Skip to main content
Top

2012 | OriginalPaper | Chapter

Statistical Mechanics of Force-Induced Transitions of Biopolymers

Author : Sanjay Kumar

Published in: Handbook of Computational Chemistry

Publisher: Springer Netherlands

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Single molecule force spectroscopy constitutes a robust method for probing the unfolding of biomolecules. Knowledge gained from statistical mechanics is helping to build our understanding about more complex structure and function of biopolymers. Here, we have review some of the models and techniques that have been employed to study force-induced transitions in biopolymers. We briefly describe the merit and limitation of these models and techniques. In this context, we discuss statistical models of polymer along with numerical techniques, which may provide enhanced insight in understanding the unfolding of biomolecules.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Adcock, S. A., & McCammon, J. A. (2006). Molecular Dynamics: Survey of methods for simulating the activity of proteins. Chemical Reviews, 106, 1589–1615.CrossRef Adcock, S. A., & McCammon, J. A. (2006). Molecular Dynamics: Survey of methods for simulating the activity of proteins. Chemical Reviews, 106, 1589–1615.CrossRef
go back to reference Allen, M. P., & Tildesley, D. J. (1987). Computer simulations of liquids. Oxford: Oxford Science. Allen, M. P., & Tildesley, D. J. (1987). Computer simulations of liquids. Oxford: Oxford Science.
go back to reference Bhattacharjee, S. M. (2000). Unzipping DNAs: Towards the first step of replication. Journal of Physics A, 33, L423–L428.CrossRef Bhattacharjee, S. M. (2000). Unzipping DNAs: Towards the first step of replication. Journal of Physics A, 33, L423–L428.CrossRef
go back to reference Binder, K. (1995). Monte Carlo and molecular dynamics simulations in polymer science. New York: Oxford University Press. Binder, K. (1995). Monte Carlo and molecular dynamics simulations in polymer science. New York: Oxford University Press.
go back to reference Binder, K. (1997). Applications of Monte Carlo methods to statistical physics. Reports on Progress in Physics, 60, 487–559.CrossRef Binder, K. (1997). Applications of Monte Carlo methods to statistical physics. Reports on Progress in Physics, 60, 487–559.CrossRef
go back to reference Bustamante, C., Smith, S. B., Liphardt, J., & Smith, D. (2000). Single-molecule studies of DNA mechanics. Current Opinion in Structural Biology, 10, 279–285.CrossRef Bustamante, C., Smith, S. B., Liphardt, J., & Smith, D. (2000). Single-molecule studies of DNA mechanics. Current Opinion in Structural Biology, 10, 279–285.CrossRef
go back to reference Bustamante, C., Chemla, Y. R., Forde, N. R., & Izhaky, D. (2004). Mechanical processes in biochemistry. The Annual Review of Biochemistry, 73, 705–748.CrossRef Bustamante, C., Chemla, Y. R., Forde, N. R., & Izhaky, D. (2004). Mechanical processes in biochemistry. The Annual Review of Biochemistry, 73, 705–748.CrossRef
go back to reference Cecconi, C., Shank, E. A., Bustamante, C., & Marqusee, S. (2005). Direct observation of the three-state folding of a single protein molecule. Science, 309, 2057–2060.CrossRef Cecconi, C., Shank, E. A., Bustamante, C., & Marqusee, S. (2005). Direct observation of the three-state folding of a single protein molecule. Science, 309, 2057–2060.CrossRef
go back to reference Chatney, D., Cocco, S., Monasson, R., & Thieffry, D. (2004). Multiple aspects of DNA and RNA: From biophysics to bioinformatics: Lecture notes of the Les Houches Summer School. The Netherlands: Elsevier. Chatney, D., Cocco, S., Monasson, R., & Thieffry, D. (2004). Multiple aspects of DNA and RNA: From biophysics to bioinformatics: Lecture notes of the Les Houches Summer School. The Netherlands: Elsevier.
go back to reference Cloizeaux, J. D. (1974). Langrangian theory for a self-avoiding random chain. Physical Review A, 10, 1665–1669.CrossRef Cloizeaux, J. D. (1974). Langrangian theory for a self-avoiding random chain. Physical Review A, 10, 1665–1669.CrossRef
go back to reference Dai, L., Liu, F., & Ou-Yang, Z-C. (2003). Maximum-entropy calculation of the end-to-end distance distribution of force-stretched chains. Journal of Chemical Physics, 119, 8124.CrossRef Dai, L., Liu, F., & Ou-Yang, Z-C. (2003). Maximum-entropy calculation of the end-to-end distance distribution of force-stretched chains. Journal of Chemical Physics, 119, 8124.CrossRef
go back to reference de Gennes, P. G. (1979). Scaling concepts in polymer physics. Ithaca/London: Cornell University Press. de Gennes, P. G. (1979). Scaling concepts in polymer physics. Ithaca/London: Cornell University Press.
go back to reference des Cloizeaux, J., & Jannink, G. (1990). Polymers in solution. Oxford: Clarendon. des Cloizeaux, J., & Jannink, G. (1990). Polymers in solution. Oxford: Clarendon.
go back to reference Doi, M., & Edwards, S. F. (1986). The theory of polymer dynamics. Oxford: Clardenden. Doi, M., & Edwards, S. F. (1986). The theory of polymer dynamics. Oxford: Clardenden.
go back to reference Domb, C., & Lebowitz, J. L. (1989). Phase transition and critical phenomena(Vol. 13). New York: Academic. Domb, C., & Lebowitz, J. L. (1989). Phase transition and critical phenomena(Vol. 13). New York: Academic.
go back to reference Forgacs, G., Lipowsky, R., & Nieuwenhuizen, T. M. (1995). The behaviour of interfaces in ordered and disordered systems(Vol. 14). Oxford: Clarendon. Forgacs, G., Lipowsky, R., & Nieuwenhuizen, T. M. (1995). The behaviour of interfaces in ordered and disordered systems(Vol. 14). Oxford: Clarendon.
go back to reference Frenkel, D., & Smit, B. (2002). Understanding molecular simulation. London: Academic. Frenkel, D., & Smit, B. (2002). Understanding molecular simulation. London: Academic.
go back to reference Giri, D., & Kumar, S. (2006). Effects of the eye phase in DNA unzipping. Physical Review E, 73, 050903(R). Giri, D., & Kumar, S. (2006). Effects of the eye phase in DNA unzipping. Physical Review E, 73, 050903(R).
go back to reference Grassberger, P., Nadler, W., & Barkema, G. T. (1999). The Monte Carlo approach to biopolymers and protein folding. Singapore: World Scientific. Grassberger, P., Nadler, W., & Barkema, G. T. (1999). The Monte Carlo approach to biopolymers and protein folding. Singapore: World Scientific.
go back to reference Grosberg, A. Y., & Khokhlov, A. R. (1994). Statistical physics of macromolecules. New York: American Institute of Physics. Grosberg, A. Y., & Khokhlov, A. R. (1994). Statistical physics of macromolecules. New York: American Institute of Physics.
go back to reference Huenenberger, P. (2005). Thermostat algorithms for molecular dynamics simulations. Advances in Polymer Science, 173, 105–149.CrossRef Huenenberger, P. (2005). Thermostat algorithms for molecular dynamics simulations. Advances in Polymer Science, 173, 105–149.CrossRef
go back to reference Kleinert, H. (1990). Path integrals in quantum mechanics, satistics, and polymer physics. Singapore: World Scientific.CrossRef Kleinert, H. (1990). Path integrals in quantum mechanics, satistics, and polymer physics. Singapore: World Scientific.CrossRef
go back to reference Kumar, S. (2009). Can reentrance be observed in force induced transitions? Europhysics Letters, 85, 38003.CrossRef Kumar, S. (2009). Can reentrance be observed in force induced transitions? Europhysics Letters, 85, 38003.CrossRef
go back to reference Kumar, S., & Giri, D. (2005). Force-induced conformational transition in a system of interacting stiff polymers: Application to unfolding. Physical Review E, 72, 052901.CrossRef Kumar, S., & Giri, D. (2005). Force-induced conformational transition in a system of interacting stiff polymers: Application to unfolding. Physical Review E, 72, 052901.CrossRef
go back to reference Kumar, S., & Giri, D. (2007). Does changing the pulling direction give better insight into biomolecules? Physical Review Letters, 98, 048101.CrossRef Kumar, S., & Giri, D. (2007). Does changing the pulling direction give better insight into biomolecules? Physical Review Letters, 98, 048101.CrossRef
go back to reference Kumar, S., Giri, D., & Bhattacharjee, S. M. (2005). Force induced tripple point for interacting polymers. Physical Review E, 71, 051804.CrossRef Kumar, S., Giri, D., & Bhattacharjee, S. M. (2005). Force induced tripple point for interacting polymers. Physical Review E, 71, 051804.CrossRef
go back to reference Kumar, S., Jensen, I., Jaconsen, J. L., & Guttmann, A. J. (2007). Role of conformational entropy in force induced biopolymer unfolding. Physical Review Letters, 98, 128101–128104.CrossRef Kumar, S., Jensen, I., Jaconsen, J. L., & Guttmann, A. J. (2007). Role of conformational entropy in force induced biopolymer unfolding. Physical Review Letters, 98, 128101–128104.CrossRef
go back to reference Kumar, S., & Li, M. (2010). Biomolecules under mechanical force. Physics Reports, 486, 1–74.CrossRef Kumar, S., & Li, M. (2010). Biomolecules under mechanical force. Physics Reports, 486, 1–74.CrossRef
go back to reference Kumar, S., & Mishra, G. (2008). Force-induced stretched state: Effects of temperature. Physical Review E, 78, 011907.CrossRef Kumar, S., & Mishra, G. (2008). Force-induced stretched state: Effects of temperature. Physical Review E, 78, 011907.CrossRef
go back to reference Landau, D. P., & Binder, K. (2005). A guide to Monte Carlo simulations in statistical physics. New York: Cambridge University Press.CrossRef Landau, D. P., & Binder, K. (2005). A guide to Monte Carlo simulations in statistical physics. New York: Cambridge University Press.CrossRef
go back to reference Leckband, D., & Israelachvili, J. (2001). Intermolecular forces in biology. Quarterly Review of Biophysics, 34, 105–267.CrossRef Leckband, D., & Israelachvili, J. (2001). Intermolecular forces in biology. Quarterly Review of Biophysics, 34, 105–267.CrossRef
go back to reference Lubensky, D. K., & Nelson, D. R. (2000). Pulling pinned polymers and unzipping DNA. Physical Review Letters, 85, 1572–1575.CrossRef Lubensky, D. K., & Nelson, D. R. (2000). Pulling pinned polymers and unzipping DNA. Physical Review Letters, 85, 1572–1575.CrossRef
go back to reference Marenduzzo, D., Bhattacharjee, S. M., Maritan, A., Orlandini, E., & Seno, F. (2001 a). Dynamical scaling of the DNA unzipping transition. Physical Review Letters, 88, 028102. Marenduzzo, D., Bhattacharjee, S. M., Maritan, A., Orlandini, E., & Seno, F. (2001 a). Dynamical scaling of the DNA unzipping transition. Physical Review Letters, 88, 028102.
go back to reference Marenduzzo, D., Trovato, A., & Maritan, A. (2001 b). Phase diagram of force-induced DNA unzipping in exactly solvable models. Physical Review E, 64, 031901. Marenduzzo, D., Trovato, A., & Maritan, A. (2001 b). Phase diagram of force-induced DNA unzipping in exactly solvable models. Physical Review E, 64, 031901.
go back to reference Marko, J., & Siggia, E. (1995). Stretching DNA. Macromolecules, 28, 8759–8770.CrossRef Marko, J., & Siggia, E. (1995). Stretching DNA. Macromolecules, 28, 8759–8770.CrossRef
go back to reference Mishra, G., Giri, D., & Kumar, S. (2009). Stretching of a single stranded DNA: Evidence for structural transition. Physical Review E, 79, 031930.CrossRef Mishra, G., Giri, D., & Kumar, S. (2009). Stretching of a single stranded DNA: Evidence for structural transition. Physical Review E, 79, 031930.CrossRef
go back to reference Mishra, P. K., Kumar, S., & Singh, Y. (2003). A simple and exactly solvable model for a semi flexible polymer chain interacting with a surface. Physica A, 323, 453–465.CrossRef Mishra, P. K., Kumar, S., & Singh, Y. (2003). A simple and exactly solvable model for a semi flexible polymer chain interacting with a surface. Physica A, 323, 453–465.CrossRef
go back to reference Mishra, P. K., Kumar, S., & Singh, Y. (2005). Force-induced desorption of a linear polymer chain adsorbed on an attractive surface. Europhysics Letters, 69, 102–108.CrossRef Mishra, P. K., Kumar, S., & Singh, Y. (2005). Force-induced desorption of a linear polymer chain adsorbed on an attractive surface. Europhysics Letters, 69, 102–108.CrossRef
go back to reference Muller, M., Katsov, K., & Schick, M. (2006). Biological and synthetic membranes: What can be learned from a coarse-grained description? Physics Reports, 434, 113–176.CrossRef Muller, M., Katsov, K., & Schick, M. (2006). Biological and synthetic membranes: What can be learned from a coarse-grained description? Physics Reports, 434, 113–176.CrossRef
go back to reference Muller-Plathe, F. (1997). Coarse-graining in polymer simulation: From the atomistictothemesoscopicscaleandback.ChemPhysChem,3,754–769. Muller-Plathe, F. (1997). Coarse-graining in polymer simulation: From the atomistictothemesoscopicscaleandback.ChemPhysChem,3,754–769.
go back to reference Privman, V., & Svrakic, N. M. (1989). Directed models of polymers, interfaces, and clusters. Berlin: Springer. Privman, V., & Svrakic, N. M. (1989). Directed models of polymers, interfaces, and clusters. Berlin: Springer.
go back to reference Rief, M., Clausen-Schaumann, H., & Gaub, H. E. (1999). Sequence-dependent mechanics of single DNA molecules. Nature Structural Biology, 6, 346–349.CrossRef Rief, M., Clausen-Schaumann, H., & Gaub, H. E. (1999). Sequence-dependent mechanics of single DNA molecules. Nature Structural Biology, 6, 346–349.CrossRef
go back to reference Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J. M., & Gaub, H. E. (1997). Reversible unfolding of individual titin immunoglobulin domains by AFM. Science, 276, 1109–1112.CrossRef Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J. M., & Gaub, H. E. (1997). Reversible unfolding of individual titin immunoglobulin domains by AFM. Science, 276, 1109–1112.CrossRef
go back to reference Rosa, A., Hoang, T. X., Marenduzzo, D., & Maritan, A. (2003 a). Elasticity of semiflexible polymers with and without self-interactions. Macromolecules, 36, 10095–10102. Rosa, A., Hoang, T. X., Marenduzzo, D., & Maritan, A. (2003 a). Elasticity of semiflexible polymers with and without self-interactions. Macromolecules, 36, 10095–10102.
go back to reference Rosa, A., Marenduzzo, D., Maritan, A., & Seno, F. (2003 b). Mechanical unfolding of directed polymers in a poor solvent: Critical exponents. Physical Review E, 67, 041802. Rosa, A., Marenduzzo, D., Maritan, A., & Seno, F. (2003 b). Mechanical unfolding of directed polymers in a poor solvent: Critical exponents. Physical Review E, 67, 041802.
go back to reference Singh, A. R., Giri, D., & Kumar, S. (2009 a). Force induced unfolding of bio-polymers in a cellular environment: A model study. Journal of Chemical Physics, 131, 065103. Singh, A. R., Giri, D., & Kumar, S. (2009 a). Force induced unfolding of bio-polymers in a cellular environment: A model study. Journal of Chemical Physics, 131, 065103.
go back to reference Singh, A. R., Giri, D., & Kumar, S. (2009 b). Effects of molecular crowding on stretching of polymers in poor solvent. Physical Review E, 79, 051801. Singh, A. R., Giri, D., & Kumar, S. (2009 b). Effects of molecular crowding on stretching of polymers in poor solvent. Physical Review E, 79, 051801.
go back to reference Smith, S. B., Finzi, L., & Bustamante, C. (1992). Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science, 258, 1122–1126.CrossRef Smith, S. B., Finzi, L., & Bustamante, C. (1992). Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science, 258, 1122–1126.CrossRef
go back to reference Smith, S. B., Cui, Y., & Bustamante, C. (1996). Overstretching B-DNA: The elastic response of individual double-stranded and single-stranded DNA molecules. Science, 271, 795–799.CrossRef Smith, S. B., Cui, Y., & Bustamante, C. (1996). Overstretching B-DNA: The elastic response of individual double-stranded and single-stranded DNA molecules. Science, 271, 795–799.CrossRef
go back to reference Thijssen, J. M. (1999). Computational physics. Cambridge: Cambridge University. Thijssen, J. M. (1999). Computational physics. Cambridge: Cambridge University.
go back to reference Tskhovrebova, L., Trinick, K., Sleep, J. A., & Simons, R. M. (1997). Elasticity and unfolding of single molecules of the giant muscle protein titin. Nature, 387, 308–312.CrossRef Tskhovrebova, L., Trinick, K., Sleep, J. A., & Simons, R. M. (1997). Elasticity and unfolding of single molecules of the giant muscle protein titin. Nature, 387, 308–312.CrossRef
go back to reference Vanderzande, C. (1998). Lattice models of polymers. Cambridge: Cambridge University Press.CrossRef Vanderzande, C. (1998). Lattice models of polymers. Cambridge: Cambridge University Press.CrossRef
go back to reference Zhou, H. J., Zhou, J., Ou-Yang, Z. C., & Kumar, S. (2006). Collapse transition of two-dimensional flexible and semiflexible polymers. Physical Review Letters, 97, 158302.CrossRef Zhou, H. J., Zhou, J., Ou-Yang, Z. C., & Kumar, S. (2006). Collapse transition of two-dimensional flexible and semiflexible polymers. Physical Review Letters, 97, 158302.CrossRef
Metadata
Title
Statistical Mechanics of Force-Induced Transitions of Biopolymers
Author
Sanjay Kumar
Copyright Year
2012
Publisher
Springer Netherlands
DOI
https://doi.org/10.1007/978-94-007-0711-5_8

Premium Partner