Skip to main content
Top
Published in: Shape Memory and Superelasticity 3/2015

01-09-2015

Modelling Shape-Memory Effects in Ferromagnetic Alloys

Authors: Jonathan F. Gebbia, Pol Lloveras, Teresa Castán, Avadh Saxena, Antoni Planes

Published in: Shape Memory and Superelasticity | Issue 3/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We develop a combined Ginzburg–Landau/micromagnetic model dealing with conventional and magnetic shape-memory properties in ferromagnetic shape-memory materials. The free energy of the system is written as the sum of structural, magnetic and magnetostructural contributions. We first analyse a mean field linearized version of the model that does not take into account long-range terms arising from elastic compatibility and demagnetization effects. This model can be solved analytically and in spite of its simplicity allows us to understand the role of the magnetostructural term in driving magnetic shape-memory effects. Numerical simulations of the full model have also been performed. They show that the model is able to reproduce magnetostructural microstructures reported in magnetic shape-memory materials such as Ni2MnGa as well as conventional and magnetic shape-memory behaviour.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
While not thermodynamically reversible, the transition is crystallographically reversible and occurs with weak (or relatively weak) hysteresis.
 
2
Some authors use the term magnetic superelasticity to describe the stress-induced reorientation of martensitic variants under an applied magnetic field. See for instance [11].
 
3
Even if the model is 2-d, assuming that magnetization is a 3-component vector with two components in-plane is important since it allows to consider a more realistic magnetization dynamics that takes into account precession of the magnetic vector around the applied magnetic field
 
Literature
1.
go back to reference Acet M, Mañosa L, Planes A (2011) Magnetic-field-induced effects in martensitic Heusler-based magnetic shape memory alloys. In: Buschow KHJ (ed) Handbook of magnetic materials, vol 19. Elsevier, Amsterdam, pp 231–289 references therein Acet M, Mañosa L, Planes A (2011) Magnetic-field-induced effects in martensitic Heusler-based magnetic shape memory alloys. In: Buschow KHJ (ed) Handbook of magnetic materials, vol 19. Elsevier, Amsterdam, pp 231–289 references therein
2.
go back to reference Ullakko K, Huang JK, Kantner C, O’Handley RC, Kokorin VV (1996) Large magneticfieldinduced strains in Ni\(_2\)MnGa single crystals. Appl Phys Lett 69:1966–1968CrossRef Ullakko K, Huang JK, Kantner C, O’Handley RC, Kokorin VV (1996) Large magneticfieldinduced strains in Ni\(_2\)MnGa single crystals. Appl Phys Lett 69:1966–1968CrossRef
3.
go back to reference Libermann HH, Graham CD (1976) Plastic and magnetoplastic deformation of Dy single crystals. Acta Metall 25:715–720CrossRef Libermann HH, Graham CD (1976) Plastic and magnetoplastic deformation of Dy single crystals. Acta Metall 25:715–720CrossRef
4.
go back to reference Ziebeck KA, Newmann KU (2001) Landolt-Bornstein III, Supl. vol. 19, vol 32., Springer, Berlin Ziebeck KA, Newmann KU (2001) Landolt-Bornstein III, Supl. vol. 19, vol 32., Springer, Berlin
5.
go back to reference Graf T, Felser C, Parkin SS (2011) Simple rules for understanding Heusler alloys. Prog Solid Stat Chem 39:1–50CrossRef Graf T, Felser C, Parkin SS (2011) Simple rules for understanding Heusler alloys. Prog Solid Stat Chem 39:1–50CrossRef
6.
go back to reference Entel P, Buchelnikov VD, Khovailo VV, Zayak AT, Adeagbo WA, Gruner ME, Herper HC, Wassermann EF (2006) Modelling the phase diagram of magnetic shape memory Heusler alloys. J Phys D 39:865–889CrossRef Entel P, Buchelnikov VD, Khovailo VV, Zayak AT, Adeagbo WA, Gruner ME, Herper HC, Wassermann EF (2006) Modelling the phase diagram of magnetic shape memory Heusler alloys. J Phys D 39:865–889CrossRef
7.
go back to reference Albertini F, Paretti L, Paoluzi A, Morellon L, Algarabel PA, Ibarra MR, Righi L (2002) Composition and temperature dependence of the magnetocrystalline anisotropy in Ni\(_{2+x}\) Mn\(_{1+y}\) Ga\(_{1+z}\) (x + y + z = 1) Heusler alloys. Appl Phys Lett 81:4032–4034CrossRef Albertini F, Paretti L, Paoluzi A, Morellon L, Algarabel PA, Ibarra MR, Righi L (2002) Composition and temperature dependence of the magnetocrystalline anisotropy in Ni\(_{2+x}\) Mn\(_{1+y}\) Ga\(_{1+z}\) (x + y + z = 1) Heusler alloys. Appl Phys Lett 81:4032–4034CrossRef
8.
go back to reference Otsuka K, Wayman CM (eds) (1998) Shape memory materials. Cambridge University Press, Cambridge Otsuka K, Wayman CM (eds) (1998) Shape memory materials. Cambridge University Press, Cambridge
9.
go back to reference Kohl M, Gueltig M, Pinneker V, Yin R, Wendler F, Krevet B (2014) Magnetic shape memory microactuators. Micromachines 5:1135–1160CrossRef Kohl M, Gueltig M, Pinneker V, Yin R, Wendler F, Krevet B (2014) Magnetic shape memory microactuators. Micromachines 5:1135–1160CrossRef
10.
go back to reference Söderberg O, Sozinov A, Ge Y, Hannula S-P, Lindroos VK (2006) Giant magnetostrictive materials. In: Buschow KHJ (ed) Handbook of magnetic materials, vol 16. Elsevier, Amsterdam, pp 1–37 Söderberg O, Sozinov A, Ge Y, Hannula S-P, Lindroos VK (2006) Giant magnetostrictive materials. In: Buschow KHJ (ed) Handbook of magnetic materials, vol 16. Elsevier, Amsterdam, pp 1–37
11.
go back to reference Chernenko VA, Lvov VA, Müllner P, Kostorz G, Takagi T (2004) Magnetic-field-induced superelasticity of ferromagnetic thermoelastic martensites: experiment and modeling. Phys. Rev. B 69:134410CrossRef Chernenko VA, Lvov VA, Müllner P, Kostorz G, Takagi T (2004) Magnetic-field-induced superelasticity of ferromagnetic thermoelastic martensites: experiment and modeling. Phys. Rev. B 69:134410CrossRef
12.
go back to reference Planes A, Mañosa L, Acet M (2009) Magnetocaloric effect and its relation to shape-memory properties in ferromagnetic Heusler alloys. J Phys Condens Matter 21:233201CrossRef Planes A, Mañosa L, Acet M (2009) Magnetocaloric effect and its relation to shape-memory properties in ferromagnetic Heusler alloys. J Phys Condens Matter 21:233201CrossRef
13.
go back to reference O’Handley RC (1998) Model for strain and magnetization in magnetic shape-memory alloys. J Appl Phys 83:3263CrossRef O’Handley RC (1998) Model for strain and magnetization in magnetic shape-memory alloys. J Appl Phys 83:3263CrossRef
14.
go back to reference O’Handley RC, Murray SJ, Marioni M, Nembach H, Allen SM (2000) Phenomenology of giant magnetic-field-induced strain in ferromagnetic shape-memory materials. J Appl Phys 87:4712–4717CrossRef O’Handley RC, Murray SJ, Marioni M, Nembach H, Allen SM (2000) Phenomenology of giant magnetic-field-induced strain in ferromagnetic shape-memory materials. J Appl Phys 87:4712–4717CrossRef
15.
go back to reference Kainuma R, Imano Y, Ito W, Sutou Y, Oikawa K, Fujita A, Kanomata T, Ishida K (2006) Magnetic-field-induced shape recovery by reverse phase transition. Nature 439:957–960CrossRef Kainuma R, Imano Y, Ito W, Sutou Y, Oikawa K, Fujita A, Kanomata T, Ishida K (2006) Magnetic-field-induced shape recovery by reverse phase transition. Nature 439:957–960CrossRef
16.
go back to reference Krenke T, Duman E, Acet M, Wassermann EF, Moya X, Mañosa L, Planes A, Suard E, Ouladdiaf B (2007) Magnetic superelasticity and inverse magnetocaloric effect in Ni–Mn–In. Phys Rev B 75:104414CrossRef Krenke T, Duman E, Acet M, Wassermann EF, Moya X, Mañosa L, Planes A, Suard E, Ouladdiaf B (2007) Magnetic superelasticity and inverse magnetocaloric effect in Ni–Mn–In. Phys Rev B 75:104414CrossRef
17.
go back to reference Karaca HE, Karaman I, Basaran B, Ren Y, Chumlyakov YI, Maier HJ (2009) Magnetic field-induced phase transformation in NiMnCoIn magnetic shape-memory alloys a new actuation mechanism with large work output. Adv Func Mater 19:983–998CrossRef Karaca HE, Karaman I, Basaran B, Ren Y, Chumlyakov YI, Maier HJ (2009) Magnetic field-induced phase transformation in NiMnCoIn magnetic shape-memory alloys a new actuation mechanism with large work output. Adv Func Mater 19:983–998CrossRef
18.
go back to reference Landis CM (2008) A continuum thermodynamics formulation for micro-magnetomechanics with applications to ferromagnetic shape memory alloys. J Mech Phys Solids 56:3059–3076CrossRef Landis CM (2008) A continuum thermodynamics formulation for micro-magnetomechanics with applications to ferromagnetic shape memory alloys. J Mech Phys Solids 56:3059–3076CrossRef
19.
go back to reference Ball JM, James RD (1987) Fine phase mixtures as minimizers of energy. Arch Ration Mech Anal 100:13–52 This approach has been developed in detail. In: K. Bhattacharya, Theory of martensitic microstructure: Why it forms and how it gives rise to the shape-memory effect, Oxford Series on Materials Modelling, Oxford University Press, Oxford, 2004CrossRef Ball JM, James RD (1987) Fine phase mixtures as minimizers of energy. Arch Ration Mech Anal 100:13–52 This approach has been developed in detail. In: K. Bhattacharya, Theory of martensitic microstructure: Why it forms and how it gives rise to the shape-memory effect, Oxford Series on Materials Modelling, Oxford University Press, Oxford, 2004CrossRef
20.
go back to reference James RD, Wuttig M (1998) Magnetostriction of martensite. Philos Mag A 77:1273CrossRef James RD, Wuttig M (1998) Magnetostriction of martensite. Philos Mag A 77:1273CrossRef
21.
go back to reference Tickle R, James RD, Shield T, Wuttig M, Kokorin VV (1999) Ferromagnetic shape memory in the NiMnGa system. IEEE Trans Magn 35:4301–4310CrossRef Tickle R, James RD, Shield T, Wuttig M, Kokorin VV (1999) Ferromagnetic shape memory in the NiMnGa system. IEEE Trans Magn 35:4301–4310CrossRef
22.
go back to reference Ma YF, Lia JY (2007) Magnetization rotation and rearrangement of martensite variants in ferromagnetic shape memory alloys. Appl Phys Lett 90:172504CrossRef Ma YF, Lia JY (2007) Magnetization rotation and rearrangement of martensite variants in ferromagnetic shape memory alloys. Appl Phys Lett 90:172504CrossRef
23.
go back to reference Wang Y, Khachaturyan AG (1997) Three-dimensional field model and computer modeling of martensitic transformations. Acta Mater 45:759–773CrossRef Wang Y, Khachaturyan AG (1997) Three-dimensional field model and computer modeling of martensitic transformations. Acta Mater 45:759–773CrossRef
24.
go back to reference Khachaturyan AG (2008) Theory of structural transformation in solids. Dover, New York Khachaturyan AG (2008) Theory of structural transformation in solids. Dover, New York
25.
go back to reference Zhang J, Chen LQ (2005) Phase-field microelasticity theory and micromagnetic simulations of domain structures in giant magnetostrictive materials. Acta Mater 53:2845–2855CrossRef Zhang J, Chen LQ (2005) Phase-field microelasticity theory and micromagnetic simulations of domain structures in giant magnetostrictive materials. Acta Mater 53:2845–2855CrossRef
26.
go back to reference Chen LQ (2002) Phase-field models for microstructure evolution. Annu Rev Mater Res 32:113–140CrossRef Chen LQ (2002) Phase-field models for microstructure evolution. Annu Rev Mater Res 32:113–140CrossRef
27.
go back to reference Jin YM (2009) Domain microstructure evolution in magnetic shape memory alloys: phase-field model and simulation. Acta Mater 57:2488–2495CrossRef Jin YM (2009) Domain microstructure evolution in magnetic shape memory alloys: phase-field model and simulation. Acta Mater 57:2488–2495CrossRef
28.
go back to reference Peng Q, Hea YJ, Moumni Z (2015) A phase-field model on the hysteretic magneto-mechanical behaviors of ferromagnetic shape memory alloy. Acta Mater 88:13–24CrossRef Peng Q, Hea YJ, Moumni Z (2015) A phase-field model on the hysteretic magneto-mechanical behaviors of ferromagnetic shape memory alloy. Acta Mater 88:13–24CrossRef
29.
go back to reference Mennerich C, Wendler F, Jainta M, Nestler B (2013) Rearrangement of martensitic variants in Ni\(_2\) MnGa studied with the phase-field method. Eur Phys J 86:171CrossRef Mennerich C, Wendler F, Jainta M, Nestler B (2013) Rearrangement of martensitic variants in Ni\(_2\) MnGa studied with the phase-field method. Eur Phys J 86:171CrossRef
30.
go back to reference Soutlas-Little RW (1999) Elasticity. Dover, New York Soutlas-Little RW (1999) Elasticity. Dover, New York
31.
go back to reference Lookman T, Shenoy SR, Rasmussen KO, Saxena A, Bishop AR (2003) Ferroelastic dynamics and strain compatibility. Phys Rev B 67:024114CrossRef Lookman T, Shenoy SR, Rasmussen KO, Saxena A, Bishop AR (2003) Ferroelastic dynamics and strain compatibility. Phys Rev B 67:024114CrossRef
32.
go back to reference Kittel C (1949) Physical theory of ferromagnetic domains. Rev Mod Phys 21:541–583CrossRef Kittel C (1949) Physical theory of ferromagnetic domains. Rev Mod Phys 21:541–583CrossRef
33.
go back to reference Aharoni A (1996) Introduction to the theory of ferromagnetism. Oxford University Press, New York Aharoni A (1996) Introduction to the theory of ferromagnetism. Oxford University Press, New York
34.
go back to reference Shenoy SR, Lookman T, Saxena A, Bishop AR (1999) Martensitic textures: multiscale consequences of elastic compatibility. Phys Rev B 60:R12537CrossRef Shenoy SR, Lookman T, Saxena A, Bishop AR (1999) Martensitic textures: multiscale consequences of elastic compatibility. Phys Rev B 60:R12537CrossRef
35.
go back to reference Lloveras P (2010) Ph.D. Thesis, Universitat de Barcelona Lloveras P (2010) Ph.D. Thesis, Universitat de Barcelona
36.
go back to reference Porta M, Castán T, Lloveras P, Lookman T, Saxena A, Shenoy SR (2009) Interfaces in ferroelastics: fringing fields, microstructure, and size and shape effects. Phys Rev B 79:214117CrossRef Porta M, Castán T, Lloveras P, Lookman T, Saxena A, Shenoy SR (2009) Interfaces in ferroelastics: fringing fields, microstructure, and size and shape effects. Phys Rev B 79:214117CrossRef
37.
go back to reference Arlt J, Hennings D, de With G (1985) Dielectric-properties of fine-grained barium-titanate ceramics. J Appl Phys 58:1619–1625CrossRef Arlt J, Hennings D, de With G (1985) Dielectric-properties of fine-grained barium-titanate ceramics. J Appl Phys 58:1619–1625CrossRef
38.
go back to reference Wang J, Steinmann P (2012) A variational approach towards the modeling of magnetic field-induced strains in magnetic shape memory alloys. J Mech Phys Sol 60:1179–1200CrossRef Wang J, Steinmann P (2012) A variational approach towards the modeling of magnetic field-induced strains in magnetic shape memory alloys. J Mech Phys Sol 60:1179–1200CrossRef
39.
go back to reference Kiefer B, Lagoudas DC (2009) Modeling the coupled strain and magnetization response of magnetic shape memory alloys under magnetomechanical loading. J Intell Mater Sys Struc 20:143–170CrossRef Kiefer B, Lagoudas DC (2009) Modeling the coupled strain and magnetization response of magnetic shape memory alloys under magnetomechanical loading. J Intell Mater Sys Struc 20:143–170CrossRef
40.
go back to reference Auricchio F, Bessoud A-L, Reali A, Stefanelli U (2015) A phenomenological model for the magneto-mechanical response of single-crystal magnetic shape memory alloys. Eur J Mech A Sol 52:1–11CrossRef Auricchio F, Bessoud A-L, Reali A, Stefanelli U (2015) A phenomenological model for the magneto-mechanical response of single-crystal magnetic shape memory alloys. Eur J Mech A Sol 52:1–11CrossRef
41.
go back to reference Chen X, Moumni Z, He Y, Zhang W (2014) A three-dimensional model of magneto-mechanical behaviors of martensite reorientation in ferromagnetic shape memory alloys. J Mech Phys Sol 64:249–286CrossRef Chen X, Moumni Z, He Y, Zhang W (2014) A three-dimensional model of magneto-mechanical behaviors of martensite reorientation in ferromagnetic shape memory alloys. J Mech Phys Sol 64:249–286CrossRef
42.
go back to reference LaMaster DH, Feigenbaum HP, Nelson ID, Ciocanel C (2014) A full two-dimensional thermodynamic-based model for magnetic shape memory alloys. J Appl Mech 81:061003CrossRef LaMaster DH, Feigenbaum HP, Nelson ID, Ciocanel C (2014) A full two-dimensional thermodynamic-based model for magnetic shape memory alloys. J Appl Mech 81:061003CrossRef
43.
go back to reference Shankaraiah N, Murthy KPN, Lookman T, Shenoy SR (2011) Monte Carlo simulations of strain pseudospins: athermal martensites, incubation times, and entropy barriers. Phys Rev B 84:064119CrossRef Shankaraiah N, Murthy KPN, Lookman T, Shenoy SR (2011) Monte Carlo simulations of strain pseudospins: athermal martensites, incubation times, and entropy barriers. Phys Rev B 84:064119CrossRef
44.
go back to reference Heczko O, Sozinov A, Ullakko K (2000) Giant field-induced reversible strain in magnetic shape memory NiMnGa alloy. IEEE Trans Magn 36:3266–3268CrossRef Heczko O, Sozinov A, Ullakko K (2000) Giant field-induced reversible strain in magnetic shape memory NiMnGa alloy. IEEE Trans Magn 36:3266–3268CrossRef
45.
go back to reference Likhachev AA, Ullakko K (2000) Magnetic-field-controlled twin boundaries motion and giant magneto-mechanical effects in Ni–Mn–Ga shape memoy alloy. Phys Lett A 275:142–151CrossRef Likhachev AA, Ullakko K (2000) Magnetic-field-controlled twin boundaries motion and giant magneto-mechanical effects in Ni–Mn–Ga shape memoy alloy. Phys Lett A 275:142–151CrossRef
46.
go back to reference Straka L, Heczko O (2005) Reversible 6% strain of Ni–Mn–Ga martensite using opposing external stress in static and variable magnetic fields. J Magn Magn Mater 290–291:829–831CrossRef Straka L, Heczko O (2005) Reversible 6% strain of Ni–Mn–Ga martensite using opposing external stress in static and variable magnetic fields. J Magn Magn Mater 290–291:829–831CrossRef
47.
go back to reference Heczko O (2005) Magnetic shape memory effect and magnetization reversal. J Magn Magn Mater 290–291:787–794CrossRef Heczko O (2005) Magnetic shape memory effect and magnetization reversal. J Magn Magn Mater 290–291:787–794CrossRef
48.
go back to reference Karaca HE, Karaman I, Basaran B, Chumlyakov YI, Maier HJ (2006) Magnetic field and stress induced martensite reorientation in NiMnGa ferromagnetic shape memory alloy single crystals. Acta Mater 54:233–245CrossRef Karaca HE, Karaman I, Basaran B, Chumlyakov YI, Maier HJ (2006) Magnetic field and stress induced martensite reorientation in NiMnGa ferromagnetic shape memory alloy single crystals. Acta Mater 54:233–245CrossRef
49.
go back to reference Lloveras P, Touchagues G, Castán T, Lookman T, Porta M, Saxena A, Planes A (2014) Modelling magnetostructural textures in magnetic shape-memory alloys: strain and magnetic glass behaviour. Phys Stat Sol B 251:2080–2087CrossRef Lloveras P, Touchagues G, Castán T, Lookman T, Porta M, Saxena A, Planes A (2014) Modelling magnetostructural textures in magnetic shape-memory alloys: strain and magnetic glass behaviour. Phys Stat Sol B 251:2080–2087CrossRef
50.
go back to reference Lloveras P, Castán T, Porta M, Planes A, Saxena A (2008) Influence of elastic anisotropy on structural nanoscale textures. Phys Rev Lett 100:165707CrossRef Lloveras P, Castán T, Porta M, Planes A, Saxena A (2008) Influence of elastic anisotropy on structural nanoscale textures. Phys Rev Lett 100:165707CrossRef
51.
go back to reference Armstrong JN, Sullivan MR, Romancer ML, Chernenko VA, Chopra HD (2008) Role of magnetostatic interactions in micromagnetic structure of multiferroics. J Appl Phys 103:023905CrossRef Armstrong JN, Sullivan MR, Romancer ML, Chernenko VA, Chopra HD (2008) Role of magnetostatic interactions in micromagnetic structure of multiferroics. J Appl Phys 103:023905CrossRef
Metadata
Title
Modelling Shape-Memory Effects in Ferromagnetic Alloys
Authors
Jonathan F. Gebbia
Pol Lloveras
Teresa Castán
Avadh Saxena
Antoni Planes
Publication date
01-09-2015
Publisher
Springer International Publishing
Published in
Shape Memory and Superelasticity / Issue 3/2015
Print ISSN: 2199-384X
Electronic ISSN: 2199-3858
DOI
https://doi.org/10.1007/s40830-015-0025-0

Other articles of this Issue 3/2015

Shape Memory and Superelasticity 3/2015 Go to the issue

Premium Partners