Skip to main content
Top
Published in: Journal of Computational Electronics 3/2020

22-04-2020

Modifying quantum Grover’s algorithm for dynamic multi-pattern search on reconfigurable hardware

Authors: Naveed Mahmud, Bennett Haase-Divine, Andrew MacGillivray, Bailey Srimoungchanh, Annika Kuhnke, Nolan Blankenau, Apurva Rai, Esam El-Araby

Published in: Journal of Computational Electronics | Issue 3/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Grover’s quantum search algorithm is a highly studied quantum algorithm that has potential applications in unstructured data search, achieving quadratic speedup over existing classical search algorithms. In this work, we propose a modified quantum circuit for multi-pattern quantum Grover’s search algorithm. Our proposed modification simplifies the conventional Grover’s algorithm circuit and makes it capable of processing dynamically changing input patterns. The proposed techniques are demonstrated using reconfigurable hardware architectures that are designed for cost-effective, scalable, high-precision and high-throughput emulation of quantum algorithms. We experimentally evaluate the modified algorithm using Field Programmable Gate Array (FPGA) hardware and provide analysis of experimental results in terms of hardware resource utilization and emulation time. Our results demonstrate successful emulation of multi-pattern Grover’s algorithm using up to 22 quantum bits on a single FPGA, which is the highest and most efficient among existing work. Hardware implementations were performed for up to 32 qubits, and emulation time results of up to 32 qubits were projected using a performance estimation model.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Deutsch, D., Penrose, R.: Quantum theory, the Church–Turing principle and the universal quantum computer. Proc. R. Soc. Lond. A Math. Phys. Sci. 400(1818), 97–117 (1985)MathSciNetMATH Deutsch, D., Penrose, R.: Quantum theory, the Church–Turing principle and the universal quantum computer. Proc. R. Soc. Lond. A Math. Phys. Sci. 400(1818), 97–117 (1985)MathSciNetMATH
2.
go back to reference Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)MathSciNetCrossRef Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)MathSciNetCrossRef
4.
go back to reference Bernstein, D.J., Buchmann, J., Dahmen, E.: Post-quantum Cryptography, 1st edn. Springer, Berlin (2009)CrossRef Bernstein, D.J., Buchmann, J., Dahmen, E.: Post-quantum Cryptography, 1st edn. Springer, Berlin (2009)CrossRef
6.
go back to reference Williams, C.P.: Explorations in Quantum Computing, 2nd edn. Springer, Berlin (2011)CrossRef Williams, C.P.: Explorations in Quantum Computing, 2nd edn. Springer, Berlin (2011)CrossRef
7.
go back to reference Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010)CrossRef Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010)CrossRef
8.
go back to reference Boixo, S., Isakov, S.V., Smelyanskiy, V.N., Babbush, R., Ding, N., Jiang, Z., Bremner, M.J., Martinis, J.M., Neven, H.: Characterizing quantum supremacy in near-term devices. Nat. Phys. 14(6), 595 (2018)CrossRef Boixo, S., Isakov, S.V., Smelyanskiy, V.N., Babbush, R., Ding, N., Jiang, Z., Bremner, M.J., Martinis, J.M., Neven, H.: Characterizing quantum supremacy in near-term devices. Nat. Phys. 14(6), 595 (2018)CrossRef
14.
go back to reference Preskill, J.: Quantum computing in the nisq era and beyond. Quantum 2, 79 (2018)CrossRef Preskill, J.: Quantum computing in the nisq era and beyond. Quantum 2, 79 (2018)CrossRef
15.
16.
go back to reference Bernstein, D.J.: Grover vs. McEliece. In: International Workshop on Post-quantum Cryptography, pp. 73–80. Springer, Berlin (2010) Bernstein, D.J.: Grover vs. McEliece. In: International Workshop on Post-quantum Cryptography, pp. 73–80. Springer, Berlin (2010)
17.
go back to reference Cheng, S.-T., Tao, M.-H.: Quantum cooperative search algorithm for 3-sat. J. Comput. Syst. Sci. 73(1), 123–136 (2007)MathSciNetCrossRef Cheng, S.-T., Tao, M.-H.: Quantum cooperative search algorithm for 3-sat. J. Comput. Syst. Sci. 73(1), 123–136 (2007)MathSciNetCrossRef
18.
go back to reference Bang, J., Ryu, J., Lee, C., Yoo, S., Lim, J., Lee, J.: A quantum heuristic algorithm for the traveling salesman problem. J. Korean Phys. Soc. 61(12), 1944–1949 (2012)CrossRef Bang, J., Ryu, J., Lee, C., Yoo, S., Lim, J., Lee, J.: A quantum heuristic algorithm for the traveling salesman problem. J. Korean Phys. Soc. 61(12), 1944–1949 (2012)CrossRef
19.
go back to reference Brassard, G., Høyer, P., Tapp, A.: Quantum cryptanalysis of hash and claw-free functions. ACM Sigact News 28(2), 14–19 (1997)CrossRef Brassard, G., Høyer, P., Tapp, A.: Quantum cryptanalysis of hash and claw-free functions. ACM Sigact News 28(2), 14–19 (1997)CrossRef
20.
go back to reference Viamontes, G.F., Markov, I.L., Hayes, J.P.: Is quantum search practical? Comput. Sci. Eng. 7(3), 62–70 (2005)CrossRef Viamontes, G.F., Markov, I.L., Hayes, J.P.: Is quantum search practical? Comput. Sci. Eng. 7(3), 62–70 (2005)CrossRef
21.
go back to reference Mandviwalla, A., Ohshiro, K., Ji, B.: Implementing Grover’s algorithm on the IBM quantum computers. In: 2018 IEEE International Conference on Big Data (Big Data), pp. 2531–2537. IEEE, New York (2018) Mandviwalla, A., Ohshiro, K., Ji, B.: Implementing Grover’s algorithm on the IBM quantum computers. In: 2018 IEEE International Conference on Big Data (Big Data), pp. 2531–2537. IEEE, New York (2018)
22.
go back to reference Brickman, K.-A., Haljan, P.C., Lee, P.J., Acton, M., Deslauriers, L., Monroe, C.: Implementation of Grover’s quantum search algorithm in a scalable system. Phys. Rev. A 72(5), 050306 (2005)CrossRef Brickman, K.-A., Haljan, P.C., Lee, P.J., Acton, M., Deslauriers, L., Monroe, C.: Implementation of Grover’s quantum search algorithm in a scalable system. Phys. Rev. A 72(5), 050306 (2005)CrossRef
23.
go back to reference Das, R., Mahesh, T.S., Kumar, A.: Experimental implementation of Grover’s search algorithm using efficient quantum state tomography. Chem. Phys. Lett. 369(1–2), 8–15 (2003)CrossRef Das, R., Mahesh, T.S., Kumar, A.: Experimental implementation of Grover’s search algorithm using efficient quantum state tomography. Chem. Phys. Lett. 369(1–2), 8–15 (2003)CrossRef
24.
go back to reference Zhou, R., Ding, Q.: Quantum pattern recognition with probability of 100%. Int. J. Theor. Phys. 47(5), 1278–1285 (2008)CrossRef Zhou, R., Ding, Q.: Quantum pattern recognition with probability of 100%. Int. J. Theor. Phys. 47(5), 1278–1285 (2008)CrossRef
26.
go back to reference Harbaum, T., Seboui, M., Balzer, M., Becker, J., Weber, M.: A content adapted FPGA memory architecture with pattern recognition capability for L1 track triggering in the LHC environment. In: 2016 IEEE 24th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), pp. 184–191. IEEE, New York (2016) Harbaum, T., Seboui, M., Balzer, M., Becker, J., Weber, M.: A content adapted FPGA memory architecture with pattern recognition capability for L1 track triggering in the LHC environment. In: 2016 IEEE 24th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), pp. 184–191. IEEE, New York (2016)
28.
go back to reference Jozsa, R., Linden, N.: On the role of entanglement in quantum-computational speed-up. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 459(2036), 2011–2032 (2003)MathSciNetCrossRef Jozsa, R., Linden, N.: On the role of entanglement in quantum-computational speed-up. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 459(2036), 2011–2032 (2003)MathSciNetCrossRef
29.
go back to reference Yanofsky, N.S., Mannucci, M.A.: Quantum Computing for Computer Scientists. Cambridge University Press, Cambridge (2008)CrossRef Yanofsky, N.S., Mannucci, M.A.: Quantum Computing for Computer Scientists. Cambridge University Press, Cambridge (2008)CrossRef
30.
go back to reference Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching. Fortsch. Phys. Prog. Phys. 46(4–5), 493–505 (1998)CrossRef Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching. Fortsch. Phys. Prog. Phys. 46(4–5), 493–505 (1998)CrossRef
31.
go back to reference Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52(4), R2493 (1995)CrossRef Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52(4), R2493 (1995)CrossRef
34.
go back to reference Avila, A., Reiser, R.H.S., Yamin, A.C., Pilla, M.L.: Parallel simulation of Shor’s and Grover’s algorithms in the distributed geometric machine. In: 2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), pp. 412–419. IEEE, New York (2017) Avila, A., Reiser, R.H.S., Yamin, A.C., Pilla, M.L.: Parallel simulation of Shor’s and Grover’s algorithms in the distributed geometric machine. In: 2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), pp. 412–419. IEEE, New York (2017)
35.
go back to reference Gutiérrez, E., Romero, S., Trenas, M.A., Zapata, E.L.: Quantum computer simulation using the cuda programming model. Comput. Phys. Commun. 181(2), 283–300 (2010)MathSciNetCrossRef Gutiérrez, E., Romero, S., Trenas, M.A., Zapata, E.L.: Quantum computer simulation using the cuda programming model. Comput. Phys. Commun. 181(2), 283–300 (2010)MathSciNetCrossRef
36.
go back to reference Chen, J., Zhang, F., Huang, C., Newman, M., Shi, Y.: Classical simulation of intermediate-size quantum circuits. Preprint arXiv:1805.01450 (2018) Chen, J., Zhang, F., Huang, C., Newman, M., Shi, Y.: Classical simulation of intermediate-size quantum circuits. Preprint arXiv:​1805.​01450 (2018)
37.
go back to reference Villalonga, B., Lyakh, D., Boixo, S., Neven, H., Humble, T.S., Biswas, R., Rieffel, E.G., Ho, A., Mandrà, S.: Establishing the quantum supremacy frontier with a 281 pflop/s simulation. Preprint arXiv:1905.00444 (2019) Villalonga, B., Lyakh, D., Boixo, S., Neven, H., Humble, T.S., Biswas, R., Rieffel, E.G., Ho, A., Mandrà, S.: Establishing the quantum supremacy frontier with a 281 pflop/s simulation. Preprint arXiv:​1905.​00444 (2019)
38.
go back to reference De Raedt, H., Jin, F., Willsch, D., Willsch, M., Yoshioka, N., Ito, N., Yuan, S., Michielsen, K.: Massively parallel quantum computer simulator, eleven years later. Comput. Phys. Commun. 237, 47–61 (2019)CrossRef De Raedt, H., Jin, F., Willsch, D., Willsch, M., Yoshioka, N., Ito, N., Yuan, S., Michielsen, K.: Massively parallel quantum computer simulator, eleven years later. Comput. Phys. Commun. 237, 47–61 (2019)CrossRef
39.
go back to reference Pednault, E., Gunnels, J.A., Nannicini, G., Horesh, L., Magerlein, T., Solomonik, E., Draeger, E.W., Holland, E.T., Wisnieff, R.: Breaking the 49-qubit barrier in the simulation of quantum circuits. Preprint arXiv:1710.05867 (2017) Pednault, E., Gunnels, J.A., Nannicini, G., Horesh, L., Magerlein, T., Solomonik, E., Draeger, E.W., Holland, E.T., Wisnieff, R.: Breaking the 49-qubit barrier in the simulation of quantum circuits. Preprint arXiv:​1710.​05867 (2017)
40.
go back to reference Lee, Y.H., Khalil-Hani, M., Marsono, M.N.: An FPGA-based quantum computing emulation framework based on serial-parallel architecture. Int. J. Reconfig. Comput. 2016, 18 (2016)CrossRef Lee, Y.H., Khalil-Hani, M., Marsono, M.N.: An FPGA-based quantum computing emulation framework based on serial-parallel architecture. Int. J. Reconfig. Comput. 2016, 18 (2016)CrossRef
41.
go back to reference Suchara, M., Alexeev, Y., Chong, F., Finkel, H., Hoffmann, H., Larson, J., Osborn, J., Smith, G.: Hybrid quantum-classical computing architectures. In: Proceedings of the 3rd International Workshop on Post-Moore Era Supercomputing, 2018 (2018) Suchara, M., Alexeev, Y., Chong, F., Finkel, H., Hoffmann, H., Larson, J., Osborn, J., Smith, G.: Hybrid quantum-classical computing architectures. In: Proceedings of the 3rd International Workshop on Post-Moore Era Supercomputing, 2018 (2018)
42.
go back to reference Pilch, J., Długopolski, J.: An FPGA-based real quantum computer emulator. J. Comput. Electron. 18(1), 329–342 (2019)CrossRef Pilch, J., Długopolski, J.: An FPGA-based real quantum computer emulator. J. Comput. Electron. 18(1), 329–342 (2019)CrossRef
43.
go back to reference Frank, M.P., Oniciuc, L., Meyer-Baese, U.H., Chiorescu, I.: A space-efficient quantum computer simulator suitable for high-speed FPGA implementation. In: Quantum Information and Computation VII, Volume 7342, pp. 734203. International Society for Optics and Photonics (2009) Frank, M.P., Oniciuc, L., Meyer-Baese, U.H., Chiorescu, I.: A space-efficient quantum computer simulator suitable for high-speed FPGA implementation. In: Quantum Information and Computation VII, Volume 7342, pp. 734203. International Society for Optics and Photonics (2009)
44.
go back to reference Khalid, A.U., Zilic, Z., Radecka, K.: FPGA emulation of quantum circuits. In: IEEE International Conference on Computer Design: VLSI in Computers and Processors, 2004. ICCD 2004. Proceedings, pp. 310–315. IEEE, New York (2004) Khalid, A.U., Zilic, Z., Radecka, K.: FPGA emulation of quantum circuits. In: IEEE International Conference on Computer Design: VLSI in Computers and Processors, 2004. ICCD 2004. Proceedings, pp. 310–315. IEEE, New York (2004)
46.
go back to reference El-Araby, E., Merchant, S.G., El-Ghazawi, T.: Assessing productivity of high-level design methodologies for high-performance reconfigurable computers. In: High-Performance Computing using FPGAs, pp. 719–745. Springer, Berlin (2013) El-Araby, E., Merchant, S.G., El-Ghazawi, T.: Assessing productivity of high-level design methodologies for high-performance reconfigurable computers. In: High-Performance Computing using FPGAs, pp. 719–745. Springer, Berlin (2013)
47.
go back to reference Mahmud, N., El-Araby, E.: Towards higher scalability of quantum hardware emulation using efficient resource scheduling. In: 2018 IEEE International Conference on Rebooting Computing (ICRC), pp. 1–10. IEEE, New York (2018) Mahmud, N., El-Araby, E.: Towards higher scalability of quantum hardware emulation using efficient resource scheduling. In: 2018 IEEE International Conference on Rebooting Computing (ICRC), pp. 1–10. IEEE, New York (2018)
Metadata
Title
Modifying quantum Grover’s algorithm for dynamic multi-pattern search on reconfigurable hardware
Authors
Naveed Mahmud
Bennett Haase-Divine
Andrew MacGillivray
Bailey Srimoungchanh
Annika Kuhnke
Nolan Blankenau
Apurva Rai
Esam El-Araby
Publication date
22-04-2020
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 3/2020
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-020-01489-3

Other articles of this Issue 3/2020

Journal of Computational Electronics 3/2020 Go to the issue