Skip to main content
Top

30-04-2024 | Original Paper

Mold breakout prediction based on computer vision and machine learning

Authors: Yan-yu Wang, Qi-can Wang, Yong-chang Zhang, Yong-hui Cheng, Man Yao, Xu-dong Wang

Published in: Journal of Iron and Steel Research International

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Breakout is the most serious production accident in continuous casting and must be detected and predicted by stable and reliable methods. The sticking region, which forms on the local copper plate and expanded into a “V” shape, is the typical precursor of breakout. Therefore, computer vision technology was exploited to visualize the temperature change rate of the copper plate based on the temperature signals from thermocouples; then, the static and dynamic features of the abnormal sticking region were extracted. Meanwhile, logistic regression and Adaboost models were used to study and identify these features, resulting in the development of a mold breakout prediction model based on computer vision and machine learning. The test results demonstrate that the proposed model can effectively distinguish anomalous temperature patterns and considerably reduce false alarms without any missing reports. As a result, the proposed method could offer valuable insights into the realm of abnormality detection and prediction during continuous casting process.
Literature
[1]
go back to reference A. Faizullin, M. Zymbler, D. Lieftucht, F. Fanghänel, in: 2018 Global Smart Industry Conference (GloSIC), Chelyabinsk, Russia, 2018, pp. 1–6. A. Faizullin, M. Zymbler, D. Lieftucht, F. Fanghänel, in: 2018 Global Smart Industry Conference (GloSIC), Chelyabinsk, Russia, 2018, pp. 1–6.
[2]
[3]
go back to reference H. Qian, F. He, X.A. Xie, Z. Zhu, L. Zhang, L. Zhang, J. Shi, Ironmak. Steelmak. 46 (2019) 259–268.CrossRef H. Qian, F. He, X.A. Xie, Z. Zhu, L. Zhang, L. Zhang, J. Shi, Ironmak. Steelmak. 46 (2019) 259–268.CrossRef
[4]
go back to reference X. Qin, C.F. Zhu, L.W. Zheng, Y.R. Yin, J. Iron Steel Res. Int. 18 (2011) No. 4, 24–29.CrossRef X. Qin, C.F. Zhu, L.W. Zheng, Y.R. Yin, J. Iron Steel Res. Int. 18 (2011) No. 4, 24–29.CrossRef
[5]
go back to reference X. Qin, C. Zhu, L. Zheng, in: 2010 International Conference on Mechanic Automation and Control Engineering, Wuhan, China, 2010, pp. 2593–2596. X. Qin, C. Zhu, L. Zheng, in: 2010 International Conference on Mechanic Automation and Control Engineering, Wuhan, China, 2010, pp. 2593–2596.
[6]
go back to reference S.I. Luk’yanov, E.S. Suspitsyn, S.S. Krasilnikov, D.V. Shvidchenko, Int. J. Adv. Manuf. Technol. 79 (2015) 1861–1868.CrossRef S.I. Luk’yanov, E.S. Suspitsyn, S.S. Krasilnikov, D.V. Shvidchenko, Int. J. Adv. Manuf. Technol. 79 (2015) 1861–1868.CrossRef
[7]
[8]
go back to reference T. Ren, X. Shi, D. Li, X. Jin, Y. Wu, W. Sun, in: 2010 International Conference on Electrical and Control Engineering. Wuhan, China, 2010, pp. 1652–1655. T. Ren, X. Shi, D. Li, X. Jin, Y. Wu, W. Sun, in: 2010 International Conference on Electrical and Control Engineering. Wuhan, China, 2010, pp. 1652–1655.
[9]
go back to reference B. Zhang, R. Zhang, G. Wang, L. Sun, Z. Zhang, Q. Li, Int. J. Model. Identif. Contr. 16 (2012) 199.CrossRef B. Zhang, R. Zhang, G. Wang, L. Sun, Z. Zhang, Q. Li, Int. J. Model. Identif. Contr. 16 (2012) 199.CrossRef
[10]
go back to reference B. Zhang, W. Sheng, D. Wu, R. Zhang, Trans. Indian Inst. Met. 76 (2023) 145–155.CrossRef B. Zhang, W. Sheng, D. Wu, R. Zhang, Trans. Indian Inst. Met. 76 (2023) 145–155.CrossRef
[11]
go back to reference M.O. Ansari, S. Chattopadhyaya, J. Ghose, S. Sharma, D. Kozak, C. Li, S. Wojciechowski, S.P. Dwivedi, H.C. Kilinc, J.B. Królczyk, D. Walczak, Materials 15 (2022) 670.CrossRef M.O. Ansari, S. Chattopadhyaya, J. Ghose, S. Sharma, D. Kozak, C. Li, S. Wojciechowski, S.P. Dwivedi, H.C. Kilinc, J.B. Królczyk, D. Walczak, Materials 15 (2022) 670.CrossRef
[12]
go back to reference S. Xu, J. Wang, W. Shou, T. Ngo, A.M. Sadick, X. Wang, Arch. Comput. Meth. Eng. 28 (2021) 3383–3397.CrossRef S. Xu, J. Wang, W. Shou, T. Ngo, A.M. Sadick, X. Wang, Arch. Comput. Meth. Eng. 28 (2021) 3383–3397.CrossRef
[14]
go back to reference D. Pan, Z. Jiang, Z. Chen, W. Gui, Y. Xie, C. Yang, IEEE Trans. Instrum. Meas. 68 (2019) 3576–3588.CrossRef D. Pan, Z. Jiang, Z. Chen, W. Gui, Y. Xie, C. Yang, IEEE Trans. Instrum. Meas. 68 (2019) 3576–3588.CrossRef
[15]
go back to reference M. Rohan James, Int. J. Innov. Res. Sci. Eng. Technol. 7 (2018) 1864–1866.CrossRef M. Rohan James, Int. J. Innov. Res. Sci. Eng. Technol. 7 (2018) 1864–1866.CrossRef
[17]
go back to reference H. Wang, C. Ma, L. Zhou, in: 2009 International Conference on Information Engineering and Computer Science, Wuhan, China, 2009, pp. 1–4. H. Wang, C. Ma, L. Zhou, in: 2009 International Conference on Information Engineering and Computer Science, Wuhan, China, 2009, pp. 1–4.
[18]
go back to reference A. Kopper, R. Karkare, R.C. Paffenroth, D. Apelian, Integr. Mater. Manuf. Innov. 9 (2020) 287–300.CrossRef A. Kopper, R. Karkare, R.C. Paffenroth, D. Apelian, Integr. Mater. Manuf. Innov. 9 (2020) 287–300.CrossRef
[20]
go back to reference A. Richardson, B.M. Signor, B.A. Lidbury, T. Badrick, Clin. Biochem. 49 (2016) 1213–1220.CrossRef A. Richardson, B.M. Signor, B.A. Lidbury, T. Badrick, Clin. Biochem. 49 (2016) 1213–1220.CrossRef
[21]
go back to reference J. Wildenhain, M. Spitzer, S. Dolma, N. Jarvik, R. White, M. Roy, E. Griffiths, D. Bellows, G. Wright, M. Tyers, Cell Syst. 1 (2015) 383–395.CrossRef J. Wildenhain, M. Spitzer, S. Dolma, N. Jarvik, R. White, M. Roy, E. Griffiths, D. Bellows, G. Wright, M. Tyers, Cell Syst. 1 (2015) 383–395.CrossRef
[22]
go back to reference J. Kang, R. Schwartz, J. Flickinger, S. Beriwal, Int. J. Radiat. Oncol. 93 (2015) 1127–1135.CrossRef J. Kang, R. Schwartz, J. Flickinger, S. Beriwal, Int. J. Radiat. Oncol. 93 (2015) 1127–1135.CrossRef
[23]
[24]
go back to reference B. Zhang, X. He, F. Ouyang, D. Gu, Y. Dong, L. Zhang, X. Mo, W. Huang, J. Tian, S. Zhang, Cancer Lett. 403 (2017) 21–27.CrossRef B. Zhang, X. He, F. Ouyang, D. Gu, Y. Dong, L. Zhang, X. Mo, W. Huang, J. Tian, S. Zhang, Cancer Lett. 403 (2017) 21–27.CrossRef
[25]
[27]
go back to reference M. Bohanec, M. Kljajić Borštnar, M. Robnik-Šikonja, Expert Syst. Appl. 71 (2017) 416–428.CrossRef M. Bohanec, M. Kljajić Borštnar, M. Robnik-Šikonja, Expert Syst. Appl. 71 (2017) 416–428.CrossRef
[28]
go back to reference K. Takahashi, K. Kim, T. Ogata, S. Sugano, Robot. Auton. Syst. 91 (2017) 115–127.CrossRef K. Takahashi, K. Kim, T. Ogata, S. Sugano, Robot. Auton. Syst. 91 (2017) 115–127.CrossRef
[29]
go back to reference P. Gastaldo, L. Pinna, L. Seminara, M. Valle, R. Zunino, Robot. Auton. Syst. 63 (2015) 268–278.CrossRef P. Gastaldo, L. Pinna, L. Seminara, M. Valle, R. Zunino, Robot. Auton. Syst. 63 (2015) 268–278.CrossRef
[30]
go back to reference M. Weng, G. Huang, X. Da, in: 2010 3rd International Congress on Image and Signal Processing, Yantai, China, 2010, pp. 285–289. M. Weng, G. Huang, X. Da, in: 2010 3rd International Congress on Image and Signal Processing, Yantai, China, 2010, pp. 285–289.
[31]
go back to reference L.G. Shapiro, G.C. Stockman, Computer vision, Prentice Hall, New Jersey, USA, 2001. L.G. Shapiro, G.C. Stockman, Computer vision, Prentice Hall, New Jersey, USA, 2001.
[32]
go back to reference H. Kauppinen, T. Seppanen, M. Pietikainen, IEEE Trans. Pattern Anal. Machine Intell. 17 (1995) 201–207.CrossRef H. Kauppinen, T. Seppanen, M. Pietikainen, IEEE Trans. Pattern Anal. Machine Intell. 17 (1995) 201–207.CrossRef
[33]
go back to reference P. Cunningham, M. Cord, S.J. Delany, Machine learning techniques for multimedia, Springer, Heidelberg, Germany, 2008. P. Cunningham, M. Cord, S.J. Delany, Machine learning techniques for multimedia, Springer, Heidelberg, Germany, 2008.
[34]
go back to reference Z. Ghahramani, in: Proceedings of the Summer School on Machine Learning, Canberra, Australia, 2003, pp. 72–112. Z. Ghahramani, in: Proceedings of the Summer School on Machine Learning, Canberra, Australia, 2003, pp. 72–112.
[35]
go back to reference L.P. Kaelbling, M.L. Littman, A.W. Moore, J. Artif. Intell. Res. 4 (1996) 237–285.CrossRef L.P. Kaelbling, M.L. Littman, A.W. Moore, J. Artif. Intell. Res. 4 (1996) 237–285.CrossRef
[37]
go back to reference R.E. Schapire, in: Empirical Inference, Springer, Berlin, Heidelberg, 2013, pp. 37–52.CrossRef R.E. Schapire, in: Empirical Inference, Springer, Berlin, Heidelberg, 2013, pp. 37–52.CrossRef
[38]
go back to reference T.T. Wong, P.Y. Yeh, IEEE Transactions on Knowledge and Data Engineering 32 (2019) 1586–1594.CrossRef T.T. Wong, P.Y. Yeh, IEEE Transactions on Knowledge and Data Engineering 32 (2019) 1586–1594.CrossRef
[39]
go back to reference V. Spruyt, Computer Vision for Dummies 21 (2014) 35–40. V. Spruyt, Computer Vision for Dummies 21 (2014) 35–40.
[40]
go back to reference J. Li, K. Cheng, S. Wang, F. Morstatter, R.P. Trevino, J. Tang, H. Liu, ACM Comput. Surv. 50 (2018) 1–45. J. Li, K. Cheng, S. Wang, F. Morstatter, R.P. Trevino, J. Tang, H. Liu, ACM Comput. Surv. 50 (2018) 1–45.
[41]
go back to reference A.U. Haq, J. Li, M.H. Memon, M. Hunain Memon, J. Khan, S.M. Marium, in: 2019 IEEE 5th International Conference for Convergence in Technology (I2CT), Bombay, India, 2019, pp. 1–4. A.U. Haq, J. Li, M.H. Memon, M. Hunain Memon, J. Khan, S.M. Marium, in: 2019 IEEE 5th International Conference for Convergence in Technology (I2CT), Bombay, India, 2019, pp. 1–4.
[42]
Metadata
Title
Mold breakout prediction based on computer vision and machine learning
Authors
Yan-yu Wang
Qi-can Wang
Yong-chang Zhang
Yong-hui Cheng
Man Yao
Xu-dong Wang
Publication date
30-04-2024
Publisher
Springer Nature Singapore
Published in
Journal of Iron and Steel Research International
Print ISSN: 1006-706X
Electronic ISSN: 2210-3988
DOI
https://doi.org/10.1007/s42243-024-01198-2

Premium Partners