Skip to main content
Top

2012 | OriginalPaper | Chapter

Molecular Mechanics: Method and Applications

Author : Valeri Poltev

Published in: Handbook of Computational Chemistry

Publisher: Springer Netherlands

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The ultimate justification for the many severe approximations and assumptions made in the present work comes from the fact that the agreement between the simple calculations and the available experimental data is as good as it is.
N. L. Allinger, J. Am. Chem. Soc., 81, 5727, 1959
A short survey of the general principles and various applications of molecular mechanics (MM) is presented. The origin of molecular mechanics and its evolution is followed starting from “pre-computer” and the first computer-aided estimations of the structure and potential energy of simple molecular systems to the modern force fields and the large system computations. The problem of “classic mechanics” description of essentially quantum properties and processes is considered. Various approaches to a selection of force field mathematical expressions and parameters are reviewed. The relation between MM simplicity and “physical nature” of the properties and events is examined. The possibility of a priori predictions of the properties of large systems is discussed in view of modern improvements of MM scheme. Quantum chemistry contributions to MM description of complex molecular and biomolecular systems are considered.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Allinger, N. L. (1959). Conformational analysis. III. Applications to some medium ring compounds. Journal of the American Chemical Society, 81, 5727. Allinger, N. L. (1959). Conformational analysis. III. Applications to some medium ring compounds. Journal of the American Chemical Society, 81, 5727.
go back to reference Allinger, N. L. (2010). Molecular structure: Understanding steric and electronic effects from molecular mechanics. New Jersey: Wiley.CrossRef Allinger, N. L. (2010). Molecular structure: Understanding steric and electronic effects from molecular mechanics. New Jersey: Wiley.CrossRef
go back to reference Allinger, N. L., & Sprague, J. T. (1973). Calculation of the structures of hydrocarbons containing delocalized electronic systems by the molecular mechanics method. Journal of the American Chemical Society, 95, 3893.CrossRef Allinger, N. L., & Sprague, J. T. (1973). Calculation of the structures of hydrocarbons containing delocalized electronic systems by the molecular mechanics method. Journal of the American Chemical Society, 95, 3893.CrossRef
go back to reference Antony, J., & Grimme, S. (2006). Density functional theory including dispersion corrections for intermolecular interactions in a large benchmark set of biologically relevant molecules. Physical Chemistry Chemical Physics, 8, 5287.CrossRef Antony, J., & Grimme, S. (2006). Density functional theory including dispersion corrections for intermolecular interactions in a large benchmark set of biologically relevant molecules. Physical Chemistry Chemical Physics, 8, 5287.CrossRef
go back to reference Arnautova, Y. A., & Scheraga, H. A. (2008). Use of decoys to optimize an all-atom force field including hydration. Biophysical Journal, 95, 2434.CrossRef Arnautova, Y. A., & Scheraga, H. A. (2008). Use of decoys to optimize an all-atom force field including hydration. Biophysical Journal, 95, 2434.CrossRef
go back to reference Arnautova, Y. A., Jagielska, A., & Scheraga, H. A. (2006). A new force field (ECEPP-05) for peptides, proteins and organic molecules. Journal of Chemical Physics, 110, 5025.CrossRef Arnautova, Y. A., Jagielska, A., & Scheraga, H. A. (2006). A new force field (ECEPP-05) for peptides, proteins and organic molecules. Journal of Chemical Physics, 110, 5025.CrossRef
go back to reference Bartell, L. S. (1960). On the effects of intramolecular van der Waals forces. Journal of Chemical Physics, 32, 827.CrossRef Bartell, L. S. (1960). On the effects of intramolecular van der Waals forces. Journal of Chemical Physics, 32, 827.CrossRef
go back to reference Barton, D. H. R. (1948). Interaction between non-bonded atoms, and the structure of cis-Decalin. Journal of Chemical Society, 340. Barton, D. H. R. (1948). Interaction between non-bonded atoms, and the structure of cis-Decalin. Journal of Chemical Society, 340.
go back to reference Barton, D. H. R. (1950). The conformation of the steroid nucleus. Experientia, 6, 316.CrossRef Barton, D. H. R. (1950). The conformation of the steroid nucleus. Experientia, 6, 316.CrossRef
go back to reference Berendsen, H. J. C., Postma, J. P. M., von Gunstaren, W. F., & Hermans, J. (1981). Interaction models for water in relation to protein hydration. In B. Pullman (Ed.), Intermolecular forces (pp. 331–342). Dordrecht: Reidel.CrossRef Berendsen, H. J. C., Postma, J. P. M., von Gunstaren, W. F., & Hermans, J. (1981). Interaction models for water in relation to protein hydration. In B. Pullman (Ed.), Intermolecular forces (pp. 331–342). Dordrecht: Reidel.CrossRef
go back to reference Berman, H. M., Olson, W. K., Beveridge, D. l., Westbrook, J., Gelbin A., Demeny T., Hsieh S.-H., Srinivasan, A. R., & Schneider, B. (1992). The nucleic acid database. A comprehensive relational database of three-dimensional structures of nucleic acids. Biophysical Journal, 63, 751. Berman, H. M., Olson, W. K., Beveridge, D. l., Westbrook, J., Gelbin A., Demeny T., Hsieh S.-H., Srinivasan, A. R., & Schneider, B. (1992). The nucleic acid database. A comprehensive relational database of three-dimensional structures of nucleic acids. Biophysical Journal, 63, 751.
go back to reference Berman, H. M., Henrick, K., & Nakamura, H. (2003). Announcing the worldwide protein data bank. Nature Structural & Molecular Biology, 10, 980.CrossRef Berman, H. M., Henrick, K., & Nakamura, H. (2003). Announcing the worldwide protein data bank. Nature Structural & Molecular Biology, 10, 980.CrossRef
go back to reference Bernal, J. D., & Fowler, R. H. (1933). A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions. Journal of Chemical Physics, 1, 515.CrossRef Bernal, J. D., & Fowler, R. H. (1933). A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions. Journal of Chemical Physics, 1, 515.CrossRef
go back to reference Bordner, A. J., Cavasotto, C. N., & Abagyan, R. A. (2003). Direct derivation of van der Waals force field parameters from quantum mechanical interaction energies. The Journal of Physical Chemistry B, 107, 9601.CrossRef Bordner, A. J., Cavasotto, C. N., & Abagyan, R. A. (2003). Direct derivation of van der Waals force field parameters from quantum mechanical interaction energies. The Journal of Physical Chemistry B, 107, 9601.CrossRef
go back to reference Bradley, D. F., Lifson, S., & Honig, B. (1964). Theory of optical and other properties of biopolymers: Applicability and elimination of the first-neighbor and dipole–dipole approximations. In B. Pullman (Ed.), Electronic aspects of biochemistry. New York: Academic. Bradley, D. F., Lifson, S., & Honig, B. (1964). Theory of optical and other properties of biopolymers: Applicability and elimination of the first-neighbor and dipole–dipole approximations. In B. Pullman (Ed.), Electronic aspects of biochemistry. New York: Academic.
go back to reference Brant, D. A., & Flory, P. J. (1965). The configuration of random polypeptide chains. II. Theory. Journal of the American Chemical Society, 87, 2791. Brant, D. A., & Flory, P. J. (1965). The configuration of random polypeptide chains. II. Theory. Journal of the American Chemical Society, 87, 2791.
go back to reference Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S., & Karplus, M. (1983). CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. Journal of Computational Chemistry, 4, 187.CrossRef Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S., & Karplus, M. (1983). CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. Journal of Computational Chemistry, 4, 187.CrossRef
go back to reference Case,D.A.,CheathamT.E.,III,Darden,T.,Gohlke, H.,Luo,R.,Merz,K.M., Jr.,Onufriev,A.,Simmerling,C.,Wang,B.,&Woods,R.J.(2005).Theamber biomolecularsimulationprograms.JournalofComputationalChemistry,26, 1668. Case,D.A.,CheathamT.E.,III,Darden,T.,Gohlke, H.,Luo,R.,Merz,K.M., Jr.,Onufriev,A.,Simmerling,C.,Wang,B.,&Woods,R.J.(2005).Theamber biomolecularsimulationprograms.JournalofComputationalChemistry,26, 1668.
go back to reference Case, D. A., Darden, T. A., Cheatham T. E., III, Simmerling, C. L., Wang, J., Duke, R. E., Luo, R., Walker, R. C., Zhang, W., Merz, K. M., Roberts, B., Wang, B., Hayik, S., Roitberg, A., Seabra, G., Kolossváry, I., Wong, K. F., Paesani,F.,Vanicek, J.,Liu,J.,Wu,X.,Brozell,S.R.,Steinbrecher,T.,Gohlke, H.,Cai,Q.,Ye,X.,Wang,J.,Hsieh,M.-J.,Cui,G.,Roe,D.R.,Mathews,D.H., Seetin,M.G.,Sagui,C.,Babin,V.,Luchko,T.,Gusarov,S.,Kovalenko,A.,& Kollman, P. A. (2010). AMBER 11. San Francisco: University of California. Case, D. A., Darden, T. A., Cheatham T. E., III, Simmerling, C. L., Wang, J., Duke, R. E., Luo, R., Walker, R. C., Zhang, W., Merz, K. M., Roberts, B., Wang, B., Hayik, S., Roitberg, A., Seabra, G., Kolossváry, I., Wong, K. F., Paesani,F.,Vanicek, J.,Liu,J.,Wu,X.,Brozell,S.R.,Steinbrecher,T.,Gohlke, H.,Cai,Q.,Ye,X.,Wang,J.,Hsieh,M.-J.,Cui,G.,Roe,D.R.,Mathews,D.H., Seetin,M.G.,Sagui,C.,Babin,V.,Luchko,T.,Gusarov,S.,Kovalenko,A.,& Kollman, P. A. (2010). AMBER 11. San Francisco: University of California.
go back to reference Chuprina, V. P., & Poltev, V. I. (1983). Possible conformations of double-helical polynucleotides containing incorrect base pairs. Nucleic Acids Research, 11, 5205.CrossRef Chuprina, V. P., & Poltev, V. I. (1983). Possible conformations of double-helical polynucleotides containing incorrect base pairs. Nucleic Acids Research, 11, 5205.CrossRef
go back to reference Cornell, W. D., Cieplak, P., Bayly, C. I., Gould, I., Merz, K., Jr., Ferguson, D., Spellmeyer, D., Fox, T., Caldwell, J., & Kollman, P. (1995). A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. Journal of the American Chemical Society, 117, 5179.CrossRef Cornell, W. D., Cieplak, P., Bayly, C. I., Gould, I., Merz, K., Jr., Ferguson, D., Spellmeyer, D., Fox, T., Caldwell, J., & Kollman, P. (1995). A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. Journal of the American Chemical Society, 117, 5179.CrossRef
go back to reference Craig, D. P., Mason, R., Pauling, P., & Santry, D. P. (1965). Molecular packing in crystals of the aromatic hydrocarbons. Proceedings of the Royal Society A, 286, 98.CrossRef Craig, D. P., Mason, R., Pauling, P., & Santry, D. P. (1965). Molecular packing in crystals of the aromatic hydrocarbons. Proceedings of the Royal Society A, 286, 98.CrossRef
go back to reference Cramer, C. J. (2004). Essentials of computational chemistry: Theories and models. Chichester: Wiley. Cramer, C. J. (2004). Essentials of computational chemistry: Theories and models. Chichester: Wiley.
go back to reference Christen, M., Hunenberger, P. H., Bakowies, D., Baron, R., Burgi, R., Geerke, D. P., Heinz, T. N., Kastenholz, M. A., Krautler, V., Oostenbrink, C., Peter, C., Trzesniak, D., & Van Gunsteren, W. F. (2005). The GROMOS software for biomolecular simulation: GROMOS05. Journal of Computational Chemistry, 26, 1719.CrossRef Christen, M., Hunenberger, P. H., Bakowies, D., Baron, R., Burgi, R., Geerke, D. P., Heinz, T. N., Kastenholz, M. A., Krautler, V., Oostenbrink, C., Peter, C., Trzesniak, D., & Van Gunsteren, W. F. (2005). The GROMOS software for biomolecular simulation: GROMOS05. Journal of Computational Chemistry, 26, 1719.CrossRef
go back to reference De Santis, P. (1992). Conformational energy calculations of macromolecules. Current Contents, 34, 8. De Santis, P. (1992). Conformational energy calculations of macromolecules. Current Contents, 34, 8.
go back to reference De Santis, P., Giglio, E., Liquori, A. M., & Ripamonti, A. (1963). Stability of helical conformations of simple linear polymers. Journal of Polymer Science Part A, 1, 1383. De Santis, P., Giglio, E., Liquori, A. M., & Ripamonti, A. (1963). Stability of helical conformations of simple linear polymers. Journal of Polymer Science Part A, 1, 1383.
go back to reference De Santis, P., Giglio, E., Liquori, A. M., & Ripamonti, A. (1965). Van der Waals interaction and stability of helical polypeptide chains. Nature, 206, 456.CrossRef De Santis, P., Giglio, E., Liquori, A. M., & Ripamonti, A. (1965). Van der Waals interaction and stability of helical polypeptide chains. Nature, 206, 456.CrossRef
go back to reference De Voe, H., & Tinoco, I., Jr. (1962). The stability of helical polynucleotides: Base contributions. Journal of Molecular Biology, 4, 500.CrossRef De Voe, H., & Tinoco, I., Jr. (1962). The stability of helical polynucleotides: Base contributions. Journal of Molecular Biology, 4, 500.CrossRef
go back to reference Duan, Y., Wu, C., Chowdhury, S., Lee, M. C., Xiong, G., Zhang, W., Yang, R., Cieplak, P., Luo, R., Lee, T., Caldwell, J., Wang, J., & Kollman, P. (2003). A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. Journal of Computational Chemistry, 24, 1999.CrossRef Duan, Y., Wu, C., Chowdhury, S., Lee, M. C., Xiong, G., Zhang, W., Yang, R., Cieplak, P., Luo, R., Lee, T., Caldwell, J., Wang, J., & Kollman, P. (2003). A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. Journal of Computational Chemistry, 24, 1999.CrossRef
go back to reference Eisenberg, D. (2003). The discovery of the α-helix and β-sheet, the principal structural features of proteins. Proceedings of the National Academy of Sciences of the United States of America, 100, 11207.CrossRef Eisenberg, D. (2003). The discovery of the α-helix and β-sheet, the principal structural features of proteins. Proceedings of the National Academy of Sciences of the United States of America, 100, 11207.CrossRef
go back to reference Engler, E. M., Andose, J. D., & Schleyer, P. R. (1973). Critical evaluation of molecular mechanics. Journal of the American Chemical Society, 95, 8005.CrossRef Engler, E. M., Andose, J. D., & Schleyer, P. R. (1973). Critical evaluation of molecular mechanics. Journal of the American Chemical Society, 95, 8005.CrossRef
go back to reference Foloppe, N., & MacKerell, A. D., Jr. (2000). All-atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data. Journal of Computational Chemistry, 21, 86. Foloppe, N., & MacKerell, A. D., Jr. (2000). All-atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data. Journal of Computational Chemistry, 21, 86.
go back to reference Gibson, K. D., & Scheraga, H. A. (1967a). Minimization of polypeptide energy. I. Preliminary structures of bovine pancreatic ribonuclease S-peptide. Proceedings of the National Academy of Sciences of the United States of America, 58, 420. Gibson, K. D., & Scheraga, H. A. (1967a). Minimization of polypeptide energy. I. Preliminary structures of bovine pancreatic ribonuclease S-peptide. Proceedings of the National Academy of Sciences of the United States of America, 58, 420.
go back to reference Gibson, K. D., Scheraga, H. A. (1967b). Minimization of polypeptide energy. II. Preliminary structures of oxytocin, vasopressin, and an octapeptide from ribonuclease. Proceedings of the National Academy of Sciences of the United States of America, 58, 1317. Gibson, K. D., Scheraga, H. A. (1967b). Minimization of polypeptide energy. II. Preliminary structures of oxytocin, vasopressin, and an octapeptide from ribonuclease. Proceedings of the National Academy of Sciences of the United States of America, 58, 1317.
go back to reference Gresh, N., Claverie, P., & Pullman, A. (1986). Intermolecular interactions: Elaboration on an additive procedure including an explicit charge-transfer contribution. International Journal of Quantum Chemistry, 29, 101.CrossRef Gresh, N., Claverie, P., & Pullman, A. (1986). Intermolecular interactions: Elaboration on an additive procedure including an explicit charge-transfer contribution. International Journal of Quantum Chemistry, 29, 101.CrossRef
go back to reference Halgren, T. A. (1996). Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. Journal of Computational Chemistry, 17, 490. Halgren, T. A. (1996). Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. Journal of Computational Chemistry, 17, 490.
go back to reference Halgren, T. A. (1999a). MMFF VI. MMFF94s option for energy minimization studies. Journal of Computational Chemistry, 20, 720. Halgren, T. A. (1999a). MMFF VI. MMFF94s option for energy minimization studies. Journal of Computational Chemistry, 20, 720.
go back to reference Halgren, T. A. (1999b) MMFF VII. Characterization of MMFF94, MMFF94s, and other widely available force fields for conformational energies and for intermolecular-interaction energies and geometries. Journal of Computational Chemistry, 20, 730. Halgren, T. A. (1999b) MMFF VII. Characterization of MMFF94, MMFF94s, and other widely available force fields for conformational energies and for intermolecular-interaction energies and geometries. Journal of Computational Chemistry, 20, 730.
go back to reference Hendrickson, J. B. (1961). Molecular geometry. I. Machine computation of the common rings. Journal of the American Chemical Society, 83, 4537. Hendrickson, J. B. (1961). Molecular geometry. I. Machine computation of the common rings. Journal of the American Chemical Society, 83, 4537.
go back to reference Hendrickson, J. B. (1962). Molecular geometry. II. methyl-cyclohexanes and cycloheptanes. Journal of the American Chemical Society, 84, 3355. Hendrickson, J. B. (1962). Molecular geometry. II. methyl-cyclohexanes and cycloheptanes. Journal of the American Chemical Society, 84, 3355.
go back to reference Hendrickson, J. B. (1973). Molecular geometry. VIII. Proton magnetic resonance studies of cycloheptane conformations. Journal of the American Chemical Society, 95, 494. Hendrickson, J. B. (1973). Molecular geometry. VIII. Proton magnetic resonance studies of cycloheptane conformations. Journal of the American Chemical Society, 95, 494.
go back to reference Hill, T. L. (1946). On steric effects. Journal of Chemical Physics, 14, 465.CrossRef Hill, T. L. (1946). On steric effects. Journal of Chemical Physics, 14, 465.CrossRef
go back to reference Hill, T. L. (1948). Sterlc effects. I. Van der Waals potential energy curves. Journal of Chemical Physics, 16, 399. Hill, T. L. (1948). Sterlc effects. I. Van der Waals potential energy curves. Journal of Chemical Physics, 16, 399.
go back to reference Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. Journal of Chemical Physics, 79, 926.CrossRef Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. Journal of Chemical Physics, 79, 926.CrossRef
go back to reference Jorgensen, W. L., & Tirado-Rives, J. (1988). The OPLS potential functions for proteins. Energy minimizations for crystals of cyclic peptides and crambin. Journal of the American Chemical Society, 110, 1657. Jorgensen, W. L., & Tirado-Rives, J. (1988). The OPLS potential functions for proteins. Energy minimizations for crystals of cyclic peptides and crambin. Journal of the American Chemical Society, 110, 1657.
go back to reference Jorgensen, W. L., Maxwell, D. S., & Tirado-Rives, J. (1996). Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. Journal of the American Chemical Society, 118, 11226.CrossRef Jorgensen, W. L., Maxwell, D. S., & Tirado-Rives, J. (1996). Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. Journal of the American Chemical Society, 118, 11226.CrossRef
go back to reference Jurecka, P., Cerny, J., Hobza, P., & Salahub, D. R. (2007). Density functional theory augmented with an empirical dispersion term. Interaction energies and geometries of 80 noncovalent complexes compared with ab initio quantum mechanics calculations. Journal of Computational Chemistry, 28, 555. Jurecka, P., Cerny, J., Hobza, P., & Salahub, D. R. (2007). Density functional theory augmented with an empirical dispersion term. Interaction energies and geometries of 80 noncovalent complexes compared with ab initio quantum mechanics calculations. Journal of Computational Chemistry, 28, 555.
go back to reference Kaminski, G. A., Friesner, R. A., Tirado-Rives, J., & Jorgensen, W. L. (2001). Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. The Journal of Physical Chemistry B, 105, 6474.CrossRef Kaminski, G. A., Friesner, R. A., Tirado-Rives, J., & Jorgensen, W. L. (2001). Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. The Journal of Physical Chemistry B, 105, 6474.CrossRef
go back to reference Khutorsky, V. E., & Poltev, V. I. (1976). Conformations of double-helical nucleic acids. Nature, 264, 483.CrossRef Khutorsky, V. E., & Poltev, V. I. (1976). Conformations of double-helical nucleic acids. Nature, 264, 483.CrossRef
go back to reference Kitaigorodski, A. I. (1959). Organic chemical crystallography. New York: Consultants Bureau. Kitaigorodski, A. I. (1959). Organic chemical crystallography. New York: Consultants Bureau.
go back to reference Kitaygorodsky, A. I. (1961). The interaction curve of non-bonded carbon and hydrogen atoms and its application. Tetrahedron, 14, 230.CrossRef Kitaygorodsky, A. I. (1961). The interaction curve of non-bonded carbon and hydrogen atoms and its application. Tetrahedron, 14, 230.CrossRef
go back to reference Kitaigorodsky, A. I. (1973). Molecular crystals and molecules. New York: Academic. Kitaigorodsky, A. I. (1973). Molecular crystals and molecules. New York: Academic.
go back to reference Klauda, J. B., Venable, R. M., MacKerell, A. D., Jr., & Pastor, R. W. (2008). Considerations for lipid force field development. Current Topics in Membranes, 60, 1.CrossRef Klauda, J. B., Venable, R. M., MacKerell, A. D., Jr., & Pastor, R. W. (2008). Considerations for lipid force field development. Current Topics in Membranes, 60, 1.CrossRef
go back to reference Langlet, J., Claverie, P., Caron, F., & Boeuve, J. C. (1981). Interactions between nucleic acid bases in hydrogen bonded and stacked configurations: The role of the molecular charge distribution. International Journal of Quantum Chemistry, 20, 299.CrossRef Langlet, J., Claverie, P., Caron, F., & Boeuve, J. C. (1981). Interactions between nucleic acid bases in hydrogen bonded and stacked configurations: The role of the molecular charge distribution. International Journal of Quantum Chemistry, 20, 299.CrossRef
go back to reference Leach, A. R. (2001). Molecular modelling: Principles and applications. Harlow: Prentice Hall (Pearson Education). Leach, A. R. (2001). Molecular modelling: Principles and applications. Harlow: Prentice Hall (Pearson Education).
go back to reference Leach, S. J., Némethy, G., & Scheraga, H. A. (1966a). Computation of the sterically allowed conformations of peptides. Biopolymers, 4, 369.CrossRef Leach, S. J., Némethy, G., & Scheraga, H. A. (1966a). Computation of the sterically allowed conformations of peptides. Biopolymers, 4, 369.CrossRef
go back to reference Leach, S. J., Némethy, G., Scheraga, H. A. (1966b). Intramolecular steric effects and hydrogen bonding in regular conformations of polyamino acids. Biopolymers, 4, 887.CrossRef Leach, S. J., Némethy, G., Scheraga, H. A. (1966b). Intramolecular steric effects and hydrogen bonding in regular conformations of polyamino acids. Biopolymers, 4, 887.CrossRef
go back to reference Levitt, M., & Lifson, S. (1969). Refinement of protein conformations using a macromolecular energy minimization procedure. Journal of Molecular Biology, 46, 269.CrossRef Levitt, M., & Lifson, S. (1969). Refinement of protein conformations using a macromolecular energy minimization procedure. Journal of Molecular Biology, 46, 269.CrossRef
go back to reference Lifson, S., & Warshel, A. (1968). Consistent force field for calculations of conformations, vibrational spectra, and enthalpies of cycloalkane and n-alkane molecules. Journal of Chemical Physics, 49, 5116.CrossRef Lifson, S., & Warshel, A. (1968). Consistent force field for calculations of conformations, vibrational spectra, and enthalpies of cycloalkane and n-alkane molecules. Journal of Chemical Physics, 49, 5116.CrossRef
go back to reference Lii, L.-H., & Allinger, N. L. (1991). The MM3 force field for amides, polypeptides and proteins. Journal of Chemical Physics, 12, 186. Lii, L.-H., & Allinger, N. L. (1991). The MM3 force field for amides, polypeptides and proteins. Journal of Chemical Physics, 12, 186.
go back to reference Lii, L.-H., Chen, K.-H., Johnson, G. P., French, A. D., & Allinger, N. L. (2005). The external-anomeric torsional effect. Carbohydrate Research, 340, 853.CrossRef Lii, L.-H., Chen, K.-H., Johnson, G. P., French, A. D., & Allinger, N. L. (2005). The external-anomeric torsional effect. Carbohydrate Research, 340, 853.CrossRef
go back to reference Liwo, A., Lee, J., Ripoll, D. R., Pillardy, J., & Scheraga, H. A. (1999). Protein structure prediction by global optimization of a potential energy function. Proceedings of the National Academyof Sciences of the United States of America, 96, 5482.CrossRef Liwo, A., Lee, J., Ripoll, D. R., Pillardy, J., & Scheraga, H. A. (1999). Protein structure prediction by global optimization of a potential energy function. Proceedings of the National Academyof Sciences of the United States of America, 96, 5482.CrossRef
go back to reference MacKerell, A. D., Jr. (2004). Empirical force fields for biological macromolecules: Overview and issues. Journal of Computational Chemistry, 25, 1584.CrossRef MacKerell, A. D., Jr. (2004). Empirical force fields for biological macromolecules: Overview and issues. Journal of Computational Chemistry, 25, 1584.CrossRef
go back to reference Mahoney, M. W., & Jorgensen, W. L. (2001). Quantum, intramolecular flexibility, and polarizability effects on the reproduction of the density anomaly of liquid water by simple potential functions. Journal of Computational Chemistry, 115, 10758. Mahoney, M. W., & Jorgensen, W. L. (2001). Quantum, intramolecular flexibility, and polarizability effects on the reproduction of the density anomaly of liquid water by simple potential functions. Journal of Computational Chemistry, 115, 10758.
go back to reference Mason, R. (1969). The intermolecular potential and structure of crystals of aromatic molecules. Molecular Crystals and Liquid Crystals, 9, 3.CrossRef Mason, R. (1969). The intermolecular potential and structure of crystals of aromatic molecules. Molecular Crystals and Liquid Crystals, 9, 3.CrossRef
go back to reference Matsuoka, O., Clementi, E., & Yoshimine, M. (1976) CI Study of the water dimer potential surface. Journal of Chemical Physics, 64, 1351.CrossRef Matsuoka, O., Clementi, E., & Yoshimine, M. (1976) CI Study of the water dimer potential surface. Journal of Chemical Physics, 64, 1351.CrossRef
go back to reference McAllister, S. R., & Floudas, C. A. (2010). An improved hybrid global optimization method for protein tertiary structure prediction. Computational Optimization and Applications, 45, 377.CrossRef McAllister, S. R., & Floudas, C. A. (2010). An improved hybrid global optimization method for protein tertiary structure prediction. Computational Optimization and Applications, 45, 377.CrossRef
go back to reference McGuire, R. F., Momany, F. A., & Scheraga, H. A. (1972). Energy parameters in polypeptides. V. An empirical hydrogen bond potential function based on molecular orbital calculations. Journal of Physical Chemistry, 76, 375. McGuire, R. F., Momany, F. A., & Scheraga, H. A. (1972). Energy parameters in polypeptides. V. An empirical hydrogen bond potential function based on molecular orbital calculations. Journal of Physical Chemistry, 76, 375.
go back to reference Momany, F. A., Vanderkooi, G., & Scheraga, H. A. (1968). Determination of intermolecular potentials from crystal data. I. General theory and application to crystalline benzene at several temperatures. Proceedings of the National Academy of Sciences, 61, 429. Momany, F. A., Vanderkooi, G., & Scheraga, H. A. (1968). Determination of intermolecular potentials from crystal data. I. General theory and application to crystalline benzene at several temperatures. Proceedings of the National Academy of Sciences, 61, 429.
go back to reference Momany, F. A., Carruthers, L. M., & Scheraga, H. A. (1974). Intermolecular potentials from crystal data. IV. Application of empirical potentials to the packing confkgurations and lattice energies in crystals of amino acids. Journal of Physical Chemistry, 78, 1621. Momany, F. A., Carruthers, L. M., & Scheraga, H. A. (1974). Intermolecular potentials from crystal data. IV. Application of empirical potentials to the packing confkgurations and lattice energies in crystals of amino acids. Journal of Physical Chemistry, 78, 1621.
go back to reference Momany, F. A., McGuire, R., Burgess, A., & Scheraga, H. (1975). Energy parameters in polypeptides. VII. Geometric parameters, partial atomic charges, nonbonded interactions, hydrogen bond interactions, and intrinsic torsional potentials for the naturally occurring amino acids. Journal of Physical Chemistry, 79, 2361. Momany, F. A., McGuire, R., Burgess, A., & Scheraga, H. (1975). Energy parameters in polypeptides. VII. Geometric parameters, partial atomic charges, nonbonded interactions, hydrogen bond interactions, and intrinsic torsional potentials for the naturally occurring amino acids. Journal of Physical Chemistry, 79, 2361.
go back to reference Nada, H., & van der Eerden, J. P. J. M. (2003). An intermolecular potential model for the simulation of ice and water near the melting point: A six-site model of H2O. Journal of Chemical Physics, 118, 7401.CrossRef Nada, H., & van der Eerden, J. P. J. M. (2003). An intermolecular potential model for the simulation of ice and water near the melting point: A six-site model of H2O. Journal of Chemical Physics, 118, 7401.CrossRef
go back to reference Nash, H. A., & Bradley, D. F. (1966). Calculation of the lowest energy configurations of nucleotide base pairs on the basis of an electrostatic model. Journal of Chemical Physics, 45, 1380.CrossRef Nash, H. A., & Bradley, D. F. (1966). Calculation of the lowest energy configurations of nucleotide base pairs on the basis of an electrostatic model. Journal of Chemical Physics, 45, 1380.CrossRef
go back to reference Némethy, G., & Scheraga, H. A. (1965). Theoretical determination of sterically allowed conformations of a polypeptide chain by a computer method. Biopolymers, 3, 155.CrossRef Némethy, G., & Scheraga, H. A. (1965). Theoretical determination of sterically allowed conformations of a polypeptide chain by a computer method. Biopolymers, 3, 155.CrossRef
go back to reference Némethy, G., Gibson, K. D., Palmer, K. A., Yoon, C. N., Paterlini, G., Zagari, A., Rumsey, S., & Scheraga, H. A. (1992) Energy parameters in polypeptides. 10. Improved geometrical parameters and nonbonded interactions for use in the ECEPP/3 algorithm, with appllcatlon to proline-containing peptides. Journal of Physical Chemistry, 96, 6472. Némethy, G., Gibson, K. D., Palmer, K. A., Yoon, C. N., Paterlini, G., Zagari, A., Rumsey, S., & Scheraga, H. A. (1992) Energy parameters in polypeptides. 10. Improved geometrical parameters and nonbonded interactions for use in the ECEPP/3 algorithm, with appllcatlon to proline-containing peptides. Journal of Physical Chemistry, 96, 6472.
go back to reference Oostenbrink, C., Villa, A., Mark, A. E., & van Gunsteren, W. F. (2004). A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6. Journal of Computational Chemistry, 25, 1656.CrossRef Oostenbrink, C., Villa, A., Mark, A. E., & van Gunsteren, W. F. (2004). A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6. Journal of Computational Chemistry, 25, 1656.CrossRef
go back to reference Pauling, L., & Corey, R. B. (1951). The pleated sheet, a new layer configuration of polypeptide chains. Proceedings of the National Academy of Sciences of the United States of America, 37, 251.CrossRef Pauling, L., & Corey, R. B. (1951). The pleated sheet, a new layer configuration of polypeptide chains. Proceedings of the National Academy of Sciences of the United States of America, 37, 251.CrossRef
go back to reference Pauling, L., Corey, R. B., & Branson, H. R. (1951). The structure of proteins: Two hydrogen-bonded helical configurations of the polypeptide chain. Proceedings of the National Academy of Sciences of the United States of America, 37, 205.CrossRef Pauling, L., Corey, R. B., & Branson, H. R. (1951). The structure of proteins: Two hydrogen-bonded helical configurations of the polypeptide chain. Proceedings of the National Academy of Sciences of the United States of America, 37, 205.CrossRef
go back to reference Perez, A., Marchan, I., Svozil, D., Sponer, J., Cheatham, T. E., Laughton, C. A., & Orozco, M. (2007). Refinement of the AMBER force field for nucleic acids: Improving the description of α/γ conformers. Biophysical Journal, 92, 3817.CrossRef Perez, A., Marchan, I., Svozil, D., Sponer, J., Cheatham, T. E., Laughton, C. A., & Orozco, M. (2007). Refinement of the AMBER force field for nucleic acids: Improving the description of α/γ conformers. Biophysical Journal, 92, 3817.CrossRef
go back to reference Polozov, R. V., Poltev, V. I., & Sukhorukov, B. I. (1973). Relation of the interactions of nucleic acid bases to the helical conformations of polynucleotides. Studia Biophysica, 40, 13. Polozov, R. V., Poltev, V. I., & Sukhorukov, B. I. (1973). Relation of the interactions of nucleic acid bases to the helical conformations of polynucleotides. Studia Biophysica, 40, 13.
go back to reference Poltev, V. I., & Bruskov, V. I. (1978) On molecular mechanisms of nucleic acid synthesis fidelity aspects 1. Contribution of base interactions. Journal of Theoretical Biology, 70, 69. Poltev, V. I., & Bruskov, V. I. (1978) On molecular mechanisms of nucleic acid synthesis fidelity aspects 1. Contribution of base interactions. Journal of Theoretical Biology, 70, 69.
go back to reference Poltev, V. I., & Shulyupina, N. V. (1986). Simulation of interactions between nucleic-acid bases by refined atom-atom potential functions. Journal of Biomolecular Structure & Dynamics, 3, 739.CrossRef Poltev, V. I., & Shulyupina, N. V. (1986). Simulation of interactions between nucleic-acid bases by refined atom-atom potential functions. Journal of Biomolecular Structure & Dynamics, 3, 739.CrossRef
go back to reference Poltev, V. I., & Sukhorukov, B. I. (1967). Theoretical examination of the physical nature of the intermolecular interactions determining the conformational state of polynucleotides. Biophysics (Moscow), 12, 879. Poltev, V. I., & Sukhorukov, B. I. (1967). Theoretical examination of the physical nature of the intermolecular interactions determining the conformational state of polynucleotides. Biophysics (Moscow), 12, 879.
go back to reference Poltev, V. I., & Sukhorukov, B. I. (1970). Semiempirical calculations of interaction energy of DNA nitrous bases. Studia Biophysica, 24/25, 179. Poltev, V. I., & Sukhorukov, B. I. (1970). Semiempirical calculations of interaction energy of DNA nitrous bases. Studia Biophysica, 24/25, 179.
go back to reference Poltev, V. I., Grokhlina, T. I., & Malenkov, G. G. (1984). Hydration of nucleic-acid bases studied using novel atom-atom potential functions. Journal of Biomolecular Structure & Dynamics, 2, 413.CrossRef Poltev, V. I., Grokhlina, T. I., & Malenkov, G. G. (1984). Hydration of nucleic-acid bases studied using novel atom-atom potential functions. Journal of Biomolecular Structure & Dynamics, 2, 413.CrossRef
go back to reference Pullman, A., & Pullman, B. (1968). Aspects of the electronic structure of the purine and pyrimidine bases of the nucleic acids and of their interactions. Advances in Quantum Chemistry, 4, 267.CrossRef Pullman, A., & Pullman, B. (1968). Aspects of the electronic structure of the purine and pyrimidine bases of the nucleic acids and of their interactions. Advances in Quantum Chemistry, 4, 267.CrossRef
go back to reference Pullman, B., Claverie, P., & Caillet, J. (1966). Van der Waals-London interactions and the configuration of hydrogen-bonded purine and pyrimidine Pairs. Proceedings of the National Academy of Sciences of the United States of America, 55, 904.CrossRef Pullman, B., Claverie, P., & Caillet, J. (1966). Van der Waals-London interactions and the configuration of hydrogen-bonded purine and pyrimidine Pairs. Proceedings of the National Academy of Sciences of the United States of America, 55, 904.CrossRef
go back to reference Rae, A. I. M., & Mason, R. (1968). The intermolecular potential and the lattice energy of benzene. Proceedings of the Royal Society, 304, 487.CrossRef Rae, A. I. M., & Mason, R. (1968). The intermolecular potential and the lattice energy of benzene. Proceedings of the Royal Society, 304, 487.CrossRef
go back to reference Ramachandran, G. N. (1990). This week’s citation classic. Current Contents, 10, 119. Ramachandran, G. N. (1990). This week’s citation classic. Current Contents, 10, 119.
go back to reference Ramachandran, G. N., Ramakrishnan, C., & Sasisekharan, V. (1963). Stereochemistry of polypeptide chain configurations. Journal of Molecular Biology, 7, 95.CrossRef Ramachandran, G. N., Ramakrishnan, C., & Sasisekharan, V. (1963). Stereochemistry of polypeptide chain configurations. Journal of Molecular Biology, 7, 95.CrossRef
go back to reference Ramachandran, K. I., Deepa, G., & Namboori, K. (2008). Computational chemistry and molecular modeling: Principles and applications. Berlin: Springer. Ramachandran, K. I., Deepa, G., & Namboori, K. (2008). Computational chemistry and molecular modeling: Principles and applications. Berlin: Springer.
go back to reference Raman, E. P., Guvench, O., & MacKerell, A. D., Jr. (2010). CHARMM additive all-atom force field for glycosidic linkages in carbohydrates involving furanoses. Journal of Physical Chemistry B, 114, 12981.CrossRef Raman, E. P., Guvench, O., & MacKerell, A. D., Jr. (2010). CHARMM additive all-atom force field for glycosidic linkages in carbohydrates involving furanoses. Journal of Physical Chemistry B, 114, 12981.CrossRef
go back to reference Rasse, D., Warme, P. K., & Scheraga, H. A. (1974). Refinement of the Xray structure of rubredoxin by conformational energy calculations. Proceedings of the National Academy of Sciences of the United States of America, 71, 3736.CrossRef Rasse, D., Warme, P. K., & Scheraga, H. A. (1974). Refinement of the Xray structure of rubredoxin by conformational energy calculations. Proceedings of the National Academy of Sciences of the United States of America, 71, 3736.CrossRef
go back to reference Renugopalakrishnan, V., Lakshminarayanan, A. V., & Sasisekharan, V. (1971) Stereochemistry of nucleic acids and polynucleotides III. Electronic charge distribution. Biopolymers, 10, 1159. Renugopalakrishnan, V., Lakshminarayanan, A. V., & Sasisekharan, V. (1971) Stereochemistry of nucleic acids and polynucleotides III. Electronic charge distribution. Biopolymers, 10, 1159.
go back to reference Ripoll, D. R., Scheraga, H. A. (1988) On the multipleminima problem in the conformational analysis of polypeptides. II. An electrostatically driven Monte Carlo method. Tests on poly(l-alanine). Biopolymers, 27, 1283. Ripoll, D. R., Scheraga, H. A. (1988) On the multipleminima problem in the conformational analysis of polypeptides. II. An electrostatically driven Monte Carlo method. Tests on poly(l-alanine). Biopolymers, 27, 1283.
go back to reference Scheraga, H. A. (2008). From helix–coil transitions to protein folding. Biopolymers, 89, 479.CrossRef Scheraga, H. A. (2008). From helix–coil transitions to protein folding. Biopolymers, 89, 479.CrossRef
go back to reference Scheraga, H. A., Pillardy, J., Liwo, A., Lee, J., Czaplewski, C., Ripoll, D. R., Wedemeyer, W. J., & Arnautova, Y. A. (2002). Evolution of physics-based methodology for exploring the conformational energy landscape of proteins. Journal of Computational Chemistry, 23, 28.CrossRef Scheraga, H. A., Pillardy, J., Liwo, A., Lee, J., Czaplewski, C., Ripoll, D. R., Wedemeyer, W. J., & Arnautova, Y. A. (2002). Evolution of physics-based methodology for exploring the conformational energy landscape of proteins. Journal of Computational Chemistry, 23, 28.CrossRef
go back to reference Scott, R. A., & Scheraga, H. A. (1966a). Conformational analysis of macromolecules. III. Helical structures of poly-glycine and poly-l-alanine. Journal of Chemical Physics, 45, 2091. Scott, R. A., & Scheraga, H. A. (1966a). Conformational analysis of macromolecules. III. Helical structures of poly-glycine and poly-l-alanine. Journal of Chemical Physics, 45, 2091.
go back to reference Scott, R. A., & Scheraga, H. A. (1966b). Conformational analysis of macromolecules. II. The rotational isomeric states of the normal hydrocarbons. Journal of Chemical Physics, 44, 3054. Scott, R. A., & Scheraga, H. A. (1966b). Conformational analysis of macromolecules. II. The rotational isomeric states of the normal hydrocarbons. Journal of Chemical Physics, 44, 3054.
go back to reference Shipman, L. L., Burgess, A. W., & Scheraga, H. A. (1975) A new approach to empirical intermolecular and conformational potential energy functions. I. Description of model and derivation of parameters. Proceedings of the National Academy of Sciences of the United States of America, 72, 543. Shipman, L. L., Burgess, A. W., & Scheraga, H. A. (1975) A new approach to empirical intermolecular and conformational potential energy functions. I. Description of model and derivation of parameters. Proceedings of the National Academy of Sciences of the United States of America, 72, 543.
go back to reference Sippl, M. J., Némethy, G., & Scheraga, H. A. (1984). Intermolecular potentials from crystal data. 6. Determination of empirical potentials for OH\(\cdot \) \(\cdot \) \(\cdot \)O=C hydrogen bonds from packing configurations. Journal of Physical Chemistry, 88, 6231. Sippl, M. J., Némethy, G., & Scheraga, H. A. (1984). Intermolecular potentials from crystal data. 6. Determination of empirical potentials for OH\(\cdot \) \(\cdot \) \(\cdot \)O=C hydrogen bonds from packing configurations. Journal of Physical Chemistry, 88, 6231.
go back to reference Snir, J., Nemenoff, R. A., & Scheraga, H. A. (1978). A revised empirical potential for conformational, intermolecular, and solvation studies. 5. Development and testing of parameters for amides, amino acids and peptides. Journal of Physical Chemistry, 82, 2527. Snir, J., Nemenoff, R. A., & Scheraga, H. A. (1978). A revised empirical potential for conformational, intermolecular, and solvation studies. 5. Development and testing of parameters for amides, amino acids and peptides. Journal of Physical Chemistry, 82, 2527.
go back to reference Song, K., Hornak, V., de los Santos, C., Grollman, A. P., & Simmerling, C. (2008). Molecular mechanics parameters for the FapydG DNA lesion. Journal of Computational Chemistry, 29, 17. Song, K., Hornak, V., de los Santos, C., Grollman, A. P., & Simmerling, C. (2008). Molecular mechanics parameters for the FapydG DNA lesion. Journal of Computational Chemistry, 29, 17.
go back to reference Stillinger, F. H., & Rahman, A. (1974). Improved simulation of liquid water by molecular dynamics. Journal of Chemical Physics, 60, 1545.CrossRef Stillinger, F. H., & Rahman, A. (1974). Improved simulation of liquid water by molecular dynamics. Journal of Chemical Physics, 60, 1545.CrossRef
go back to reference Van der Spoel, D., Lindahl, E., Hess, B., Groehof, G., Mark, A. E., & Berendsen, H. J. C. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26, 1701.CrossRef Van der Spoel, D., Lindahl, E., Hess, B., Groehof, G., Mark, A. E., & Berendsen, H. J. C. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26, 1701.CrossRef
go back to reference Van Gunsteren, W., Fand, H. J., & Berendsen, C. (1987). Groningen molecular simulation (GROMOS) library manual. Groningen: BIOMOS. Van Gunsteren, W., Fand, H. J., & Berendsen, C. (1987). Groningen molecular simulation (GROMOS) library manual. Groningen: BIOMOS.
go back to reference Wang, J., Cieplak, P., & Kollman, P. A. (2000). How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? Journal of Computational Chemistry, 21, 1049.CrossRef Wang, J., Cieplak, P., & Kollman, P. A. (2000). How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? Journal of Computational Chemistry, 21, 1049.CrossRef
go back to reference Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general amber force field. Journal of Computational Chemistry, 25, 1157.CrossRef Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general amber force field. Journal of Computational Chemistry, 25, 1157.CrossRef
go back to reference Wang, J., Wang, W., Kollman, P. A., & Case, D. A. (2006), Automatic atom type and bond type perception in molecular mechanical calculations. Journal of Molecular Graphics & Modelling, 25, 247.CrossRef Wang, J., Wang, W., Kollman, P. A., & Case, D. A. (2006), Automatic atom type and bond type perception in molecular mechanical calculations. Journal of Molecular Graphics & Modelling, 25, 247.CrossRef
go back to reference Warme, P. K., Momany, F. A., Rumball, S. V., & Scheraga, H. A. (1974). Computation of structures of homologous proteins; α-lactalbumin from lysozyme. Biochemistry, 13, 768.CrossRef Warme, P. K., Momany, F. A., Rumball, S. V., & Scheraga, H. A. (1974). Computation of structures of homologous proteins; α-lactalbumin from lysozyme. Biochemistry, 13, 768.CrossRef
go back to reference Warshel A., & Lifson, S. (1970). Consistent force field calculations. II. Crystal structures, sublimation energies, molecular and lattice vibrations, molecular conformations, and enthalpies of alkanes. Journal of Chemical Physics, 53, 582. Warshel A., & Lifson, S. (1970). Consistent force field calculations. II. Crystal structures, sublimation energies, molecular and lattice vibrations, molecular conformations, and enthalpies of alkanes. Journal of Chemical Physics, 53, 582.
go back to reference Watson, J. D., & Crick, F. H. C. (1953). A structure for deoxyribose nucleic acid. Nature, 171, 737.CrossRef Watson, J. D., & Crick, F. H. C. (1953). A structure for deoxyribose nucleic acid. Nature, 171, 737.CrossRef
go back to reference Weiner, P., & Kollman, P. (1981). AMBER: Assisted model building with energy refinement. A general program for modeling molecules and their interactions. Journal of Computational Chemistry, 2, 287. Weiner, P., & Kollman, P. (1981). AMBER: Assisted model building with energy refinement. A general program for modeling molecules and their interactions. Journal of Computational Chemistry, 2, 287.
go back to reference Weiner, S. J., Kollman, P. A., Case, D. A., Singh, U. C., Ghio, C., Alagona, G., Profeta, S., Jr., & Weiner, P. (1984). A new force field for molecular mechanical simulation of nucleic acids and proteins. Journal of the American Chemical Society, 106, 765.CrossRef Weiner, S. J., Kollman, P. A., Case, D. A., Singh, U. C., Ghio, C., Alagona, G., Profeta, S., Jr., & Weiner, P. (1984). A new force field for molecular mechanical simulation of nucleic acids and proteins. Journal of the American Chemical Society, 106, 765.CrossRef
go back to reference Westheimer, F. H., & Mayer, J. E. (1946). The theory of the racemization of optically active derivatives of diphenyl. Journal of Chemical Physics, 14, 733.CrossRef Westheimer, F. H., & Mayer, J. E. (1946). The theory of the racemization of optically active derivatives of diphenyl. Journal of Chemical Physics, 14, 733.CrossRef
go back to reference Williams, D. E. (1966). Nonbonded potential parameters derived from crystalline aromatic hydrocarbons. Journal of Chemical Physics, 45, 3770.CrossRef Williams, D. E. (1966). Nonbonded potential parameters derived from crystalline aromatic hydrocarbons. Journal of Chemical Physics, 45, 3770.CrossRef
go back to reference Williams, D. E. (1967). Nonbonded potential parameters derived from crystalline hydrocarbons. Journal of Chemical Physics, 47, 4680.CrossRef Williams, D. E. (1967). Nonbonded potential parameters derived from crystalline hydrocarbons. Journal of Chemical Physics, 47, 4680.CrossRef
go back to reference Williams, D. E., & Weller, R. R. (1983). Lone-pair electronic effects on the calculated ab initio SCF-MO electric potential and the crystal structures of azabenzenes. Journal of the American Chemical Society, 105, 4143.CrossRef Williams, D. E., & Weller, R. R. (1983). Lone-pair electronic effects on the calculated ab initio SCF-MO electric potential and the crystal structures of azabenzenes. Journal of the American Chemical Society, 105, 4143.CrossRef
go back to reference Yan, J. F., Momany, F. A., Hoffmann, R., & Scheraga, H. A. (1970). Energy parameters in polypeptides. II. Semiempirical molecular orbital calculations for model peptides. Journal of Physical Chemistry, 74, 420. Yan, J. F., Momany, F. A., Hoffmann, R., & Scheraga, H. A. (1970). Energy parameters in polypeptides. II. Semiempirical molecular orbital calculations for model peptides. Journal of Physical Chemistry, 74, 420.
go back to reference Zhurkin, V. B., Poltev, V. I., & Florentiev, V. L. (1980). Atom-atom potential functions for conformational calculations of nucleic-acids. Molecular Biology (Moscow), English Translation, 14, 882. Zhurkin, V. B., Poltev, V. I., & Florentiev, V. L. (1980). Atom-atom potential functions for conformational calculations of nucleic-acids. Molecular Biology (Moscow), English Translation, 14, 882.
Metadata
Title
Molecular Mechanics: Method and Applications
Author
Valeri Poltev
Copyright Year
2012
Publisher
Springer Netherlands
DOI
https://doi.org/10.1007/978-94-007-0711-5_9

Premium Partner