083.CrossRef
Zurück zum Zitat Tong, F., & et al. (1998). Binocular rivalry and visual awareness in human extrastriate cortex. Neuron, 21(753–759). Tong, F., & et al. (1998). Binocular rivalry and visual awareness in human extrastriate cortex. Neuron, 21(753–759).
Zurück zum Zitat Tong, F., Meng, M., & Blake, R. (2006). Neural bases of binocular rivalry. Trends in Cognitive Sciences, 10,(11). Tong, F., Meng, M., & Blake, R. (2006). Neural bases of binocular rivalry. Trends in Cognitive Sciences, 10,(11).
Zurück zum Zitat Wade, N.J., & Weert, C.M.M.D. (1986). Aftereffects in binocular rivalry. Perception, 15(4), 419–434.PubMedCrossRef Wade, N.J., & Weert, C.M.M.D. (1986). Aftereffects in binocular rivalry. Perception, 15(4), 419–434.PubMedCrossRef
Zurück zum Zitat Wagemans, J., Elder, J.H., Kubovy, M., Palmer, S.E., Peterson, M.A., Singh, M., & von der Heydt, R. (2012). A century of gestalt psychology in visual perception: I. perceptual grouping and figure–ground organization. Psychological Bulletin, 138(6), 1172.PubMedPubMedCentralCrossRef Wagemans, J., Elder, J.H., Kubovy, M., Palmer, S.E., Peterson, M.A., Singh, M., & von der Heydt, R. (2012). A century of gestalt psychology in visual perception: I. perceptual grouping and figure–ground organization. Psychological Bulletin, 138(6), 1172.PubMedPubMedCentralCrossRef
Zurück zum Zitat Wheatstone, C. (1838). Contributions to the physiology of vision. Part I. On some remarkable, and hitherto unobserved, phenomena of binocular vision. London and Edinburgh Philosophical Magazine and Journal of Science, 3, 241–267.CrossRef Wheatstone, C. (1838). Contributions to the physiology of vision. Part I. On some remarkable, and hitherto unobserved, phenomena of binocular vision. London and Edinburgh Philosophical Magazine and Journal of Science, 3, 241–267.CrossRef
Zurück zum Zitat Wilson, H.R. (2007). Minimal physiological conditions for binocular rivalry and rivalry memory. Vision Res, 47, 2741–2750.PubMedCrossRef Wilson, H.R. (2007). Minimal physiological conditions for binocular rivalry and rivalry memory. Vision Res, 47, 2741–2750.PubMedCrossRef
Zurück zum Zitat Wilson, H.R. (2009). Requirements for conscious visual processing, Cambridge University Press, chap In Cortical Mechanisms of Vision, pp 399–417. Wilson, H.R. (2009). Requirements for conscious visual processing, Cambridge University Press, chap In Cortical Mechanisms of Vision, pp 399–417.
Metadaten
Titel
A hierarchical model of perceptual multistability involving interocular grouping
verfasst von
Yunjiao Wang
Zachary P. Kilpatrick
Krešimir Josić
Publikationsdatum
27.04.2020
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 2/2020
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-020-00743-8

Weitere Artikel der Ausgabe 2/2020

Journal of Computational Neuroscience 2/2020 Zur Ausgabe

Premium Partner