Skip to main content
Top
Published in: Acoustical Physics 5/2023

01-10-2023 | OCEAN ACOUSTICS. HYDROACOUSTICS

Models of the Formation of Doppler Spectrum of Surface Reverberation for Sound Waves of the Meter Range

Authors: M. B. Salin, A. V. Ermoshkin, D. D. Razumov, B. M. Salin

Published in: Acoustical Physics | Issue 5/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Abstract—Narrowband spectra of sound scattered on the surface wave in the frequency range from 500 to 3000 Hz have been analyzed. Experimental results and theoretical models are reviewed. Previously published work by the authors is reviewed and new results are presented. The first characteristic case considered is forward scattering, where the sound transmitter and receiver are substantially separated from each other in space, and a continuous emission of a sinusoidal signal is produced. For this case, it is shown that the modulation spectrum of the scattered signal repeats the frequency spectrum of the surface wave with a certain coefficient and small corrections. The second considered characteristic case is a monostatic location, where the receiver and transmitter are combined and tone-pulse signals are emitted. Previously, for this case, it was implicitly expected that the reverberation spectrum would be generated by Bragg scattering on surface waves corresponding to half of the sound wavelength, and hence the spectrum of the scattered signal would be discrete. However, the experimental results indicate that the monostatic scattering spectra have a smooth bell-shape. Explaining this requires taking the effects of modulation of short surface waves by the long-wave component into account. Additionally, to explain the experimental phenomenon, the authors include a model of sound scattering on air bubbles, which are located in the near-surface layer of water and make oscillatory movements in the field of orbital currents of surface waves.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
As a model of reverberation, a Gaussian function with the center at the zero Doppler frequency and width equal to 0.5 Hz was constructed, which corresponds to the resolution of spectral analysis. The maximum of the curve was selected from experimental data. Considering that we consider PSD in the plot, the integral value of SF was –49 dB. According to [11], this could correspond to the lower limit of possible values.
 
2
Such a designation for the wave amplitude as R0 is chosen because it coincides with the radius of rotation of the liquid particle near the surface. Recall that in a sinusoidal surface wave with frequency Ωp and amplitude R0, the horizontal component of the surface velocity also varies according to a sinusoidal law with amplitude V = R0Ωp.
 
Literature
1.
go back to reference R. J. Urick, Principles of Underwater Sound (McGraw-Hill, 1967; Sudostroenie, Leningrad, 1978). R. J. Urick, Principles of Underwater Sound (McGraw-Hill, 1967; Sudostroenie, Leningrad, 1978).
3.
go back to reference I. Hartstra, M. Colin, and M. Prior, Proc. Meet. Acoust. 44, 022001 (2021). https://asa.scitation.org/doi/abs/10.1121/2.0001454.CrossRef I. Hartstra, M. Colin, and M. Prior, Proc. Meet. Acoust. 44, 022001 (2021). https://​asa.​scitation.​org/​doi/​abs/​10.​1121/​2.​0001454.​CrossRef
5.
go back to reference L. M. Brekhovskikh and Yu. P. Lysanov, Theoretical Foundations of the Ocean Acoustics (Nauka, Moscow, 2007), p. 249 [in Russian].MATH L. M. Brekhovskikh and Yu. P. Lysanov, Theoretical Foundations of the Ocean Acoustics (Nauka, Moscow, 2007), p. 249 [in Russian].MATH
7.
go back to reference C. S. Hayek, I. W. Schurman, J. H. Sweeney, and C. A. Boyles, J. Acoust. Soc. Am. 105, 2129 (1999). https://asa.scitation.org/doi/10.1121/1.426817.ADSCrossRef C. S. Hayek, I. W. Schurman, J. H. Sweeney, and C. A. Boyles, J. Acoust. Soc. Am. 105, 2129 (1999). https://​asa.​scitation.​org/​doi/​10.​1121/​1.​426817.​ADSCrossRef
9.
10.
go back to reference T. H. Neighbors and L. Bjørnø, Hydroacoustics 4, 181 (2001). T. H. Neighbors and L. Bjørnø, Hydroacoustics 4, 181 (2001).
11.
12.
go back to reference B. M. Salin, E. L. Borodina, and M. B. Salin, in Proc. 22nd Session of Russian Acoustic Society (GEOS, Moscow, 2010), Vol. 2, p. 305 [in Russian]. B. M. Salin, E. L. Borodina, and M. B. Salin, in Proc. 22nd Session of Russian Acoustic Society (GEOS, Moscow, 2010), Vol. 2, p. 305 [in Russian].
13.
go back to reference V. S. Averbakh, L. F. Bondar’, V. N. Golubev, V. Yu. Gol’dblat, L. S. Dolin, A. G. Nechaev, K. E. Pigalov, G. E. Smirnov, and E. I. Tumaeva, Sov. Phys. Acoust. 36 (6), 625 (1990). V. S. Averbakh, L. F. Bondar’, V. N. Golubev, V. Yu. Gol’dblat, L. S. Dolin, A. G. Nechaev, K. E. Pigalov, G. E. Smirnov, and E. I. Tumaeva, Sov. Phys. Acoust. 36 (6), 625 (1990).
14.
go back to reference M. B. Salin, O. A. Potapov, B. M. Salin, and A. S. Chashchin, Acoust. Phys. 62 (1), 74 (2016).ADSCrossRef M. B. Salin, O. A. Potapov, B. M. Salin, and A. S. Chashchin, Acoust. Phys. 62 (1), 74 (2016).ADSCrossRef
16.
go back to reference B. M. Salin, O. N. Kemarskaya, P. A. Molchanov, and M. B. Salin, Acoust. Phys. 63 (3), 338 (2017).ADSCrossRef B. M. Salin, O. N. Kemarskaya, P. A. Molchanov, and M. B. Salin, Acoust. Phys. 63 (3), 338 (2017).ADSCrossRef
20.
go back to reference V. G. Burdukovskaya, A. I. Khilko, V. V. Kovalenko, and A. A. Khilko, Acoust. Phys. 65 (6), 684 (2019).ADSCrossRef V. G. Burdukovskaya, A. I. Khilko, V. V. Kovalenko, and A. A. Khilko, Acoust. Phys. 65 (6), 684 (2019).ADSCrossRef
21.
go back to reference G. A. Baidakov, A. S. Dosaev, D. D. Razumov, and M. B. Salin, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 61 (5), 374 (2018). G. A. Baidakov, A. S. Dosaev, D. D. Razumov, and M. B. Salin, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 61 (5), 374 (2018).
22.
go back to reference M. B. Salin and D. D. Razumov, Fundam. Prikl. Gidrofiz. 14 (4), 98 (2021). M. B. Salin and D. D. Razumov, Fundam. Prikl. Gidrofiz. 14 (4), 98 (2021).
25.
go back to reference S. Vagle, C. McNeil, and N. Steiner, J. Geophys. Res.: Oceans 115 (C12), C12054 (2010).ADS S. Vagle, C. McNeil, and N. Steiner, J. Geophys. Res.: Oceans 115 (C12), C12054 (2010).ADS
26.
go back to reference S. Vagle, J. Gemmrich, and H. Czerski, J. Geophys. Res.: Oceans 117 (C7), C00H16 (2012).ADS S. Vagle, J. Gemmrich, and H. Czerski, J. Geophys. Res.: Oceans 117 (C7), C00H16 (2012).ADS
27.
go back to reference V. A. Akulichev and V. A. Bulanov, Small-Scale Irregularities in Marine Media: Acoustic Researches (V. I. Il’ichev Pacific Oceanological Institute Far Eastern Branch RAS, Vladivostok, 2017), p. 182 [in Russian]. V. A. Akulichev and V. A. Bulanov, Small-Scale Irregularities in Marine Media: Acoustic Researches (V. I. Il’ichev Pacific Oceanological Institute Far Eastern Branch RAS, Vladivostok, 2017), p. 182 [in Russian].
28.
29.
go back to reference V. A. Akulichev, V. A. Bulanov, and S. A. Klenin, Sov. Phys. Acoust. 32 (3), 177 (1986). V. A. Akulichev, V. A. Bulanov, and S. A. Klenin, Sov. Phys. Acoust. 32 (3), 177 (1986).
30.
go back to reference I. A. Kapustin, A. V. Ermoshkin, N. A. Bogatov, and A. A. Mol’kov, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa 16 (2), 163 (2019).CrossRef I. A. Kapustin, A. V. Ermoshkin, N. A. Bogatov, and A. A. Mol’kov, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa 16 (2), 163 (2019).CrossRef
31.
go back to reference A. D. Rozenberg, Doctoral Dissertation (Moscow, 1980). A. D. Rozenberg, Doctoral Dissertation (Moscow, 1980).
32.
go back to reference P. H. Dahl, W. J. Plant, B. Nutzel, A. Schmidt, H. Herwig, and E. A. Terray, J. Acoust. Soc. Am. 101 (5), 2583 (1997).ADSCrossRef P. H. Dahl, W. J. Plant, B. Nutzel, A. Schmidt, H. Herwig, and E. A. Terray, J. Acoust. Soc. Am. 101 (5), 2583 (1997).ADSCrossRef
Metadata
Title
Models of the Formation of Doppler Spectrum of Surface Reverberation for Sound Waves of the Meter Range
Authors
M. B. Salin
A. V. Ermoshkin
D. D. Razumov
B. M. Salin
Publication date
01-10-2023
Publisher
Pleiades Publishing
Published in
Acoustical Physics / Issue 5/2023
Print ISSN: 1063-7710
Electronic ISSN: 1562-6865
DOI
https://doi.org/10.1134/S1063771023600687

Other articles of this Issue 5/2023

Acoustical Physics 5/2023 Go to the issue

Premium Partners