Skip to main content
Top
Published in: Rare Metals 4/2013

01-08-2013

Monodisperse magnetic metallic nanoparticles: synthesis, performance enhancement, and advanced applications

Authors: Li-Ying Lu, Li-Na Yu, Xiao-Guang Xu, Yong Jiang

Published in: Rare Metals | Issue 4/2013

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Monodisperse Fe-based and Co-based nanoparticles exhibit unique magnetic properties. They play important roles in magnetic storage and biomedical application. Their chemical synthesis and performance enhancement draw a lot of study interest. Investigations of magnetic metallic nanoparticles are very active in many scientific fields. This paper reviews the present advances in chemical synthesis, performance enhancement, and potential applications of monodisperse Fe-based and Co-based nanoparticles.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
[1]
go back to reference Rao CNR, Thomas PJ, Kulkarni GU. Nanocrystal: Synthesis, Properties and Application. Berlin: Springer; 2007. 9. Rao CNR, Thomas PJ, Kulkarni GU. Nanocrystal: Synthesis, Properties and Application. Berlin: Springer; 2007. 9.
[2]
go back to reference Sun SH. Recent advances in chemical synthesis, self-assembly, and applications of FePt nanoparticles. Adv Mater. 2006;18(4):392.CrossRef Sun SH. Recent advances in chemical synthesis, self-assembly, and applications of FePt nanoparticles. Adv Mater. 2006;18(4):392.CrossRef
[3]
go back to reference Huang SH, Juang RS. Biochemical and biomedical applications of multifunctional magnetic nanoparticles: a review. J Nanopart Res. 2011;13(10):4411.CrossRef Huang SH, Juang RS. Biochemical and biomedical applications of multifunctional magnetic nanoparticles: a review. J Nanopart Res. 2011;13(10):4411.CrossRef
[4]
go back to reference Maenosono S, Suzukia T, Saita S. Superparamagnetic FePt nanoparticles as excellent MRI contrast agents. J Magn Magn Mater. 2008;320(9):L79.CrossRef Maenosono S, Suzukia T, Saita S. Superparamagnetic FePt nanoparticles as excellent MRI contrast agents. J Magn Magn Mater. 2008;320(9):L79.CrossRef
[5]
go back to reference Xu CJ, Xu KM, Gu HW, Zhong XF, Guo ZH, Zheng RK, Zhang XX, Xu B. Nitrilotriacetic acid-modified magnetic nanoparticles as a general agent to bind histidine-tagged proteins. J Am Chem Soc. 2004;126(11):3392.CrossRef Xu CJ, Xu KM, Gu HW, Zhong XF, Guo ZH, Zheng RK, Zhang XX, Xu B. Nitrilotriacetic acid-modified magnetic nanoparticles as a general agent to bind histidine-tagged proteins. J Am Chem Soc. 2004;126(11):3392.CrossRef
[6]
go back to reference Li YP, Srinivasan B, Jing Y, Yao XF, Hugger MA, Wang JP, Xing CG. Nanomagnetic competition assay for low-abundance protein biomarker quantification in unprocessed human sera. J Am Chem Soc. 2010;132(12):4388.CrossRef Li YP, Srinivasan B, Jing Y, Yao XF, Hugger MA, Wang JP, Xing CG. Nanomagnetic competition assay for low-abundance protein biomarker quantification in unprocessed human sera. J Am Chem Soc. 2010;132(12):4388.CrossRef
[7]
go back to reference Zhang W, Zong PS, Zheng XW, Wang LB. An enhanced sensing platform for ultrasensitive impedimetric detection of target genes based on ordered FePt nanoparticles decorated carbon nanotubes. Biosens Bioelectron. 2013;42:481.CrossRef Zhang W, Zong PS, Zheng XW, Wang LB. An enhanced sensing platform for ultrasensitive impedimetric detection of target genes based on ordered FePt nanoparticles decorated carbon nanotubes. Biosens Bioelectron. 2013;42:481.CrossRef
[8]
go back to reference Zhang J, Post M, Veres T, Jakubek ZJ, Guan JW. Laser-assisted synthesis of superparamagnetic Fe@Au core–shell nanoparticles. J Phys Chem B. 2006;110(14):7122.CrossRef Zhang J, Post M, Veres T, Jakubek ZJ, Guan JW. Laser-assisted synthesis of superparamagnetic Fe@Au core–shell nanoparticles. J Phys Chem B. 2006;110(14):7122.CrossRef
[9]
go back to reference Wang C, Peng S, Lacroix LM, Sun SH. Synthesis of high magnetic moment CoFe nanoparticles via interfacial diffusion in core/shell structured Co/Fe nanoparticles. Nano Res. 2009;2(5):380.CrossRef Wang C, Peng S, Lacroix LM, Sun SH. Synthesis of high magnetic moment CoFe nanoparticles via interfacial diffusion in core/shell structured Co/Fe nanoparticles. Nano Res. 2009;2(5):380.CrossRef
[10]
go back to reference Tanaka Y, Saita S, Maenosono S. Influence of surface ligands on saturation magnetization of FePt nanoparticles. Appl Phys Lett. 2008;92(9):093117.CrossRef Tanaka Y, Saita S, Maenosono S. Influence of surface ligands on saturation magnetization of FePt nanoparticles. Appl Phys Lett. 2008;92(9):093117.CrossRef
[11]
go back to reference Weller D, Moser A, Folks L, Best ME, Lee W, Toney MF, Schwickert M, Thiele J-U, Doerner MF. High K u materials approach to 100 Gbits/in2. IEEE Trans Magn. 2000;36(1):10. Weller D, Moser A, Folks L, Best ME, Lee W, Toney MF, Schwickert M, Thiele J-U, Doerner MF. High K u materials approach to 100 Gbits/in2. IEEE Trans Magn. 2000;36(1):10.
[12]
go back to reference Christodoulides JA, Zhang Y, Hadjipanayis GC, Fountzoulas C. CoPt and FePt nanoparticles for high density recording media. IEEE Trans Magn. 2000;36(5):2333.CrossRef Christodoulides JA, Zhang Y, Hadjipanayis GC, Fountzoulas C. CoPt and FePt nanoparticles for high density recording media. IEEE Trans Magn. 2000;36(5):2333.CrossRef
[13]
go back to reference Sun SH, Murray CB, Weller D, Folks L, Moser A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science. 2000;287(5460):1989.CrossRef Sun SH, Murray CB, Weller D, Folks L, Moser A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science. 2000;287(5460):1989.CrossRef
[14]
go back to reference Chou S-W, Zhu C-L, Neeleshwar S, Chen C-L, Chen Y-Y, Chen C-C. Controlled growth and magnetic property of FePt nanostructure: cuboctahedron, octapod, truncated cube, and cube. Chem Mater. 2009;21(20):49551.CrossRef Chou S-W, Zhu C-L, Neeleshwar S, Chen C-L, Chen Y-Y, Chen C-C. Controlled growth and magnetic property of FePt nanostructure: cuboctahedron, octapod, truncated cube, and cube. Chem Mater. 2009;21(20):49551.CrossRef
[15]
go back to reference Colak L, Hadjipanayis GC. Chemically synthesized FePt nanoparticles with controlled particle size, shape and composition. Nanotechnology. 2009;20(48):485602.CrossRef Colak L, Hadjipanayis GC. Chemically synthesized FePt nanoparticles with controlled particle size, shape and composition. Nanotechnology. 2009;20(48):485602.CrossRef
[16]
go back to reference Sun SH, Anders S, Thomson T, Baglin JEE, Toney MF. Controlled synthesis and assembly of FePt nanoparticles. J Phys Chem B. 2003;107(23):5419.CrossRef Sun SH, Anders S, Thomson T, Baglin JEE, Toney MF. Controlled synthesis and assembly of FePt nanoparticles. J Phys Chem B. 2003;107(23):5419.CrossRef
[17]
go back to reference Sun SH. Metal salt reduction to form alloy nanoparticles, US Patent 6254662, 2001. Sun SH. Metal salt reduction to form alloy nanoparticles, US Patent 6254662, 2001.
[18]
go back to reference Sun SH, Murray CB. Synthesis of monodisperse nanocrystals and their assembly in magnetic superlattice (invited). J Appl Phys. 1999;85(8):4325.CrossRef Sun SH, Murray CB. Synthesis of monodisperse nanocrystals and their assembly in magnetic superlattice (invited). J Appl Phys. 1999;85(8):4325.CrossRef
[19]
go back to reference Yang HT, Shen CM, Su YK, Yang TZ, Gao HJ. Self-assembly and magnetic properties of cobalt nanoparticles. Appl Phys Lett. 2003;82(26):4729.CrossRef Yang HT, Shen CM, Su YK, Yang TZ, Gao HJ. Self-assembly and magnetic properties of cobalt nanoparticles. Appl Phys Lett. 2003;82(26):4729.CrossRef
[20]
go back to reference Liu C, Wu XW, Klemmer T, Shukla N, Yang XM, Weller D, Roy AG, Tanase M, Laughlin D. Polyol process synthesis of monodispersed FePt nanoparticles. J Phys Chem B. 2004;108(2):6121.CrossRef Liu C, Wu XW, Klemmer T, Shukla N, Yang XM, Weller D, Roy AG, Tanase M, Laughlin D. Polyol process synthesis of monodispersed FePt nanoparticles. J Phys Chem B. 2004;108(2):6121.CrossRef
[21]
go back to reference Tzitzios V, Niarchos D, Gjoka M, Boukos N, Petridis D. Synthesis and characterization of 3D CoPt nanostructures. J Am Chem Soc. 2005;127(40):13756.CrossRef Tzitzios V, Niarchos D, Gjoka M, Boukos N, Petridis D. Synthesis and characterization of 3D CoPt nanostructures. J Am Chem Soc. 2005;127(40):13756.CrossRef
[22]
go back to reference Li Y, Zhang XL, Qiu R, Qiao R, Kang YS. Chemical synthesis and silica encapsulation of NiPt nanoparticles. J Phys Chem C. 2007;111(29):10747.CrossRef Li Y, Zhang XL, Qiu R, Qiao R, Kang YS. Chemical synthesis and silica encapsulation of NiPt nanoparticles. J Phys Chem C. 2007;111(29):10747.CrossRef
[23]
go back to reference Hou YL, Kondoh H, Kogure T, Ohta T. Preparation and characterization of monodisperse FePd nanoparticles. Chem Mater. 2004;16(24):5149.CrossRef Hou YL, Kondoh H, Kogure T, Ohta T. Preparation and characterization of monodisperse FePd nanoparticles. Chem Mater. 2004;16(24):5149.CrossRef
[24]
go back to reference Srivastava C, Balasubramanian J, Turner CH, Wiest JM, Bagaria HG, Thompson GB. Formation mechanism and composition distribution of FePt nanoparticles. J Appl Phys. 2007;102(10):104310.CrossRef Srivastava C, Balasubramanian J, Turner CH, Wiest JM, Bagaria HG, Thompson GB. Formation mechanism and composition distribution of FePt nanoparticles. J Appl Phys. 2007;102(10):104310.CrossRef
[25]
go back to reference Chen M, Pica T, Jiang YB, Li P, Yano K, Liu JP, Datye AK, Fan HY. Synthesis and self-assembly of fcc phase FePt nanorods. J Am Chem Soc. 2007;129(20):6348.CrossRef Chen M, Pica T, Jiang YB, Li P, Yano K, Liu JP, Datye AK, Fan HY. Synthesis and self-assembly of fcc phase FePt nanorods. J Am Chem Soc. 2007;129(20):6348.CrossRef
[26]
go back to reference Gao Y, Zhang XW, Yin ZG, Qu S, You JB, Chen NF. Magnetic properties of FePt nanoparticles prepared by a micellar method. Nanoscale Res Lett. 2010;5(1):1.CrossRef Gao Y, Zhang XW, Yin ZG, Qu S, You JB, Chen NF. Magnetic properties of FePt nanoparticles prepared by a micellar method. Nanoscale Res Lett. 2010;5(1):1.CrossRef
[27]
go back to reference Silva TLd, Varanda LC. Perpendicularly self-oriented and shape-controlled L10-FePt nanorods directly synthesized by a temperature-modulated process. Nano Res. 2011;4(7):666.CrossRef Silva TLd, Varanda LC. Perpendicularly self-oriented and shape-controlled L10-FePt nanorods directly synthesized by a temperature-modulated process. Nano Res. 2011;4(7):666.CrossRef
[28]
go back to reference Yan QY, Purkayastha A, Kim T, Kröger R, Bose A, Ramanath G. Synthesis and assembly of monodisperse high-coercivity silica-capped FePt nanomagnets of tunable size, composition, and thermal stability from microemulsions. Adv Mater. 2006;18(19):2569.CrossRef Yan QY, Purkayastha A, Kim T, Kröger R, Bose A, Ramanath G. Synthesis and assembly of monodisperse high-coercivity silica-capped FePt nanomagnets of tunable size, composition, and thermal stability from microemulsions. Adv Mater. 2006;18(19):2569.CrossRef
[29]
go back to reference Wang C, Hou YL, Kim J, Sun SH. A general strategy for synthesizing FePt nanowires and nanorods. Angew Chem Int Ed. 2007;46(33):6333.CrossRef Wang C, Hou YL, Kim J, Sun SH. A general strategy for synthesizing FePt nanowires and nanorods. Angew Chem Int Ed. 2007;46(33):6333.CrossRef
[30]
go back to reference Liu HR, Lu QF, Han XF, Liu XG, Xu BS, Jia HS. The fabrication of CoPt nanowire and nanotube arrays by alternating magnetic field during deposition. Appl Surf Sci. 2012;258(19):7401.CrossRef Liu HR, Lu QF, Han XF, Liu XG, Xu BS, Jia HS. The fabrication of CoPt nanowire and nanotube arrays by alternating magnetic field during deposition. Appl Surf Sci. 2012;258(19):7401.CrossRef
[31]
go back to reference Cagnon L, Dahmane Y, Voiron J, Pairis S, Bacia M, Ortega L, Benbrahim N, Kadri A. Electrodeposited CoPt and FePt alloys nanowires. J Magn Magn Mater. 2007;310(2):2428.CrossRef Cagnon L, Dahmane Y, Voiron J, Pairis S, Bacia M, Ortega L, Benbrahim N, Kadri A. Electrodeposited CoPt and FePt alloys nanowires. J Magn Magn Mater. 2007;310(2):2428.CrossRef
[32]
go back to reference Chu SZ, Inoue S, Wada K, Kurashima K. Fabrication and structural characteristics of nanocrystalline Fe–Pt thin films and Fe–Pt nanowire arrays embedded in alumina films on ITO/glass. J Phys Chem B. 2004;108(18):5582.CrossRef Chu SZ, Inoue S, Wada K, Kurashima K. Fabrication and structural characteristics of nanocrystalline Fe–Pt thin films and Fe–Pt nanowire arrays embedded in alumina films on ITO/glass. J Phys Chem B. 2004;108(18):5582.CrossRef
[33]
go back to reference Zeng H, Sun SH, Sandstrom RL, Murray CB. Chemical ordering of FePt nanoparticle self-assemblies by rapid thermal annealing. J Magn Magn Mater. 2003;266(1–2):227.CrossRef Zeng H, Sun SH, Sandstrom RL, Murray CB. Chemical ordering of FePt nanoparticle self-assemblies by rapid thermal annealing. J Magn Magn Mater. 2003;266(1–2):227.CrossRef
[34]
go back to reference Yano K, Nandwana V, Poudyal N, Rong CB, Liu JP. Rapid thermal annealing of FePt nanoparticles. J Appl Phys. 2008;104(1):013918.CrossRef Yano K, Nandwana V, Poudyal N, Rong CB, Liu JP. Rapid thermal annealing of FePt nanoparticles. J Appl Phys. 2008;104(1):013918.CrossRef
[35]
go back to reference Zeng H, Sun SH, Vedantam TS, Liu JP, Dai ZR, Wang ZL. Exchange-coupled FePt nanoparticle assembly. Appl Phys Lett. 2002;80(14):2583.CrossRef Zeng H, Sun SH, Vedantam TS, Liu JP, Dai ZR, Wang ZL. Exchange-coupled FePt nanoparticle assembly. Appl Phys Lett. 2002;80(14):2583.CrossRef
[36]
go back to reference Vedantam TS, Liu JP, Zeng H, Sun S. Thermal stability of self-assembled FePt nanoparticles. J Appl Phys. 2003;93(10):7184.CrossRef Vedantam TS, Liu JP, Zeng H, Sun S. Thermal stability of self-assembled FePt nanoparticles. J Appl Phys. 2003;93(10):7184.CrossRef
[37]
go back to reference Lu LY, Wang D, Xu XG, Zhan Q, Jiang Y. Enhancement of magnetic properties for FePt nanoparticles by rapid annealing in a vacuum. J Phys Chem C. 2009;113(46):19867.CrossRef Lu LY, Wang D, Xu XG, Zhan Q, Jiang Y. Enhancement of magnetic properties for FePt nanoparticles by rapid annealing in a vacuum. J Phys Chem C. 2009;113(46):19867.CrossRef
[38]
go back to reference Lu LY, Wang D, Xu XG, Wang HC, Miao J, Jiang Y. Low temperature magnetic hardening in self-assembled FePt/Ag core–shell nanoparticles. Mater Chem Phys. 2011;129(3):995.CrossRef Lu LY, Wang D, Xu XG, Wang HC, Miao J, Jiang Y. Low temperature magnetic hardening in self-assembled FePt/Ag core–shell nanoparticles. Mater Chem Phys. 2011;129(3):995.CrossRef
[39]
go back to reference Kang SS, Miao GX, Shi S, Jia Z, Nikles DE, Harrell JW. Enhanced magnetic properties of self-assembled FePt nanoparticles with MnO shell. J Am Chem Soc. 2006;128(4):1042.CrossRef Kang SS, Miao GX, Shi S, Jia Z, Nikles DE, Harrell JW. Enhanced magnetic properties of self-assembled FePt nanoparticles with MnO shell. J Am Chem Soc. 2006;128(4):1042.CrossRef
[40]
go back to reference Sung YM, Lee MK, Kim KE, Kim TG. The origin of enhanced L10 chemical ordering in Ag-doped FePt nanoparticles. Chem Phys Lett. 2007;443(4–6):319.CrossRef Sung YM, Lee MK, Kim KE, Kim TG. The origin of enhanced L10 chemical ordering in Ag-doped FePt nanoparticles. Chem Phys Lett. 2007;443(4–6):319.CrossRef
[41]
go back to reference Yu LN, Lu LY, Xu ZD, Xu XG, Miao J, Jiang Y. Enhanced L10 phase transitionin CoPt/Ag core/shell nanoparticles. Mater Lett. 2012;86:142.CrossRef Yu LN, Lu LY, Xu ZD, Xu XG, Miao J, Jiang Y. Enhanced L10 phase transitionin CoPt/Ag core/shell nanoparticles. Mater Lett. 2012;86:142.CrossRef
[42]
go back to reference Skumryev V, Stoyanov S, Zhang Y, Hadjipanayis G, Givord D, Nogués J. Beating the superparamagnetic limit with exchange bias. Nature. 2003;423(6942):850.CrossRef Skumryev V, Stoyanov S, Zhang Y, Hadjipanayis G, Givord D, Nogués J. Beating the superparamagnetic limit with exchange bias. Nature. 2003;423(6942):850.CrossRef
[43]
go back to reference Sort J, Nogue J, Surinach S. Coercivity and squareness enhancement in ball-milled hard magnetic–antiferromagnetic composites. Appl Phys Lett. 2001;79(8):1142.CrossRef Sort J, Nogue J, Surinach S. Coercivity and squareness enhancement in ball-milled hard magnetic–antiferromagnetic composites. Appl Phys Lett. 2001;79(8):1142.CrossRef
[44]
go back to reference Lu LY, Xu XG, Zhang WT, Miao J, Jiang Y. Enhanced magnetic properties of cobalt nanoparticles on FeMn films. Mater Lett. 2010;64(22):2424.CrossRef Lu LY, Xu XG, Zhang WT, Miao J, Jiang Y. Enhanced magnetic properties of cobalt nanoparticles on FeMn films. Mater Lett. 2010;64(22):2424.CrossRef
[45]
go back to reference He SL, Zhang HW, Delikanli S, Qin YL, Swihart MT, Zeng H. Bifunctional magneto-optical FePt–CdS hybrid nanoparticles. J Phys Chem C. 2009;113(1):87.CrossRef He SL, Zhang HW, Delikanli S, Qin YL, Swihart MT, Zeng H. Bifunctional magneto-optical FePt–CdS hybrid nanoparticles. J Phys Chem C. 2009;113(1):87.CrossRef
[46]
go back to reference Zhou TJ, Lu MH, Zhang ZH, Gong H, Chin WS, Liu B. Synthesis and characterization of multifunctional FePt/ZnO core/shell nanoparticles. Adv Mater. 2010;22(3):403.CrossRef Zhou TJ, Lu MH, Zhang ZH, Gong H, Chin WS, Liu B. Synthesis and characterization of multifunctional FePt/ZnO core/shell nanoparticles. Adv Mater. 2010;22(3):403.CrossRef
[47]
go back to reference Gu HW, Zheng RK, Zhang XX, Xu B. Facile one-pot synthesis of bifunctional heterodimers of nanoparticles: a conjugate of quantum dot and magnetic nanoparticles. J Am Chem Soc. 2004;126(18):5664.CrossRef Gu HW, Zheng RK, Zhang XX, Xu B. Facile one-pot synthesis of bifunctional heterodimers of nanoparticles: a conjugate of quantum dot and magnetic nanoparticles. J Am Chem Soc. 2004;126(18):5664.CrossRef
[48]
go back to reference Zeng H, Li J, Wang ZL, Liu JP, Sun SH. Bimagnetic core/shell FePt/Fe3O4 nanoparticles. Nano Lett. 2004;4(1):187.CrossRef Zeng H, Li J, Wang ZL, Liu JP, Sun SH. Bimagnetic core/shell FePt/Fe3O4 nanoparticles. Nano Lett. 2004;4(1):187.CrossRef
[49]
go back to reference Gao JH, Zhang B, Gao Y, Pan Y, Zhang XX, Xu B. Fluorescent magnetic nanocrystals by sequential addition of reagents in a one-pot reaction: a simple preparation for multifunctional nanostructures. J Am Chem Soc. 2007;129(39):11928.CrossRef Gao JH, Zhang B, Gao Y, Pan Y, Zhang XX, Xu B. Fluorescent magnetic nanocrystals by sequential addition of reagents in a one-pot reaction: a simple preparation for multifunctional nanostructures. J Am Chem Soc. 2007;129(39):11928.CrossRef
[50]
go back to reference Chiang IC, Chen DH. Synthesis of monodisperse FeAu nanoparticles with tunable magnetic and optical properties. Adv Funct Mater. 2007;17(8):1311.CrossRef Chiang IC, Chen DH. Synthesis of monodisperse FeAu nanoparticles with tunable magnetic and optical properties. Adv Funct Mater. 2007;17(8):1311.CrossRef
[51]
go back to reference Ciuculescu D, Amiens C, Respaud M, Falqui A, Lecante P, Benfield RE, Jiang L, Fauth K, Chaudret B. One-pot synthesis of core–shell FeRh nanoparticles. Chem Mater. 2007;19(19):4624.CrossRef Ciuculescu D, Amiens C, Respaud M, Falqui A, Lecante P, Benfield RE, Jiang L, Fauth K, Chaudret B. One-pot synthesis of core–shell FeRh nanoparticles. Chem Mater. 2007;19(19):4624.CrossRef
[52]
go back to reference Lu LY, Zhang WT, Wang D, Xu XG, Miao J, Jiang Y. Fe@Ag core–shell nanoparticles with both sensitive plasmonic properties and tunable magnetism. Mater Lett. 2010;64(15):1732.CrossRef Lu LY, Zhang WT, Wang D, Xu XG, Miao J, Jiang Y. Fe@Ag core–shell nanoparticles with both sensitive plasmonic properties and tunable magnetism. Mater Lett. 2010;64(15):1732.CrossRef
[53]
go back to reference Lee DC, Mikulec FV, Pelaez JM, Koo B, Korgel BA. Synthesis and magnetic properties of silica-coated FePt nanocrystals. J Phys Chem B. 2006;110(23):11160.CrossRef Lee DC, Mikulec FV, Pelaez JM, Koo B, Korgel BA. Synthesis and magnetic properties of silica-coated FePt nanocrystals. J Phys Chem B. 2006;110(23):11160.CrossRef
[54]
go back to reference Pellegrino T, Fiore A, Carlino E, Giannini C, Cozzoli PD, Ciccarella G, Respaud M, Palmirotta L, Cingolani R, Manna L. Heterodimers based on CoPt3–Au nanocrystals with tunable domain size. J Am Chem Soc. 2006;128(20):6690.CrossRef Pellegrino T, Fiore A, Carlino E, Giannini C, Cozzoli PD, Ciccarella G, Respaud M, Palmirotta L, Cingolani R, Manna L. Heterodimers based on CoPt3–Au nanocrystals with tunable domain size. J Am Chem Soc. 2006;128(20):6690.CrossRef
[55]
go back to reference Byrne FN, Monzon LMA, Stamenov P, Venkatesan M, Coey JMD. Influence of an Au capping layer on the magnetic properties of CoPt nanowires. Appl Phys Lett. 2011;98(25):252507.CrossRef Byrne FN, Monzon LMA, Stamenov P, Venkatesan M, Coey JMD. Influence of an Au capping layer on the magnetic properties of CoPt nanowires. Appl Phys Lett. 2011;98(25):252507.CrossRef
[56]
go back to reference Gu HW, Yang ZM, Gao JH, Chang CK, Xu B. Heterodimers of nanoparticles: formation at a liquid–liquid interface and particle-specific surface modification by functional molecules. J Am Chem Soc. 2005;127(1):34.CrossRef Gu HW, Yang ZM, Gao JH, Chang CK, Xu B. Heterodimers of nanoparticles: formation at a liquid–liquid interface and particle-specific surface modification by functional molecules. J Am Chem Soc. 2005;127(1):34.CrossRef
[57]
go back to reference Verdes C, Chantrell RW, Satoh A, Harrell JW, Nikles D. Self-organization, orientation and magnetic properties of FePt nanoparticles arrays. J Magn Magn Mater. 2006;304(1):27.CrossRef Verdes C, Chantrell RW, Satoh A, Harrell JW, Nikles D. Self-organization, orientation and magnetic properties of FePt nanoparticles arrays. J Magn Magn Mater. 2006;304(1):27.CrossRef
[58]
go back to reference Richter HJ, Dobin AY, heinonen O, Gao KZ, Van der Veerdonk RJM, Lynch RT, Xue J, Weller D, Asselin P, Erden MF, Brockie RM. Recording on bit-patterned media at densities of 1 Tb/in2 and beyond. IEEE Trans Magn. 2006;42(10):2255.CrossRef Richter HJ, Dobin AY, heinonen O, Gao KZ, Van der Veerdonk RJM, Lynch RT, Xue J, Weller D, Asselin P, Erden MF, Brockie RM. Recording on bit-patterned media at densities of 1 Tb/in2 and beyond. IEEE Trans Magn. 2006;42(10):2255.CrossRef
[59]
go back to reference Sun SH, Anders S, Hamann HF, Thiele JU, Baglin JEE, Thomson T, Fullerton EE, Murray CB, Terris BD. Polymer mediated self-assembly of magnetic nanoparticles. J Am Chem Soc. 2002;124(12):2884.CrossRef Sun SH, Anders S, Hamann HF, Thiele JU, Baglin JEE, Thomson T, Fullerton EE, Murray CB, Terris BD. Polymer mediated self-assembly of magnetic nanoparticles. J Am Chem Soc. 2002;124(12):2884.CrossRef
[60]
go back to reference Zafiropoulou I, Devlin E, Boukos N, Niarchos D, Petridis D, Tzitzios V. Direct chemical synthesis of L10 FePt nanostructures. Chem Mater. 2007;19(8):1898.CrossRef Zafiropoulou I, Devlin E, Boukos N, Niarchos D, Petridis D, Tzitzios V. Direct chemical synthesis of L10 FePt nanostructures. Chem Mater. 2007;19(8):1898.CrossRef
[61]
go back to reference Wellons MS, Morris WH, Gai Z, Shen J, Bentley J, Wittig JE, Lukehart CM. Direct synthesis and size selection of ferromagnetic FePt nanoparticles. Chem Mater. 2007;19(10):2483.CrossRef Wellons MS, Morris WH, Gai Z, Shen J, Bentley J, Wittig JE, Lukehart CM. Direct synthesis and size selection of ferromagnetic FePt nanoparticles. Chem Mater. 2007;19(10):2483.CrossRef
[62]
go back to reference Capobianchi A, Colapietro M, Fiorani D, Foglia S, Imperatori P, Laureti S, Palange E. General strategy for direct synthesis of L10 nanoparticle alloys from layered precursor: the case of FePt. Chem Mater. 2009;21(10):2007.CrossRef Capobianchi A, Colapietro M, Fiorani D, Foglia S, Imperatori P, Laureti S, Palange E. General strategy for direct synthesis of L10 nanoparticle alloys from layered precursor: the case of FePt. Chem Mater. 2009;21(10):2007.CrossRef
[63]
go back to reference Srinivasan B, Li YP, Jing Y, Xu YH, Yao XF, Xing CG, Wang JP. A detection system based on giant magnetoresistive sensors and high-moment magnetic nanoparticles demonstrates zeptomole sensitivity: potential for personalized medicine. Angew Chem Int Ed. 2009;48(15):2764.CrossRef Srinivasan B, Li YP, Jing Y, Xu YH, Yao XF, Xing CG, Wang JP. A detection system based on giant magnetoresistive sensors and high-moment magnetic nanoparticles demonstrates zeptomole sensitivity: potential for personalized medicine. Angew Chem Int Ed. 2009;48(15):2764.CrossRef
[64]
go back to reference Chou SW, Shau YH, Wu PC, Yang YS, Shieh DB, Chen CC. In vitro and in vivo studies of FePt nanoparticles for dual modal CT/MRI molecular imaging. J Am Chem Soc. 2010;132(38):13270.CrossRef Chou SW, Shau YH, Wu PC, Yang YS, Shieh DB, Chen CC. In vitro and in vivo studies of FePt nanoparticles for dual modal CT/MRI molecular imaging. J Am Chem Soc. 2010;132(38):13270.CrossRef
[65]
go back to reference Gao JH, Liang GL, Zhang B, Kuang Y, Zhang XX, Xu B. FePt@CoS2 yolk-shell nanocrystals as a potent agent to kill HeLa cells. J Am Chem Soc. 2007;129(5):1428.CrossRef Gao JH, Liang GL, Zhang B, Kuang Y, Zhang XX, Xu B. FePt@CoS2 yolk-shell nanocrystals as a potent agent to kill HeLa cells. J Am Chem Soc. 2007;129(5):1428.CrossRef
[66]
go back to reference Chen CL, Kuo LR, Lee SY, Hwu YK, Chou SW, Chen CC, Chang FH, Lin KH, Tsai DH, Chen YY. Photothermal cancer therapy via femtosecond-laser-excited FePt nanoparticles. Biomaterials. 2013;34(4):1128.CrossRef Chen CL, Kuo LR, Lee SY, Hwu YK, Chou SW, Chen CC, Chang FH, Lin KH, Tsai DH, Chen YY. Photothermal cancer therapy via femtosecond-laser-excited FePt nanoparticles. Biomaterials. 2013;34(4):1128.CrossRef
[67]
go back to reference Xu CJ, Yuan ZL, Kohler N, Kim J, Chung MA, Sun SH. FePt Nanoparticles as an Fe reservoir for controlled Fe release and tumor inhibition. J Am Chem Soc. 2009;131(42):15346.CrossRef Xu CJ, Yuan ZL, Kohler N, Kim J, Chung MA, Sun SH. FePt Nanoparticles as an Fe reservoir for controlled Fe release and tumor inhibition. J Am Chem Soc. 2009;131(42):15346.CrossRef
[68]
go back to reference Polshettiwar V, Luque R, Fihri A, Zhu H, Bouhrara M, Basset JM. Magnetically recoverable nanocatalysts. Chem Rev. 2011;111(5):3036.CrossRef Polshettiwar V, Luque R, Fihri A, Zhu H, Bouhrara M, Basset JM. Magnetically recoverable nanocatalysts. Chem Rev. 2011;111(5):3036.CrossRef
[69]
go back to reference Chen W, Kim J, Sun SH, Chen SW. Electrocatalytic reduction of oxygen by FePt alloy nanoparticles. J Phys Chem C. 2008;112(10):3891.CrossRef Chen W, Kim J, Sun SH, Chen SW. Electrocatalytic reduction of oxygen by FePt alloy nanoparticles. J Phys Chem C. 2008;112(10):3891.CrossRef
[70]
go back to reference Kim J, Lee YM, Sun SH. Structurally ordered FePt nanoparticles and their enhanced catalysis for oxygen reduction reaction. J Am Chem Soc. 2010;132(14):4996.CrossRef Kim J, Lee YM, Sun SH. Structurally ordered FePt nanoparticles and their enhanced catalysis for oxygen reduction reaction. J Am Chem Soc. 2010;132(14):4996.CrossRef
[71]
go back to reference Du JQ, Zhang Y, Tian T, Yan SC, Wang HT. Microwave irradiation assisted rapid synthesis of Fe–Ru bimetallic nanoparticles and their catalytic properties in water-gas shift reaction. Mater Res Bull. 2009;44(6):1347.CrossRef Du JQ, Zhang Y, Tian T, Yan SC, Wang HT. Microwave irradiation assisted rapid synthesis of Fe–Ru bimetallic nanoparticles and their catalytic properties in water-gas shift reaction. Mater Res Bull. 2009;44(6):1347.CrossRef
[72]
go back to reference Kockrick E, Schmidt F, Gedrich K, Rose M, George TA, Freudenberg T, Kraehnert R, Skomski R, Sellmyer DJ, Kaskel S. Mesoporous ferromagnetic MPt@silica/carbon (M = Fe, Co, Ni) composites as advanced bifunctional catalysts. Chem Mater. 2010;22(5):1624.CrossRef Kockrick E, Schmidt F, Gedrich K, Rose M, George TA, Freudenberg T, Kraehnert R, Skomski R, Sellmyer DJ, Kaskel S. Mesoporous ferromagnetic MPt@silica/carbon (M = Fe, Co, Ni) composites as advanced bifunctional catalysts. Chem Mater. 2010;22(5):1624.CrossRef
[73]
go back to reference Zhou QF, Lu LY, Yu LN, Xu XG, Jiang Y. Multifunctional Co–Mo films fabricated by electrochemical deposition. Electrochim Acta. 2013;106:258.CrossRef Zhou QF, Lu LY, Yu LN, Xu XG, Jiang Y. Multifunctional Co–Mo films fabricated by electrochemical deposition. Electrochim Acta. 2013;106:258.CrossRef
Metadata
Title
Monodisperse magnetic metallic nanoparticles: synthesis, performance enhancement, and advanced applications
Authors
Li-Ying Lu
Li-Na Yu
Xiao-Guang Xu
Yong Jiang
Publication date
01-08-2013
Publisher
Springer Berlin Heidelberg
Published in
Rare Metals / Issue 4/2013
Print ISSN: 1001-0521
Electronic ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-013-0117-y

Other articles of this Issue 4/2013

Rare Metals 4/2013 Go to the issue

Premium Partners