Skip to main content
Top

2019 | OriginalPaper | Chapter

5. Models with Heterogeneous Mixing

Authors : Fred Brauer, Carlos Castillo-Chavez, Zhilan Feng

Published in: Mathematical Models in Epidemiology

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

To cope with annual seasonal influenza epidemics there is a program of vaccination before the “flu” season begins. Each year a vaccine is produced aimed at protecting against the three influenza strains considered most dangerous for the coming season. We formulate a model to add vaccination to the simple SIR model under the assumption that vaccination reduces susceptibility (the probability of infection if a contact with an infected member of the population is made).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Adler, F.R. (1992) The effects of averaging on the basic reproduction ratio, Math Biosci. 111(1): 89–98.MathSciNetMATH Adler, F.R. (1992) The effects of averaging on the basic reproduction ratio, Math Biosci. 111(1): 89–98.MathSciNetMATH
2.
go back to reference Allen,L.J. and P. van den Driessche (2008) The basic reproduction number in some discrete-time epidemic models, J. Diff. Equ. App. 14: 1127–1147.MathSciNetMATH Allen,L.J. and P. van den Driessche (2008) The basic reproduction number in some discrete-time epidemic models, J. Diff. Equ. App. 14: 1127–1147.MathSciNetMATH
3.
go back to reference Andersson, H. & Britton, T. (1998) Heterogeneity in epidemic models and its effect on the spread of infection, J. Appl. Prob. 35: 651–661.MathSciNetMATH Andersson, H. & Britton, T. (1998) Heterogeneity in epidemic models and its effect on the spread of infection, J. Appl. Prob. 35: 651–661.MathSciNetMATH
4.
go back to reference Arino, J., F. Brauer, P. van den Driessche, J. Watmough & J. Wu (2006) Simple models for containment of a pandemic, J. Roy. Soc. Interface, 3: 453–457. Arino, J., F. Brauer, P. van den Driessche, J. Watmough & J. Wu (2006) Simple models for containment of a pandemic, J. Roy. Soc. Interface, 3: 453–457.
5.
go back to reference Arino, J., F. Brauer, P. van den Driessche, J. Watmough & J. Wu (2007) A final size relation for epidemic models, Math. Biosc. & Eng. 4: 159–176.MathSciNetMATH Arino, J., F. Brauer, P. van den Driessche, J. Watmough & J. Wu (2007) A final size relation for epidemic models, Math. Biosc. & Eng. 4: 159–176.MathSciNetMATH
6.
go back to reference Arino, J., F. Brauer, P. van den Driessche, J. Watmough & J. Wu (2008) A model for influenza with vaccination and antiviral treatment, Theor. Pop. Biol. 253: 118–130.MathSciNetMATH Arino, J., F. Brauer, P. van den Driessche, J. Watmough & J. Wu (2008) A model for influenza with vaccination and antiviral treatment, Theor. Pop. Biol. 253: 118–130.MathSciNetMATH
7.
go back to reference Berman, A. & R.J. Plemmons (1994) Nonnegative Matrices in the Mathematical Sciences, SIAM, Vol. 9, 1994.MATH Berman, A. & R.J. Plemmons (1994) Nonnegative Matrices in the Mathematical Sciences, SIAM, Vol. 9, 1994.MATH
8.
go back to reference Blythe, S.P., S. Busenberg & C. Castillo-Chavez (1995) Affinity and paired-event probability, Math. Biosc. 128: 265–84 .MathSciNetMATH Blythe, S.P., S. Busenberg & C. Castillo-Chavez (1995) Affinity and paired-event probability, Math. Biosc. 128: 265–84 .MathSciNetMATH
9.
go back to reference Blythe, S.P. , C. Castillo-Chavez, J. Palmer & M. Cheng (1991) Towards a unified theory of mixing and pair formation, Math. Biosc. 107: 379–405.MATH Blythe, S.P. , C. Castillo-Chavez, J. Palmer & M. Cheng (1991) Towards a unified theory of mixing and pair formation, Math. Biosc. 107: 379–405.MATH
10.
11.
go back to reference Brauer, F. (2008) Epidemic models with treatment and heterogeneous mixing, Bull. Math. Biol. 70: 1869–1885.MathSciNetMATH Brauer, F. (2008) Epidemic models with treatment and heterogeneous mixing, Bull. Math. Biol. 70: 1869–1885.MathSciNetMATH
12.
go back to reference Brauer, F. & J. Watmough (2009) Age of infection epidemic models with heterogeneous mixing, J. Biol. Dynamics 3: 324–330.MathSciNetMATH Brauer, F. & J. Watmough (2009) Age of infection epidemic models with heterogeneous mixing, J. Biol. Dynamics 3: 324–330.MathSciNetMATH
13.
go back to reference Busenberg, S. & C. Castillo-Chavez (1989) Interaction, pair formation and force of infection terms in sexually transmitted diseases, In Mathematical and Statistical Approaches to AIDS Epidemiology, Lect. Notes Biomath. 83, C. Castillo-Chavez (ed.), Springer-Verlag, Berlin-Heidelberg-New York, 289–300. Busenberg, S. & C. Castillo-Chavez (1989) Interaction, pair formation and force of infection terms in sexually transmitted diseases, In Mathematical and Statistical Approaches to AIDS Epidemiology, Lect. Notes Biomath. 83, C. Castillo-Chavez (ed.), Springer-Verlag, Berlin-Heidelberg-New York, 289–300.
14.
go back to reference Busenberg, S. & C. Castillo-Chavez (1991) A general solution of the problem of mixing of sub-populations and its application to risk- and age-structured epidemic models for the spread of AIDS, IMA J. Math. Appl. Med. Biol., 8: 1–29.MathSciNetMATH Busenberg, S. & C. Castillo-Chavez (1991) A general solution of the problem of mixing of sub-populations and its application to risk- and age-structured epidemic models for the spread of AIDS, IMA J. Math. Appl. Med. Biol., 8: 1–29.MathSciNetMATH
15.
go back to reference Chow, L., M. Fan, and Z. Feng (2011) Dynamics of a multi-group epidemiological model with group-targeted vaccination strategies, J. Theor. Biol. 29: 56–64.MATH Chow, L., M. Fan, and Z. Feng (2011) Dynamics of a multi-group epidemiological model with group-targeted vaccination strategies, J. Theor. Biol. 29: 56–64.MATH
16.
go back to reference De Jong, M., O. Diekmann and J.A.P. Heesterbeek (1994) The computation of R0 for discrete-time epidemic models with dynamic heterogeneity, Math. Biosci. 119(1): 97–114.MATH De Jong, M., O. Diekmann and J.A.P. Heesterbeek (1994) The computation of R0 for discrete-time epidemic models with dynamic heterogeneity, Math. Biosci. 119(1): 97–114.MATH
17.
go back to reference Del Valle, S. Y., J.M. Hyman, H.W. Hethcote & S.G. Eubank (2007) Mixing patterns between age groups in social networks, Social Networks, 29(4): 539–554. Del Valle, S. Y., J.M. Hyman, H.W. Hethcote & S.G. Eubank (2007) Mixing patterns between age groups in social networks, Social Networks, 29(4): 539–554.
18.
go back to reference Diekmann, O. & J.A.P. Heesterbeek (2000) Mathematical Epidemiology of Infectious Diseases. Wiley, Chichester (2000) Diekmann, O. & J.A.P. Heesterbeek (2000) Mathematical Epidemiology of Infectious Diseases. Wiley, Chichester (2000)
19.
go back to reference Diekmann, O., J.A.P. Heesterbeek & J.A.J. Metz (1990) On the definition and the computation of the basic reproductive ratio \(\mathcal {R}_0\) in models for infectious diseases in heterogeneous populations, J. Math. Biol. 28: 365–382. Diekmann, O., J.A.P. Heesterbeek & J.A.J. Metz (1990) On the definition and the computation of the basic reproductive ratio \(\mathcal {R}_0\) in models for infectious diseases in heterogeneous populations, J. Math. Biol. 28: 365–382.
20.
go back to reference Diekmann, O., J.A.P. Heesterbeek, & T. Britton (2012) Mathematical tools for understanding infectious disease dynamics, 2012, Princeton University Press.MATH Diekmann, O., J.A.P. Heesterbeek, & T. Britton (2012) Mathematical tools for understanding infectious disease dynamics, 2012, Princeton University Press.MATH
21.
go back to reference Feng, Z., A.N. Hill, P.J. Smith, J.W. Glasser (2015) An elaboration of theory about preventing outbreaks in homogeneous populations to include heterogeneity or preferential mixing, J. Theor. Biol. 386: 177–187.MathSciNetMATH Feng, Z., A.N. Hill, P.J. Smith, J.W. Glasser (2015) An elaboration of theory about preventing outbreaks in homogeneous populations to include heterogeneity or preferential mixing, J. Theor. Biol. 386: 177–187.MathSciNetMATH
22.
go back to reference Feng, Z., A.N. Hill, A.T. Curns, J.W. Glasser (2007) Evaluating targeted interventions via meta-population models with multi-level mixing, Math. Biosci. 287: 93–104.MathSciNetMATH Feng, Z., A.N. Hill, A.T. Curns, J.W. Glasser (2007) Evaluating targeted interventions via meta-population models with multi-level mixing, Math. Biosci. 287: 93–104.MathSciNetMATH
23.
go back to reference Ferguson, N.M., D.A.T. Cummings, S. Cauchemez, C. Fraser, S. Riley, A. Meeyai, S. Iamsirithaworn, & D.S. Burke (2005) Strategies for containing an emerging influenza pandemic in Southeast Asia, Nature, 437: 209–214. Ferguson, N.M., D.A.T. Cummings, S. Cauchemez, C. Fraser, S. Riley, A. Meeyai, S. Iamsirithaworn, & D.S. Burke (2005) Strategies for containing an emerging influenza pandemic in Southeast Asia, Nature, 437: 209–214.
24.
go back to reference Gani, R., H. Hughes, T. Griffin, J. Medlock, & S. Leach (2005) Potential impact of antiviral use on hospitalizations during influenza pandemic, Emerg. Infect. Dis. 11: 1355–1362. Gani, R., H. Hughes, T. Griffin, J. Medlock, & S. Leach (2005) Potential impact of antiviral use on hospitalizations during influenza pandemic, Emerg. Infect. Dis. 11: 1355–1362.
25.
go back to reference Glasser, J., Z. Feng, A. Moylan, S. Del Valle & C. Castillo-Chavez (2012) Mixing in age-structured population models of infectious diseases, Math. Biosci., 235(1): 1–7.MathSciNetMATH Glasser, J., Z. Feng, A. Moylan, S. Del Valle & C. Castillo-Chavez (2012) Mixing in age-structured population models of infectious diseases, Math. Biosci., 235(1): 1–7.MathSciNetMATH
26.
go back to reference Glasser, J.W., Z. Feng, S.B. Omer, P.J. Smith, L.E. Rodewald (2016) The effect of heterogeneity in uptake of the measles, mumps, and rubella vaccine on the potential for outbreaks of measles: a modelling study, 16(5): 599–605. Glasser, J.W., Z. Feng, S.B. Omer, P.J. Smith, L.E. Rodewald (2016) The effect of heterogeneity in uptake of the measles, mumps, and rubella vaccine on the potential for outbreaks of measles: a modelling study, 16(5): 599–605.
27.
go back to reference Hethcote, H.W. & J.A. Yorke (1984) Gonorrhea Transmission Dynamics and Control, Lect. Notes in Biomath. 56, Springer-Verlag, Berlin-Heidelberg-New York (1984). Hethcote, H.W. & J.A. Yorke (1984) Gonorrhea Transmission Dynamics and Control, Lect. Notes in Biomath. 56, Springer-Verlag, Berlin-Heidelberg-New York (1984).
28.
go back to reference Hethcote, H.W. & J.W. van Ark (1987) Epidemiological models for heterogeneous populations: proportionate mixing, parameter estimation and immunization programs. Math. Biosci., 84(1): 85–118.MathSciNetMATH Hethcote, H.W. & J.W. van Ark (1987) Epidemiological models for heterogeneous populations: proportionate mixing, parameter estimation and immunization programs. Math. Biosci., 84(1): 85–118.MathSciNetMATH
29.
go back to reference Hirsch, M.W. & S. Smale, Differential Equations (1974) Dynamical Systems, and Linear Algebra, Academic Press, Orlando, FL (1974).MATH Hirsch, M.W. & S. Smale, Differential Equations (1974) Dynamical Systems, and Linear Algebra, Academic Press, Orlando, FL (1974).MATH
30.
go back to reference Jacquez, J.A., C.P. Simon, J. Koopman, L. Sattenspiel, & T. Perry (1988) Modeling and analyzing HIV transmission: the effect of contact patterns, Math. Biosci., 92: 119–199.MathSciNetMATH Jacquez, J.A., C.P. Simon, J. Koopman, L. Sattenspiel, & T. Perry (1988) Modeling and analyzing HIV transmission: the effect of contact patterns, Math. Biosci., 92: 119–199.MathSciNetMATH
31.
go back to reference Lewis, M.A., J. Renclawowicz, P. van Den Driessche, and M. Wonham (2006) A comparison of continuous and discrete-time West Nile Virus models, Bull. Math. Biol. 68(3): 491–509.MathSciNetMATH Lewis, M.A., J. Renclawowicz, P. van Den Driessche, and M. Wonham (2006) A comparison of continuous and discrete-time West Nile Virus models, Bull. Math. Biol. 68(3): 491–509.MathSciNetMATH
32.
go back to reference Longini, I.M., M.E. Halloran, A. Nizam, & Y. Yang (2004) Containing pandemic influenza with antiviral agents, Am. J. Epidem. 159: 623–633. Longini, I.M., M.E. Halloran, A. Nizam, & Y. Yang (2004) Containing pandemic influenza with antiviral agents, Am. J. Epidem. 159: 623–633.
33.
go back to reference Longini, I.M., A. Nizam, S. Xu, K. Ungchusak, W. Hanshaoworakul, D.A.T. Cummings, & M.E. Halloran (2005) Containing pandemic influenza at the source, Science 309, 1083–1087. Longini, I.M., A. Nizam, S. Xu, K. Ungchusak, W. Hanshaoworakul, D.A.T. Cummings, & M.E. Halloran (2005) Containing pandemic influenza at the source, Science 309, 1083–1087.
34.
go back to reference Longini, I. M. & M. E. Halloran (2005) Strategy for distribution of influenza vaccine to high - risk groups and children, Am. J. Epidem. 161: 303–306. Longini, I. M. & M. E. Halloran (2005) Strategy for distribution of influenza vaccine to high - risk groups and children, Am. J. Epidem. 161: 303–306.
35.
go back to reference Ma, J. & D.J.D. Earn (2006) Generality of the final size formula for an epidemic of a newly invading infectious disease, Bull. Math. Biol. 68: 679–702.MathSciNetMATH Ma, J. & D.J.D. Earn (2006) Generality of the final size formula for an epidemic of a newly invading infectious disease, Bull. Math. Biol. 68: 679–702.MathSciNetMATH
36.
go back to reference May, R.M. & R.M. Anderson (1984) Spatial heterogeneity and the design of immunization programs. Math Biosci. 72(1): 83–111.MathSciNetMATH May, R.M. & R.M. Anderson (1984) Spatial heterogeneity and the design of immunization programs. Math Biosci. 72(1): 83–111.MathSciNetMATH
37.
go back to reference May, R.M. & R.M. Anderson (1984) Spatial, temporal and genetic heterogeneity in host populations and the design of immunization programmes. IMA J Math Appl Math Biol. 1(3): 233–66.MathSciNetMATH May, R.M. & R.M. Anderson (1984) Spatial, temporal and genetic heterogeneity in host populations and the design of immunization programmes. IMA J Math Appl Math Biol. 1(3): 233–66.MathSciNetMATH
38.
go back to reference Meyers, L.A. (2007) Contact network epidemiology: Bond percolation applied to infectious disease prediction and control, Bull. Am. Math. Soc. 44, 63–86.MathSciNetMATH Meyers, L.A. (2007) Contact network epidemiology: Bond percolation applied to infectious disease prediction and control, Bull. Am. Math. Soc. 44, 63–86.MathSciNetMATH
39.
go back to reference Meyers, L.A. , M.E.J. Newman & B. Pourbohloul (2006) Predicting epidemics on directed contact networks, J. Theor. Biol. 240, 400–418.MathSciNet Meyers, L.A. , M.E.J. Newman & B. Pourbohloul (2006) Predicting epidemics on directed contact networks, J. Theor. Biol. 240, 400–418.MathSciNet
40.
go back to reference Meyers, L.A., B. Pourbohloul, M.E.J. Newman, D.M. Skowronski, & R.C. Brunham (2005) Network theory and SARS: predicting outbreak diversity. J. Theor. Biol., 232: 71–81.MathSciNet Meyers, L.A., B. Pourbohloul, M.E.J. Newman, D.M. Skowronski, & R.C. Brunham (2005) Network theory and SARS: predicting outbreak diversity. J. Theor. Biol., 232: 71–81.MathSciNet
41.
go back to reference Mossong, J., N. Hens, M. Jit, P. Beutels, K. Auranen, R. Mikolajczyk, …& W. J. Edmunds (2008) Social contacts and mixing patterns relevant to the spread of infectious diseases, PLoS Medicine, 5(3): e74. Mossong, J., N. Hens, M. Jit, P. Beutels, K. Auranen, R. Mikolajczyk, …& W. J. Edmunds (2008) Social contacts and mixing patterns relevant to the spread of infectious diseases, PLoS Medicine, 5(3): e74.
42.
43.
go back to reference Poghotanyan, G., Z. Feng, J.W. Glasser, A.N. Hill (2018) Constrained minimization problems for the reproduction number in meta-population models, J. Math. Biol. https:/doi.org/10.1007/s00285-018-1216-z. Poghotanyan, G., Z. Feng, J.W. Glasser, A.N. Hill (2018) Constrained minimization problems for the reproduction number in meta-population models, J. Math. Biol. https:/doi.org/10.1007/s00285-018-1216-z.
45.
go back to reference van den Driessche, P. & J. Watmough (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosc. 180: 29–48.MathSciNetMATH van den Driessche, P. & J. Watmough (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosc. 180: 29–48.MathSciNetMATH
46.
go back to reference van den Driessche, P. & J. Watmough (2002) Further notes on the basic reproduction number, in Mathematical Epidemiology, F. Brauer, P. van den Driessche, & J. Wu (eds.) Springer Lecture Notes, Vol. 1945. van den Driessche, P. & J. Watmough (2002) Further notes on the basic reproduction number, in Mathematical Epidemiology, F. Brauer, P. van den Driessche, & J. Wu (eds.) Springer Lecture Notes, Vol. 1945.
47.
go back to reference Wallinga, J., P. Teunis, & M. Kretzschmar (2006) Using data on social contacts to estimate age-specific transmission parameters for respiratory-spread infectious agents, American Journal of Epi, 164(10): 936–944. Wallinga, J., P. Teunis, & M. Kretzschmar (2006) Using data on social contacts to estimate age-specific transmission parameters for respiratory-spread infectious agents, American Journal of Epi, 164(10): 936–944.
48.
go back to reference Wesley, C. L., L.J. Allen, C.B. Jonsson, Y.-K. Chu, R.D. Owen (2009) A discrete-time rodent-hantavirus model structured by infection and developmental stages, Adv. Stu. Pure Math. 53: 387–398.MathSciNetMATH Wesley, C. L., L.J. Allen, C.B. Jonsson, Y.-K. Chu, R.D. Owen (2009) A discrete-time rodent-hantavirus model structured by infection and developmental stages, Adv. Stu. Pure Math. 53: 387–398.MathSciNetMATH
49.
go back to reference Zagheni, E., F.C. Billari, P. Manfredi, A. Melegaro, J. Mossong & W.J. Edmunds (2008) Using time-use data to parameterize models for the spread of close-contact infectious diseases, Am. J. Epi., 168(9), 1082–1090. Zagheni, E., F.C. Billari, P. Manfredi, A. Melegaro, J. Mossong & W.J. Edmunds (2008) Using time-use data to parameterize models for the spread of close-contact infectious diseases, Am. J. Epi., 168(9), 1082–1090.
Metadata
Title
Models with Heterogeneous Mixing
Authors
Fred Brauer
Carlos Castillo-Chavez
Zhilan Feng
Copyright Year
2019
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-4939-9828-9_5

Premium Partner