Skip to main content

2019 | OriginalPaper | Buchkapitel

5. Models with Heterogeneous Mixing

verfasst von : Fred Brauer, Carlos Castillo-Chavez, Zhilan Feng

Erschienen in: Mathematical Models in Epidemiology

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To cope with annual seasonal influenza epidemics there is a program of vaccination before the “flu” season begins. Each year a vaccine is produced aimed at protecting against the three influenza strains considered most dangerous for the coming season. We formulate a model to add vaccination to the simple SIR model under the assumption that vaccination reduces susceptibility (the probability of infection if a contact with an infected member of the population is made).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Adler, F.R. (1992) The effects of averaging on the basic reproduction ratio, Math Biosci. 111(1): 89–98.MathSciNetMATH Adler, F.R. (1992) The effects of averaging on the basic reproduction ratio, Math Biosci. 111(1): 89–98.MathSciNetMATH
2.
Zurück zum Zitat Allen,L.J. and P. van den Driessche (2008) The basic reproduction number in some discrete-time epidemic models, J. Diff. Equ. App. 14: 1127–1147.MathSciNetMATH Allen,L.J. and P. van den Driessche (2008) The basic reproduction number in some discrete-time epidemic models, J. Diff. Equ. App. 14: 1127–1147.MathSciNetMATH
3.
Zurück zum Zitat Andersson, H. & Britton, T. (1998) Heterogeneity in epidemic models and its effect on the spread of infection, J. Appl. Prob. 35: 651–661.MathSciNetMATH Andersson, H. & Britton, T. (1998) Heterogeneity in epidemic models and its effect on the spread of infection, J. Appl. Prob. 35: 651–661.MathSciNetMATH
4.
Zurück zum Zitat Arino, J., F. Brauer, P. van den Driessche, J. Watmough & J. Wu (2006) Simple models for containment of a pandemic, J. Roy. Soc. Interface, 3: 453–457. Arino, J., F. Brauer, P. van den Driessche, J. Watmough & J. Wu (2006) Simple models for containment of a pandemic, J. Roy. Soc. Interface, 3: 453–457.
5.
Zurück zum Zitat Arino, J., F. Brauer, P. van den Driessche, J. Watmough & J. Wu (2007) A final size relation for epidemic models, Math. Biosc. & Eng. 4: 159–176.MathSciNetMATH Arino, J., F. Brauer, P. van den Driessche, J. Watmough & J. Wu (2007) A final size relation for epidemic models, Math. Biosc. & Eng. 4: 159–176.MathSciNetMATH
6.
Zurück zum Zitat Arino, J., F. Brauer, P. van den Driessche, J. Watmough & J. Wu (2008) A model for influenza with vaccination and antiviral treatment, Theor. Pop. Biol. 253: 118–130.MathSciNetMATH Arino, J., F. Brauer, P. van den Driessche, J. Watmough & J. Wu (2008) A model for influenza with vaccination and antiviral treatment, Theor. Pop. Biol. 253: 118–130.MathSciNetMATH
7.
Zurück zum Zitat Berman, A. & R.J. Plemmons (1994) Nonnegative Matrices in the Mathematical Sciences, SIAM, Vol. 9, 1994.MATH Berman, A. & R.J. Plemmons (1994) Nonnegative Matrices in the Mathematical Sciences, SIAM, Vol. 9, 1994.MATH
8.
Zurück zum Zitat Blythe, S.P., S. Busenberg & C. Castillo-Chavez (1995) Affinity and paired-event probability, Math. Biosc. 128: 265–84 .MathSciNetMATH Blythe, S.P., S. Busenberg & C. Castillo-Chavez (1995) Affinity and paired-event probability, Math. Biosc. 128: 265–84 .MathSciNetMATH
9.
Zurück zum Zitat Blythe, S.P. , C. Castillo-Chavez, J. Palmer & M. Cheng (1991) Towards a unified theory of mixing and pair formation, Math. Biosc. 107: 379–405.MATH Blythe, S.P. , C. Castillo-Chavez, J. Palmer & M. Cheng (1991) Towards a unified theory of mixing and pair formation, Math. Biosc. 107: 379–405.MATH
10.
Zurück zum Zitat Brauer, F. (2005) The Kermack–McKendrick epidemic model revisited, Math. Biosc. 198: 119–131.MathSciNetMATH Brauer, F. (2005) The Kermack–McKendrick epidemic model revisited, Math. Biosc. 198: 119–131.MathSciNetMATH
11.
Zurück zum Zitat Brauer, F. (2008) Epidemic models with treatment and heterogeneous mixing, Bull. Math. Biol. 70: 1869–1885.MathSciNetMATH Brauer, F. (2008) Epidemic models with treatment and heterogeneous mixing, Bull. Math. Biol. 70: 1869–1885.MathSciNetMATH
12.
Zurück zum Zitat Brauer, F. & J. Watmough (2009) Age of infection epidemic models with heterogeneous mixing, J. Biol. Dynamics 3: 324–330.MathSciNetMATH Brauer, F. & J. Watmough (2009) Age of infection epidemic models with heterogeneous mixing, J. Biol. Dynamics 3: 324–330.MathSciNetMATH
13.
Zurück zum Zitat Busenberg, S. & C. Castillo-Chavez (1989) Interaction, pair formation and force of infection terms in sexually transmitted diseases, In Mathematical and Statistical Approaches to AIDS Epidemiology, Lect. Notes Biomath. 83, C. Castillo-Chavez (ed.), Springer-Verlag, Berlin-Heidelberg-New York, 289–300. Busenberg, S. & C. Castillo-Chavez (1989) Interaction, pair formation and force of infection terms in sexually transmitted diseases, In Mathematical and Statistical Approaches to AIDS Epidemiology, Lect. Notes Biomath. 83, C. Castillo-Chavez (ed.), Springer-Verlag, Berlin-Heidelberg-New York, 289–300.
14.
Zurück zum Zitat Busenberg, S. & C. Castillo-Chavez (1991) A general solution of the problem of mixing of sub-populations and its application to risk- and age-structured epidemic models for the spread of AIDS, IMA J. Math. Appl. Med. Biol., 8: 1–29.MathSciNetMATH Busenberg, S. & C. Castillo-Chavez (1991) A general solution of the problem of mixing of sub-populations and its application to risk- and age-structured epidemic models for the spread of AIDS, IMA J. Math. Appl. Med. Biol., 8: 1–29.MathSciNetMATH
15.
Zurück zum Zitat Chow, L., M. Fan, and Z. Feng (2011) Dynamics of a multi-group epidemiological model with group-targeted vaccination strategies, J. Theor. Biol. 29: 56–64.MATH Chow, L., M. Fan, and Z. Feng (2011) Dynamics of a multi-group epidemiological model with group-targeted vaccination strategies, J. Theor. Biol. 29: 56–64.MATH
16.
Zurück zum Zitat De Jong, M., O. Diekmann and J.A.P. Heesterbeek (1994) The computation of R0 for discrete-time epidemic models with dynamic heterogeneity, Math. Biosci. 119(1): 97–114.MATH De Jong, M., O. Diekmann and J.A.P. Heesterbeek (1994) The computation of R0 for discrete-time epidemic models with dynamic heterogeneity, Math. Biosci. 119(1): 97–114.MATH
17.
Zurück zum Zitat Del Valle, S. Y., J.M. Hyman, H.W. Hethcote & S.G. Eubank (2007) Mixing patterns between age groups in social networks, Social Networks, 29(4): 539–554. Del Valle, S. Y., J.M. Hyman, H.W. Hethcote & S.G. Eubank (2007) Mixing patterns between age groups in social networks, Social Networks, 29(4): 539–554.
18.
Zurück zum Zitat Diekmann, O. & J.A.P. Heesterbeek (2000) Mathematical Epidemiology of Infectious Diseases. Wiley, Chichester (2000) Diekmann, O. & J.A.P. Heesterbeek (2000) Mathematical Epidemiology of Infectious Diseases. Wiley, Chichester (2000)
19.
Zurück zum Zitat Diekmann, O., J.A.P. Heesterbeek & J.A.J. Metz (1990) On the definition and the computation of the basic reproductive ratio \(\mathcal {R}_0\) in models for infectious diseases in heterogeneous populations, J. Math. Biol. 28: 365–382. Diekmann, O., J.A.P. Heesterbeek & J.A.J. Metz (1990) On the definition and the computation of the basic reproductive ratio \(\mathcal {R}_0\) in models for infectious diseases in heterogeneous populations, J. Math. Biol. 28: 365–382.
20.
Zurück zum Zitat Diekmann, O., J.A.P. Heesterbeek, & T. Britton (2012) Mathematical tools for understanding infectious disease dynamics, 2012, Princeton University Press.MATH Diekmann, O., J.A.P. Heesterbeek, & T. Britton (2012) Mathematical tools for understanding infectious disease dynamics, 2012, Princeton University Press.MATH
21.
Zurück zum Zitat Feng, Z., A.N. Hill, P.J. Smith, J.W. Glasser (2015) An elaboration of theory about preventing outbreaks in homogeneous populations to include heterogeneity or preferential mixing, J. Theor. Biol. 386: 177–187.MathSciNetMATH Feng, Z., A.N. Hill, P.J. Smith, J.W. Glasser (2015) An elaboration of theory about preventing outbreaks in homogeneous populations to include heterogeneity or preferential mixing, J. Theor. Biol. 386: 177–187.MathSciNetMATH
22.
Zurück zum Zitat Feng, Z., A.N. Hill, A.T. Curns, J.W. Glasser (2007) Evaluating targeted interventions via meta-population models with multi-level mixing, Math. Biosci. 287: 93–104.MathSciNetMATH Feng, Z., A.N. Hill, A.T. Curns, J.W. Glasser (2007) Evaluating targeted interventions via meta-population models with multi-level mixing, Math. Biosci. 287: 93–104.MathSciNetMATH
23.
Zurück zum Zitat Ferguson, N.M., D.A.T. Cummings, S. Cauchemez, C. Fraser, S. Riley, A. Meeyai, S. Iamsirithaworn, & D.S. Burke (2005) Strategies for containing an emerging influenza pandemic in Southeast Asia, Nature, 437: 209–214. Ferguson, N.M., D.A.T. Cummings, S. Cauchemez, C. Fraser, S. Riley, A. Meeyai, S. Iamsirithaworn, & D.S. Burke (2005) Strategies for containing an emerging influenza pandemic in Southeast Asia, Nature, 437: 209–214.
24.
Zurück zum Zitat Gani, R., H. Hughes, T. Griffin, J. Medlock, & S. Leach (2005) Potential impact of antiviral use on hospitalizations during influenza pandemic, Emerg. Infect. Dis. 11: 1355–1362. Gani, R., H. Hughes, T. Griffin, J. Medlock, & S. Leach (2005) Potential impact of antiviral use on hospitalizations during influenza pandemic, Emerg. Infect. Dis. 11: 1355–1362.
25.
Zurück zum Zitat Glasser, J., Z. Feng, A. Moylan, S. Del Valle & C. Castillo-Chavez (2012) Mixing in age-structured population models of infectious diseases, Math. Biosci., 235(1): 1–7.MathSciNetMATH Glasser, J., Z. Feng, A. Moylan, S. Del Valle & C. Castillo-Chavez (2012) Mixing in age-structured population models of infectious diseases, Math. Biosci., 235(1): 1–7.MathSciNetMATH
26.
Zurück zum Zitat Glasser, J.W., Z. Feng, S.B. Omer, P.J. Smith, L.E. Rodewald (2016) The effect of heterogeneity in uptake of the measles, mumps, and rubella vaccine on the potential for outbreaks of measles: a modelling study, 16(5): 599–605. Glasser, J.W., Z. Feng, S.B. Omer, P.J. Smith, L.E. Rodewald (2016) The effect of heterogeneity in uptake of the measles, mumps, and rubella vaccine on the potential for outbreaks of measles: a modelling study, 16(5): 599–605.
27.
Zurück zum Zitat Hethcote, H.W. & J.A. Yorke (1984) Gonorrhea Transmission Dynamics and Control, Lect. Notes in Biomath. 56, Springer-Verlag, Berlin-Heidelberg-New York (1984). Hethcote, H.W. & J.A. Yorke (1984) Gonorrhea Transmission Dynamics and Control, Lect. Notes in Biomath. 56, Springer-Verlag, Berlin-Heidelberg-New York (1984).
28.
Zurück zum Zitat Hethcote, H.W. & J.W. van Ark (1987) Epidemiological models for heterogeneous populations: proportionate mixing, parameter estimation and immunization programs. Math. Biosci., 84(1): 85–118.MathSciNetMATH Hethcote, H.W. & J.W. van Ark (1987) Epidemiological models for heterogeneous populations: proportionate mixing, parameter estimation and immunization programs. Math. Biosci., 84(1): 85–118.MathSciNetMATH
29.
Zurück zum Zitat Hirsch, M.W. & S. Smale, Differential Equations (1974) Dynamical Systems, and Linear Algebra, Academic Press, Orlando, FL (1974).MATH Hirsch, M.W. & S. Smale, Differential Equations (1974) Dynamical Systems, and Linear Algebra, Academic Press, Orlando, FL (1974).MATH
30.
Zurück zum Zitat Jacquez, J.A., C.P. Simon, J. Koopman, L. Sattenspiel, & T. Perry (1988) Modeling and analyzing HIV transmission: the effect of contact patterns, Math. Biosci., 92: 119–199.MathSciNetMATH Jacquez, J.A., C.P. Simon, J. Koopman, L. Sattenspiel, & T. Perry (1988) Modeling and analyzing HIV transmission: the effect of contact patterns, Math. Biosci., 92: 119–199.MathSciNetMATH
31.
Zurück zum Zitat Lewis, M.A., J. Renclawowicz, P. van Den Driessche, and M. Wonham (2006) A comparison of continuous and discrete-time West Nile Virus models, Bull. Math. Biol. 68(3): 491–509.MathSciNetMATH Lewis, M.A., J. Renclawowicz, P. van Den Driessche, and M. Wonham (2006) A comparison of continuous and discrete-time West Nile Virus models, Bull. Math. Biol. 68(3): 491–509.MathSciNetMATH
32.
Zurück zum Zitat Longini, I.M., M.E. Halloran, A. Nizam, & Y. Yang (2004) Containing pandemic influenza with antiviral agents, Am. J. Epidem. 159: 623–633. Longini, I.M., M.E. Halloran, A. Nizam, & Y. Yang (2004) Containing pandemic influenza with antiviral agents, Am. J. Epidem. 159: 623–633.
33.
Zurück zum Zitat Longini, I.M., A. Nizam, S. Xu, K. Ungchusak, W. Hanshaoworakul, D.A.T. Cummings, & M.E. Halloran (2005) Containing pandemic influenza at the source, Science 309, 1083–1087. Longini, I.M., A. Nizam, S. Xu, K. Ungchusak, W. Hanshaoworakul, D.A.T. Cummings, & M.E. Halloran (2005) Containing pandemic influenza at the source, Science 309, 1083–1087.
34.
Zurück zum Zitat Longini, I. M. & M. E. Halloran (2005) Strategy for distribution of influenza vaccine to high - risk groups and children, Am. J. Epidem. 161: 303–306. Longini, I. M. & M. E. Halloran (2005) Strategy for distribution of influenza vaccine to high - risk groups and children, Am. J. Epidem. 161: 303–306.
35.
Zurück zum Zitat Ma, J. & D.J.D. Earn (2006) Generality of the final size formula for an epidemic of a newly invading infectious disease, Bull. Math. Biol. 68: 679–702.MathSciNetMATH Ma, J. & D.J.D. Earn (2006) Generality of the final size formula for an epidemic of a newly invading infectious disease, Bull. Math. Biol. 68: 679–702.MathSciNetMATH
36.
Zurück zum Zitat May, R.M. & R.M. Anderson (1984) Spatial heterogeneity and the design of immunization programs. Math Biosci. 72(1): 83–111.MathSciNetMATH May, R.M. & R.M. Anderson (1984) Spatial heterogeneity and the design of immunization programs. Math Biosci. 72(1): 83–111.MathSciNetMATH
37.
Zurück zum Zitat May, R.M. & R.M. Anderson (1984) Spatial, temporal and genetic heterogeneity in host populations and the design of immunization programmes. IMA J Math Appl Math Biol. 1(3): 233–66.MathSciNetMATH May, R.M. & R.M. Anderson (1984) Spatial, temporal and genetic heterogeneity in host populations and the design of immunization programmes. IMA J Math Appl Math Biol. 1(3): 233–66.MathSciNetMATH
38.
Zurück zum Zitat Meyers, L.A. (2007) Contact network epidemiology: Bond percolation applied to infectious disease prediction and control, Bull. Am. Math. Soc. 44, 63–86.MathSciNetMATH Meyers, L.A. (2007) Contact network epidemiology: Bond percolation applied to infectious disease prediction and control, Bull. Am. Math. Soc. 44, 63–86.MathSciNetMATH
39.
Zurück zum Zitat Meyers, L.A. , M.E.J. Newman & B. Pourbohloul (2006) Predicting epidemics on directed contact networks, J. Theor. Biol. 240, 400–418.MathSciNet Meyers, L.A. , M.E.J. Newman & B. Pourbohloul (2006) Predicting epidemics on directed contact networks, J. Theor. Biol. 240, 400–418.MathSciNet
40.
Zurück zum Zitat Meyers, L.A., B. Pourbohloul, M.E.J. Newman, D.M. Skowronski, & R.C. Brunham (2005) Network theory and SARS: predicting outbreak diversity. J. Theor. Biol., 232: 71–81.MathSciNet Meyers, L.A., B. Pourbohloul, M.E.J. Newman, D.M. Skowronski, & R.C. Brunham (2005) Network theory and SARS: predicting outbreak diversity. J. Theor. Biol., 232: 71–81.MathSciNet
41.
Zurück zum Zitat Mossong, J., N. Hens, M. Jit, P. Beutels, K. Auranen, R. Mikolajczyk, …& W. J. Edmunds (2008) Social contacts and mixing patterns relevant to the spread of infectious diseases, PLoS Medicine, 5(3): e74. Mossong, J., N. Hens, M. Jit, P. Beutels, K. Auranen, R. Mikolajczyk, …& W. J. Edmunds (2008) Social contacts and mixing patterns relevant to the spread of infectious diseases, PLoS Medicine, 5(3): e74.
42.
43.
Zurück zum Zitat Poghotanyan, G., Z. Feng, J.W. Glasser, A.N. Hill (2018) Constrained minimization problems for the reproduction number in meta-population models, J. Math. Biol. https:/doi.org/10.1007/s00285-018-1216-z. Poghotanyan, G., Z. Feng, J.W. Glasser, A.N. Hill (2018) Constrained minimization problems for the reproduction number in meta-population models, J. Math. Biol. https:/doi.org/10.1007/s00285-018-1216-z.
45.
Zurück zum Zitat van den Driessche, P. & J. Watmough (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosc. 180: 29–48.MathSciNetMATH van den Driessche, P. & J. Watmough (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosc. 180: 29–48.MathSciNetMATH
46.
Zurück zum Zitat van den Driessche, P. & J. Watmough (2002) Further notes on the basic reproduction number, in Mathematical Epidemiology, F. Brauer, P. van den Driessche, & J. Wu (eds.) Springer Lecture Notes, Vol. 1945. van den Driessche, P. & J. Watmough (2002) Further notes on the basic reproduction number, in Mathematical Epidemiology, F. Brauer, P. van den Driessche, & J. Wu (eds.) Springer Lecture Notes, Vol. 1945.
47.
Zurück zum Zitat Wallinga, J., P. Teunis, & M. Kretzschmar (2006) Using data on social contacts to estimate age-specific transmission parameters for respiratory-spread infectious agents, American Journal of Epi, 164(10): 936–944. Wallinga, J., P. Teunis, & M. Kretzschmar (2006) Using data on social contacts to estimate age-specific transmission parameters for respiratory-spread infectious agents, American Journal of Epi, 164(10): 936–944.
48.
Zurück zum Zitat Wesley, C. L., L.J. Allen, C.B. Jonsson, Y.-K. Chu, R.D. Owen (2009) A discrete-time rodent-hantavirus model structured by infection and developmental stages, Adv. Stu. Pure Math. 53: 387–398.MathSciNetMATH Wesley, C. L., L.J. Allen, C.B. Jonsson, Y.-K. Chu, R.D. Owen (2009) A discrete-time rodent-hantavirus model structured by infection and developmental stages, Adv. Stu. Pure Math. 53: 387–398.MathSciNetMATH
49.
Zurück zum Zitat Zagheni, E., F.C. Billari, P. Manfredi, A. Melegaro, J. Mossong & W.J. Edmunds (2008) Using time-use data to parameterize models for the spread of close-contact infectious diseases, Am. J. Epi., 168(9), 1082–1090. Zagheni, E., F.C. Billari, P. Manfredi, A. Melegaro, J. Mossong & W.J. Edmunds (2008) Using time-use data to parameterize models for the spread of close-contact infectious diseases, Am. J. Epi., 168(9), 1082–1090.
Metadaten
Titel
Models with Heterogeneous Mixing
verfasst von
Fred Brauer
Carlos Castillo-Chavez
Zhilan Feng
Copyright-Jahr
2019
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4939-9828-9_5