Skip to main content
Top

2017 | OriginalPaper | Chapter

18. Monolithic Ceramics for Aerospace Applications

Authors : N. Eswara Prasad, S. B. Bhaduri

Published in: Aerospace Materials and Material Technologies

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Following a brief introduction to monolithic structural ceramics and their mechanical properties and micromechanisms of toughening, the materials development and salient features of various high- and ultrahigh-temperature (UHT) ceramics are discussed. The discussion includes alumina, zirconia, silicon nitride, silicon carbide, molybdenum disilicide and carbon-based ceramics. Subsequently, emerging ceramics such as the titanium- and zirconium-boride ceramics are introduced and discussed. Finally, the Indian scenario on the development and production of these materials is described.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bengisu M (ed) (1963) Engineering ceramics. Springer, Berlin, Germany Bengisu M (ed) (1963) Engineering ceramics. Springer, Berlin, Germany
2.
go back to reference Bailey AE (2001) Electronic ceramics, handbook of ceramics, glasses and diamonds. Harper CA (ed) McGraw Hill, New York, USA, p 3.1 Bailey AE (2001) Electronic ceramics, handbook of ceramics, glasses and diamonds. Harper CA (ed) McGraw Hill, New York, USA, p 3.1
3.
go back to reference Jansen M (ed) (2003) High performance non-oxide ceramics. Springer-Verlag, Berlin, Germany Jansen M (ed) (2003) High performance non-oxide ceramics. Springer-Verlag, Berlin, Germany
4.
go back to reference Somiya S et.al. (2003) Handbook of advanced ceramics: processing and their applications. Elsevier, Waltham, MA, USA Somiya S et.al. (2003) Handbook of advanced ceramics: processing and their applications. Elsevier, Waltham, MA, USA
5.
go back to reference Handbook of advanced ceramics (2006). Somiya S, Aldinger F, Claussen N, Springs RM, Uchino K, Koumoto K Kaneno M (eds) Processing and applications, vol II. Elsevier India Pvt. Ltd., New Delhi, India, p 1 Handbook of advanced ceramics (2006). Somiya S, Aldinger F, Claussen N, Springs RM, Uchino K, Koumoto K Kaneno M (eds) Processing and applications, vol II. Elsevier India Pvt. Ltd., New Delhi, India, p 1
6.
go back to reference Balasubramanyam R (ed) (2007) Callister’s materials science and engineering, Wiley India Pvt. Ltd., New Delhi, India, p 18 Balasubramanyam R (ed) (2007) Callister’s materials science and engineering, Wiley India Pvt. Ltd., New Delhi, India, p 18
7.
go back to reference Riedel R, Chen I-W (ed) (2010) Ceramic Science and Technology, vols 1–3. Wiley-VCH, Verlag, Weinheim, Germany Riedel R, Chen I-W (ed) (2010) Ceramic Science and Technology, vols 1–3. Wiley-VCH, Verlag, Weinheim, Germany
8.
go back to reference Barry Carter C, Grante Norton M (2013) Ceramic materials: science and engineering. Springer, New York, USA Barry Carter C, Grante Norton M (2013) Ceramic materials: science and engineering. Springer, New York, USA
9.
go back to reference Muralt P (2008) Recent progress in materials issues for piezoelectric MEMS. J Am Ceram Soc 91:1385 Muralt P (2008) Recent progress in materials issues for piezoelectric MEMS. J Am Ceram Soc 91:1385
10.
go back to reference Haertling GH (1999) Ferroelectric ceramics: history and technology. J Am Ceram Soc 82:797 Haertling GH (1999) Ferroelectric ceramics: history and technology. J Am Ceram Soc 82:797
11.
go back to reference Damjanovic D (1998) Ferroelectric, dielectric and piezoelectric properties of ferroelastic thin films and ceramics. Prog Phys 61:1267 Damjanovic D (1998) Ferroelectric, dielectric and piezoelectric properties of ferroelastic thin films and ceramics. Prog Phys 61:1267
12.
go back to reference Schlom DG, Chen LQ, Pan X, Schmehl A, Zurbuchen MA (2008) A thin film approach to engineering functionality into oxides. J Am Ceram Soc 91:2429 Schlom DG, Chen LQ, Pan X, Schmehl A, Zurbuchen MA (2008) A thin film approach to engineering functionality into oxides. J Am Ceram Soc 91:2429
13.
go back to reference Lange FF (1989) Powder processing: science and technology for increased reliability. J Am Ceram Soc 71:3CrossRef Lange FF (1989) Powder processing: science and technology for increased reliability. J Am Ceram Soc 71:3CrossRef
14.
go back to reference Clegg WJ, Kendall K, Alford NM, Button TW, Birchall JD (1990) A simple way to make tough ceramics. Nature 347:455 Clegg WJ, Kendall K, Alford NM, Button TW, Birchall JD (1990) A simple way to make tough ceramics. Nature 347:455
15.
go back to reference Evans AG (1990) Perspective on the development of high toughness ceramics. J Am Ceram Soc 73:187CrossRef Evans AG (1990) Perspective on the development of high toughness ceramics. J Am Ceram Soc 73:187CrossRef
16.
go back to reference Campbell GH, Ruehle M, Dalgleish BJ, Evans AG (1990) Whisker toughening: a comparison between aluminium oxide and silicon nitride toughened with silicon carbide. J Am Ceram Soc 73:521CrossRef Campbell GH, Ruehle M, Dalgleish BJ, Evans AG (1990) Whisker toughening: a comparison between aluminium oxide and silicon nitride toughened with silicon carbide. J Am Ceram Soc 73:521CrossRef
17.
go back to reference Becher PF (1991) Microstructural design of toughened ceramics. J Am Ceram Soc 74:255CrossRef Becher PF (1991) Microstructural design of toughened ceramics. J Am Ceram Soc 74:255CrossRef
18.
go back to reference Munz D, Fett T (1999) Ceramics: mechanical properties, failure behaviour and materials selection. Springer, Berlin, GermanyCrossRef Munz D, Fett T (1999) Ceramics: mechanical properties, failure behaviour and materials selection. Springer, Berlin, GermanyCrossRef
19.
go back to reference Wang EZ, Shrive NG (1995) Brittle fracture in compression: mechanisms, models and criteria. Eng Fract Mech 52:1107CrossRef Wang EZ, Shrive NG (1995) Brittle fracture in compression: mechanisms, models and criteria. Eng Fract Mech 52:1107CrossRef
20.
go back to reference ASTM Standard C 1161-02 (2000) Standard test method for flexural strength of advanced ceramics at ambient temperature, vol 15.01, ASTM International, West Conshohocken, PA, USA, p 220 ASTM Standard C 1161-02 (2000) Standard test method for flexural strength of advanced ceramics at ambient temperature, vol 15.01, ASTM International, West Conshohocken, PA, USA, p 220
21.
go back to reference ASTM Standard C 1211-02 (2000) Standard Test Method for Flexural Strength of Advanced Ceramics at Elevated Temperatures, Vol. 15.01, ASTM International, West Conshohocken, PA, USA, p. 266 ASTM Standard C 1211-02 (2000) Standard Test Method for Flexural Strength of Advanced Ceramics at Elevated Temperatures, Vol. 15.01, ASTM International, West Conshohocken, PA, USA, p. 266
22.
go back to reference Quinn GD, Morrell R (1991) Design of data for engineering ceramics: a review of the flexure test. J Am Ceram Soc 74:2037CrossRef Quinn GD, Morrell R (1991) Design of data for engineering ceramics: a review of the flexure test. J Am Ceram Soc 74:2037CrossRef
23.
go back to reference Sakai M, Bradt RC (1993) Fracture toughness testing of brittle materials. Int Mater Rev 38:53CrossRef Sakai M, Bradt RC (1993) Fracture toughness testing of brittle materials. Int Mater Rev 38:53CrossRef
24.
go back to reference Fett T, Munz D, Thun G, Hahr HA (1995) Evaluation of bridging parameters in aluminas from R-curves by use of the fracture mechanical weight function. J Am Ceram Soc 78:949CrossRef Fett T, Munz D, Thun G, Hahr HA (1995) Evaluation of bridging parameters in aluminas from R-curves by use of the fracture mechanical weight function. J Am Ceram Soc 78:949CrossRef
25.
go back to reference Malakondaiah G, Saxena VK, Prasad NE (1996) Fracture toughness evaluation. Trans Indian Inst Met 49:697–723 Malakondaiah G, Saxena VK, Prasad NE (1996) Fracture toughness evaluation. Trans Indian Inst Met 49:697–723
26.
go back to reference Nishida T, Pezzotti G, Mangialardi T, Paolini AE (1996) Fracture mechanics evaluation of ceramics by stable crack propagation in bend bar specimens. Fract Mech Ceram 11:107 Nishida T, Pezzotti G, Mangialardi T, Paolini AE (1996) Fracture mechanics evaluation of ceramics by stable crack propagation in bend bar specimens. Fract Mech Ceram 11:107
27.
go back to reference Sakai M, Ishikawa H (1992) Work-of-fracture of brittle materials with microcracking and crack bridging. Int J Fract 55:65CrossRef Sakai M, Ishikawa H (1992) Work-of-fracture of brittle materials with microcracking and crack bridging. Int J Fract 55:65CrossRef
28.
go back to reference Nair SV, Wang YL (1998) Toughening behaviour of a two-dimensional SiC/SiC woven composite at ambient temperature: I. Damage initiation and R-curve behaviour; II. Stress—displacement relationship in the crack process zone. J Am Ceram Soc 81:1149–1157CrossRef Nair SV, Wang YL (1998) Toughening behaviour of a two-dimensional SiC/SiC woven composite at ambient temperature: I. Damage initiation and R-curve behaviour; II. Stress—displacement relationship in the crack process zone. J Am Ceram Soc 81:1149–1157CrossRef
29.
go back to reference Eswara Prasad N, Kumari Sweety, Kamat SV, Vijayakumar M, Malakondaiah G (2004) Fracture behaviour of 2d-weaved, silica–silica continuous fibre-reinforced, ceramic-matrix composites (CFCCs). Eng Fract Mech 71:2589CrossRef Eswara Prasad N, Kumari Sweety, Kamat SV, Vijayakumar M, Malakondaiah G (2004) Fracture behaviour of 2d-weaved, silica–silica continuous fibre-reinforced, ceramic-matrix composites (CFCCs). Eng Fract Mech 71:2589CrossRef
30.
go back to reference ASTM Standard C 1421 (2002), Standard test methods for determination of fracture toughness of advanced ceramics at ambient temperature, vol 14. ASTM International, West Conshohocken, PA, USA ASTM Standard C 1421 (2002), Standard test methods for determination of fracture toughness of advanced ceramics at ambient temperature, vol 14. ASTM International, West Conshohocken, PA, USA
31.
go back to reference Evans AG, Charles EA (1976) Fracture toughness determination by indentation. J Am Ceram Soc 59:371 Evans AG, Charles EA (1976) Fracture toughness determination by indentation. J Am Ceram Soc 59:371
32.
go back to reference Binner JGP, Stevens R (1984) The measurement of toughness by indentation. Br Ceram 83:168 Binner JGP, Stevens R (1984) The measurement of toughness by indentation. Br Ceram 83:168
33.
go back to reference Ponton CB, Rawlings RD (1989) Vickers indentation fracture toughness test—Part I: review of literature and formulation of standard indentation toughness equations. Mater Sci Technol 5:865–961CrossRef Ponton CB, Rawlings RD (1989) Vickers indentation fracture toughness test—Part I: review of literature and formulation of standard indentation toughness equations. Mater Sci Technol 5:865–961CrossRef
34.
go back to reference Antis GR, Chantikul P, Lawn BR, Marshall DB (1981) Elastic/plastic indentation damage in ceramics: the median/radial crack system. J Am Ceram Soc 64:533CrossRef Antis GR, Chantikul P, Lawn BR, Marshall DB (1981) Elastic/plastic indentation damage in ceramics: the median/radial crack system. J Am Ceram Soc 64:533CrossRef
35.
go back to reference Rice RW (1981) Mechanisms of toughening in ceramic matrix composites. Proc Ceram Eng Sci 2:661CrossRef Rice RW (1981) Mechanisms of toughening in ceramic matrix composites. Proc Ceram Eng Sci 2:661CrossRef
36.
37.
go back to reference Rice RW (1985) Ceramic matrix composite toughening mechanisms: an update, In: Proceedings of ceramic engineering science 6:589 Rice RW (1985) Ceramic matrix composite toughening mechanisms: an update, In: Proceedings of ceramic engineering science 6:589
38.
go back to reference Evans AG, Marshall DB (1989) The mechanical behaviour of ceramic matrix composites. Acta Metall 37:2567CrossRef Evans AG, Marshall DB (1989) The mechanical behaviour of ceramic matrix composites. Acta Metall 37:2567CrossRef
39.
go back to reference Kingery WD (1955) Factors affecting thermal shock resistance of ceramic materials. J Am Ceram Soc 38:3CrossRef Kingery WD (1955) Factors affecting thermal shock resistance of ceramic materials. J Am Ceram Soc 38:3CrossRef
40.
go back to reference Hasselman DPH (1969) Unified theory of thermal shock. J Am Ceram Soc 52:600CrossRef Hasselman DPH (1969) Unified theory of thermal shock. J Am Ceram Soc 52:600CrossRef
41.
go back to reference Evans AG, Charles EA (1977) Structural integrity in severe thermal environments. J Am Ceram Soc 60:22CrossRef Evans AG, Charles EA (1977) Structural integrity in severe thermal environments. J Am Ceram Soc 60:22CrossRef
42.
go back to reference Keller K, Munz D, Fett T (1989) Investigation of the thermal fatigue behaviour of HPSN, SiC and glass, in Euro ceramics. Terpstra RA, Metselaar R, (eds) vol. 3. Elsevier Applied Science, London, UK Keller K, Munz D, Fett T (1989) Investigation of the thermal fatigue behaviour of HPSN, SiC and glass, in Euro ceramics. Terpstra RA, Metselaar R, (eds) vol. 3. Elsevier Applied Science, London, UK
43.
go back to reference Davidge RW (1986) Perspectives of engineering ceramics in heat engines. In: Conference proceedings of high temperature alloys for gas turbines and other applications. Liege, Belgium Davidge RW (1986) Perspectives of engineering ceramics in heat engines. In: Conference proceedings of high temperature alloys for gas turbines and other applications. Liege, Belgium
44.
45.
46.
go back to reference Jelwan J, Zarrabi K, Karpour A, Pearce G (2011) High-temperature fracture mechanics: a comprehensive examination with a critical review. Composites: Mechanics, Computations, Applications 2:59–81 Jelwan J, Zarrabi K, Karpour A, Pearce G (2011) High-temperature fracture mechanics: a comprehensive examination with a critical review. Composites: Mechanics, Computations, Applications 2:59–81
47.
go back to reference Radovic M, Barsoum MW, El-Raghy T, Wiederhorn SM (2003) Tensile creep of coarse grained Ti3SiC2 in the 1000–1200 °C temperature range. J Alloys Compd 361:299CrossRef Radovic M, Barsoum MW, El-Raghy T, Wiederhorn SM (2003) Tensile creep of coarse grained Ti3SiC2 in the 1000–1200 °C temperature range. J Alloys Compd 361:299CrossRef
48.
go back to reference Yawari P, Langdon TG (1981) In: Surfaces and interfaces in ceramics and ceramic-metal systems. Pask JA and Evans AG (eds) Plenum Press, New York, USA p 295 Yawari P, Langdon TG (1981) In: Surfaces and interfaces in ceramics and ceramic-metal systems. Pask JA and Evans AG (eds) Plenum Press, New York, USA p 295
49.
go back to reference Langdon TG (1988) Creep of ceramics. J Mater Sci 23:1–20 Langdon TG (1988) Creep of ceramics. J Mater Sci 23:1–20
50.
go back to reference Saxena A (1998) Nonlinear fracture mechanics for engineers. CRC Press, Boca Raton, Florida, USAMATH Saxena A (1998) Nonlinear fracture mechanics for engineers. CRC Press, Boca Raton, Florida, USAMATH
51.
go back to reference Satyanarayana DVV, Omprakash CM, Sridhar T, Kumar V (2010) Effect of microstructure on creep crack growth behaviour in a near a titanium alloy IMI-834. Metall Mater Trans A Satyanarayana DVV, Omprakash CM, Sridhar T, Kumar V (2010) Effect of microstructure on creep crack growth behaviour in a near a titanium alloy IMI-834. Metall Mater Trans A
52.
go back to reference Kumari S, Eswara Prasad N, Vijayakumar M, Subrahmanyam J (In Preparation) Evaluation of mechanical properties of ceramics and CMCs. DMRL Technical Report, DMRL, Hyderabad, India Kumari S, Eswara Prasad N, Vijayakumar M, Subrahmanyam J (In Preparation) Evaluation of mechanical properties of ceramics and CMCs. DMRL Technical Report, DMRL, Hyderabad, India
53.
go back to reference Faber KT, Evans AG (1983) Crack deflection processes: I theory. Acta Metall 31:565CrossRef Faber KT, Evans AG (1983) Crack deflection processes: I theory. Acta Metall 31:565CrossRef
54.
go back to reference Faber KT, Evans AG (1983) Crack deflection processes: II. experiment. Acta Metall 31:577CrossRef Faber KT, Evans AG (1983) Crack deflection processes: II. experiment. Acta Metall 31:577CrossRef
55.
go back to reference Wiederhorn SM (1984) Brittle fracture and toughening mechanisms in ceramics. Ann Rev Mater Sci 14:374CrossRef Wiederhorn SM (1984) Brittle fracture and toughening mechanisms in ceramics. Ann Rev Mater Sci 14:374CrossRef
56.
go back to reference Eswara Prasad N, Bhaduri SB (1988) Subcritical growth of long cracks in heterogeneous ceramics. J Mater Sci 23:3106–3112 Eswara Prasad N, Bhaduri SB (1988) Subcritical growth of long cracks in heterogeneous ceramics. J Mater Sci 23:3106–3112
57.
go back to reference Lange FF (1970) The interaction of a crack front with a second—phase dispersion. Phil Mag 22:983 Lange FF (1970) The interaction of a crack front with a second—phase dispersion. Phil Mag 22:983
58.
go back to reference Green DJ, Nicholson PS, Embury GH (1979) Fracture of a brittle particulate composite—part 2: Theoretical aspects. J Mater Sci 14:1657CrossRef Green DJ, Nicholson PS, Embury GH (1979) Fracture of a brittle particulate composite—part 2: Theoretical aspects. J Mater Sci 14:1657CrossRef
59.
go back to reference Evans AG, Faber KT (1981) Toughening of ceramics by circumferential microcracking. J Am Ceram Soc 64:394CrossRef Evans AG, Faber KT (1981) Toughening of ceramics by circumferential microcracking. J Am Ceram Soc 64:394CrossRef
60.
go back to reference Huebner H, Jilek W (1977) Sub-critical crack extension and crack resistance in polycrystalline alumina. J Mater Sci 12:117CrossRef Huebner H, Jilek W (1977) Sub-critical crack extension and crack resistance in polycrystalline alumina. J Mater Sci 12:117CrossRef
61.
go back to reference Evans AG, Faber KT (1984) Crack growth resistance of microcracking brittle materials. J Am Ceram Soc 67:255CrossRef Evans AG, Faber KT (1984) Crack growth resistance of microcracking brittle materials. J Am Ceram Soc 67:255CrossRef
62.
go back to reference Rice RW, Freiman SW, Becher PF (1981) Grain-size dependence of fracture energy in ceramics: I. Experiment. J Am Ceram Soc 64:345CrossRef Rice RW, Freiman SW, Becher PF (1981) Grain-size dependence of fracture energy in ceramics: I. Experiment. J Am Ceram Soc 64:345CrossRef
64.
go back to reference Evans AG (1984) Toughening mechanisms in zirconia alloys. Adv Ceram 12:193 Evans AG (1984) Toughening mechanisms in zirconia alloys. Adv Ceram 12:193
65.
go back to reference Claussen N (1984) Microstructural design of zirconia-Toughened Ceramics (ZTC). Adv Ceram 12:325 Claussen N (1984) Microstructural design of zirconia-Toughened Ceramics (ZTC). Adv Ceram 12:325
66.
go back to reference Watchman JB (1996) Mechanical properties of ceramics. Wiley, New York, USA Watchman JB (1996) Mechanical properties of ceramics. Wiley, New York, USA
67.
go back to reference Lutz EH, Claussen N, Swain MV (1991) KR-curve behaviour of duplex ceramics. J Am Ceram Soc 74:11CrossRef Lutz EH, Claussen N, Swain MV (1991) KR-curve behaviour of duplex ceramics. J Am Ceram Soc 74:11CrossRef
68.
go back to reference Steinbrech RW (1992) Toughening mechanisms for ceramic materials. J Eur Ceram Soc 10:131CrossRef Steinbrech RW (1992) Toughening mechanisms for ceramic materials. J Eur Ceram Soc 10:131CrossRef
69.
go back to reference Danial IM, Ishai O (1994) Engineering mechanics of composite materials. Oxford University Press, London, UK Danial IM, Ishai O (1994) Engineering mechanics of composite materials. Oxford University Press, London, UK
70.
go back to reference Faber KT (1997) Ceramic composite interfaces: Properties and design. Ann Rev Mater Sci 27:499CrossRef Faber KT (1997) Ceramic composite interfaces: Properties and design. Ann Rev Mater Sci 27:499CrossRef
71.
go back to reference Zok F, Sbaizero O, Hom CL, Evans AG (1991) Mode—I fracture resistance of a laminated fiber-reinforced ceramic. J Am Ceram Soc 74:187CrossRef Zok F, Sbaizero O, Hom CL, Evans AG (1991) Mode—I fracture resistance of a laminated fiber-reinforced ceramic. J Am Ceram Soc 74:187CrossRef
72.
go back to reference Clegg WJ (1992) The fabrication and failure of laminar ceramic composites. Acta Metall Mater 40:3085CrossRef Clegg WJ (1992) The fabrication and failure of laminar ceramic composites. Acta Metall Mater 40:3085CrossRef
73.
go back to reference Jessen JL, Bender BA, Lewis D (1993) Mechanical properties of layered and laminated ceramic matrix composite systems. Proc Ceram Eng Sci 13:796CrossRef Jessen JL, Bender BA, Lewis D (1993) Mechanical properties of layered and laminated ceramic matrix composite systems. Proc Ceram Eng Sci 13:796CrossRef
74.
go back to reference Droillard C, Lamon J (1996) Fracture toughness of 2-D woven SiC/SiC CVI composites with multilayered interfaces. J Am Ceram Soc 79:849CrossRef Droillard C, Lamon J (1996) Fracture toughness of 2-D woven SiC/SiC CVI composites with multilayered interfaces. J Am Ceram Soc 79:849CrossRef
75.
go back to reference Jessen TL, Greenhut VA, lewis D, Friel JJ (1999) Effect of microstructure on the mechanical behaviour of continuous-fiber-reinforced ceramic-matrix composites. J Am Ceram Soc 82:2753CrossRef Jessen TL, Greenhut VA, lewis D, Friel JJ (1999) Effect of microstructure on the mechanical behaviour of continuous-fiber-reinforced ceramic-matrix composites. J Am Ceram Soc 82:2753CrossRef
76.
go back to reference Leatherman GL, Katz RN (1989) Structural ceramics: processing and properties. In: Superalloys, supercomposites and superceramics, Ti4n JK, Caufield T (eds). Academic Press, London, UK, p 671 Leatherman GL, Katz RN (1989) Structural ceramics: processing and properties. In: Superalloys, supercomposites and superceramics, Ti4n JK, Caufield T (eds). Academic Press, London, UK, p 671
77.
go back to reference Evans AG, Dalgleish BJ (2008) Some aspects of high temperature performance of ceramics and ceramic composites, p 697 Evans AG, Dalgleish BJ (2008) Some aspects of high temperature performance of ceramics and ceramic composites, p 697
78.
go back to reference Prochazka S (1974) Sintering of SiC. In: Ceramics for high performance applications, Burke JJ, Lenoe EN, Katz RN, Brook Hill Publishing Company, Chestnut Hill, MA, USA, p 239 Prochazka S (1974) Sintering of SiC. In: Ceramics for high performance applications, Burke JJ, Lenoe EN, Katz RN, Brook Hill Publishing Company, Chestnut Hill, MA, USA, p 239
79.
go back to reference Choksi A, Porter JR (1985) Creep deformation of an alumina matrix composite reinforced with silicon carbide whiskers. J Am Ceram Soc 68:144 Choksi A, Porter JR (1985) Creep deformation of an alumina matrix composite reinforced with silicon carbide whiskers. J Am Ceram Soc 68:144
80.
go back to reference Claussen N, Weisskopf KL, Ruhle M (1986) Tetragonal zirconia polycrystals reinforced with SiC whiskers. J Am Ceram Soc 69:288CrossRef Claussen N, Weisskopf KL, Ruhle M (1986) Tetragonal zirconia polycrystals reinforced with SiC whiskers. J Am Ceram Soc 69:288CrossRef
81.
go back to reference Chawla KK (1987) Composite materials: science and engineering, Materials research and engineering (MSE) series. Ilschner B, Grant NJ (eds). Springer, New York, USA Chawla KK (1987) Composite materials: science and engineering, Materials research and engineering (MSE) series. Ilschner B, Grant NJ (eds). Springer, New York, USA
82.
go back to reference Mahajan YR, Kuruvilla AK, Bhanu Prasad VV, Chakraborty A (1990) Polymer, metal and ceramic composites (PMC/MMC/CMC): a review. Indian J Technol 28:354 Mahajan YR, Kuruvilla AK, Bhanu Prasad VV, Chakraborty A (1990) Polymer, metal and ceramic composites (PMC/MMC/CMC): a review. Indian J Technol 28:354
83.
go back to reference Warren R (ed) (1992) Ceramic matrix composites. Chapman and Hall, New York, USA Warren R (ed) (1992) Ceramic matrix composites. Chapman and Hall, New York, USA
84.
go back to reference Fahrenholtz WG, Hilmas IG, Talmy, Zyakoski JA (2007) Refractory diborides of zirconium and hafnium. J Am Ceram Soc 90:1347CrossRef Fahrenholtz WG, Hilmas IG, Talmy, Zyakoski JA (2007) Refractory diborides of zirconium and hafnium. J Am Ceram Soc 90:1347CrossRef
85.
go back to reference Ruhle M, Calussen N, Heuer AH (1986) Transformation and microcrack toughening as complementary process in ZrO2—toughened Al2O3. J Am Ceram Soc 69:195 Ruhle M, Calussen N, Heuer AH (1986) Transformation and microcrack toughening as complementary process in ZrO2—toughened Al2O3. J Am Ceram Soc 69:195
86.
go back to reference Becher PF, Wei GC (1984) Toughening behavior in SiC-whisker reinforced alumina. J Am Ceram Soc 67:C267 Becher PF, Wei GC (1984) Toughening behavior in SiC-whisker reinforced alumina. J Am Ceram Soc 67:C267
87.
go back to reference Wei GC, Becher PF (1985) Development of SiC-whisker reinforced ceramics. Am Ceram Soc Bullet 64:298 Wei GC, Becher PF (1985) Development of SiC-whisker reinforced ceramics. Am Ceram Soc Bullet 64:298
88.
89.
go back to reference Heuer AG, Claussen N, Kriven WM, Ruehle M (1982) Stability of tetragonal zirconia particles in ceramic matrices. J Am Ceram Soc 65:60CrossRef Heuer AG, Claussen N, Kriven WM, Ruehle M (1982) Stability of tetragonal zirconia particles in ceramic matrices. J Am Ceram Soc 65:60CrossRef
90.
go back to reference McMeeking R, Evans AG (1982) Mechanics of transformation toughening in brittle materials. J Am Ceram Soc 65:242CrossRef McMeeking R, Evans AG (1982) Mechanics of transformation toughening in brittle materials. J Am Ceram Soc 65:242CrossRef
91.
go back to reference Bhaduri SB, Chakraborty A, Rao RM (1988) Method of fabricating ceria-stabilized tetragonal zirconia polycrystal. J Am Ceram Soc 71:C410CrossRef Bhaduri SB, Chakraborty A, Rao RM (1988) Method of fabricating ceria-stabilized tetragonal zirconia polycrystal. J Am Ceram Soc 71:C410CrossRef
92.
go back to reference Yoshimura M, Noma T, Kawabata T (1987) Role of H2O on the degradation of Y-TZP. J Mater Sci Lett 6:465 Yoshimura M, Noma T, Kawabata T (1987) Role of H2O on the degradation of Y-TZP. J Mater Sci Lett 6:465
93.
go back to reference Tsuge A, Nishida K, Komatsu M (1975) Effect of crystallising the grain boundary glassy phase on the high temperature strength of hot pressed Si3N4 containing Y2O3. J Am Ceram Soc 58:323 Tsuge A, Nishida K, Komatsu M (1975) Effect of crystallising the grain boundary glassy phase on the high temperature strength of hot pressed Si3N4 containing Y2O3. J Am Ceram Soc 58:323
94.
go back to reference Jakh KH (1977) In: Riley F, Noordhoff L, Katz RN, Gazza GE (eds) Progress in nitrogen ceramics, p 417 Jakh KH (1977) In: Riley F, Noordhoff L, Katz RN, Gazza GE (eds) Progress in nitrogen ceramics, p 417
95.
go back to reference Terwiliger GR, Lange FF (1975) Pressureless sintering of Si3N4. J Mater Sci 10:1169CrossRef Terwiliger GR, Lange FF (1975) Pressureless sintering of Si3N4. J Mater Sci 10:1169CrossRef
96.
go back to reference Weaver GQ, Olsen BA (1974) Silicon carbide—1973. In: Marshall RC, Faust JW, Ryan CE (eds) University of South Carolina Press, Columbia, USA, pp 367–391 Weaver GQ, Olsen BA (1974) Silicon carbide—1973. In: Marshall RC, Faust JW, Ryan CE (eds) University of South Carolina Press, Columbia, USA, pp 367–391
97.
go back to reference Bhanu Prasad VV, Kumari S, Eswara Prasad N, Subrahmanayam J (in preparation) Development of C–C–SiC composites for defence applications: part—I: processing and part—II: characterisation. DMRL technical report, DMRL, Hyderabad, India Bhanu Prasad VV, Kumari S, Eswara Prasad N, Subrahmanayam J (in preparation) Development of C–C–SiC composites for defence applications: part—I: processing and part—II: characterisation. DMRL technical report, DMRL, Hyderabad, India
98.
go back to reference Petrovic JJ (1993) MoSi2—based high temperature structural silicides. MRS Bullet 18:35CrossRef Petrovic JJ (1993) MoSi2—based high temperature structural silicides. MRS Bullet 18:35CrossRef
99.
go back to reference Petrovic JJ, Vasudevan AK (1994) Overview of high temperature structural silicides. In: Mater Res Soc Symo 322:p 3 Petrovic JJ, Vasudevan AK (1994) Overview of high temperature structural silicides. In: Mater Res Soc Symo 322:p 3
100.
go back to reference Mitra R, Mahajan YR, Eswara Prasad N, Chiou WA, Ganguly C (1995) Reaction hot pressing and characterisation of MoSi2/SiCP composites. Key Eng Mater 108–110:p 11 Mitra R, Mahajan YR, Eswara Prasad N, Chiou WA, Ganguly C (1995) Reaction hot pressing and characterisation of MoSi2/SiCP composites. Key Eng Mater 108–110:p 11
101.
go back to reference Mitra R, Mahajan YR, Eswara Prasad N, Chiou WA (1997) Processing—microstructure—property relationships in reaction hot pressed MoSi2 and MoSi2/SiCP composites. Mater Sci Eng A225:105 Mitra R, Mahajan YR, Eswara Prasad N, Chiou WA (1997) Processing—microstructure—property relationships in reaction hot pressed MoSi2 and MoSi2/SiCP composites. Mater Sci Eng A225:105
102.
go back to reference Mitra R, Eswara Prasad N, Kumari S, Venugopal Rao A (2003) High temperature deformation behaviour of coarse and fine grained MoSi2 with different silica contents. Metall Mater Trans A 34A:1069CrossRef Mitra R, Eswara Prasad N, Kumari S, Venugopal Rao A (2003) High temperature deformation behaviour of coarse and fine grained MoSi2 with different silica contents. Metall Mater Trans A 34A:1069CrossRef
103.
go back to reference Srivastava AK, Eswara Prasad N, Kumari Sweety, Mitra R (2006) Microstructure and mechanical behaviour of reaction hot pressed multiphase Mo–Si–B and Mo–Si–B–Al intermetallic alloys. Intermetallics 14:1461CrossRef Srivastava AK, Eswara Prasad N, Kumari Sweety, Mitra R (2006) Microstructure and mechanical behaviour of reaction hot pressed multiphase Mo–Si–B and Mo–Si–B–Al intermetallic alloys. Intermetallics 14:1461CrossRef
104.
go back to reference Basu B, Raju GB, Suri AK (2006) Processing and properties of monolithic TiB2 based materials. Int Mater Rev 51:351 Basu B, Raju GB, Suri AK (2006) Processing and properties of monolithic TiB2 based materials. Int Mater Rev 51:351
105.
go back to reference Baker H (1992) Binary alloy phase diagrams. In: ASM Handbook, vol 3. ASM International, Metals Park, OH, USA, p 285 Baker H (1992) Binary alloy phase diagrams. In: ASM Handbook, vol 3. ASM International, Metals Park, OH, USA, p 285
106.
go back to reference Rao L, Gillan EG, Kaner RB (1995) Rapid synthesis of transition metal borides by solid state methathesis. J Mater Res 10:33 Rao L, Gillan EG, Kaner RB (1995) Rapid synthesis of transition metal borides by solid state methathesis. J Mater Res 10:33
107.
go back to reference Bates SE, Buhro WE, Frey CA, Sashtry SML, Kelton KF (1995) Synthesis of titanium boride (TiB2) nano crystallites by solution phase processing. J Mater Res 10:333 Bates SE, Buhro WE, Frey CA, Sashtry SML, Kelton KF (1995) Synthesis of titanium boride (TiB2) nano crystallites by solution phase processing. J Mater Res 10:333
108.
go back to reference Axelbaum RL, DuFaux DP, Frey CA, Kelton KF (1996) Gas-phase combustion synthesis of titanium boride (TiB) nanocrystallites. J Mater Res 11:948CrossRef Axelbaum RL, DuFaux DP, Frey CA, Kelton KF (1996) Gas-phase combustion synthesis of titanium boride (TiB) nanocrystallites. J Mater Res 11:948CrossRef
109.
go back to reference Hwang AY, Lee JK (2002) Preparation of TiB2 powders by mechanical alloying. Mater Lett 54:1 Hwang AY, Lee JK (2002) Preparation of TiB2 powders by mechanical alloying. Mater Lett 54:1
110.
go back to reference Holt JB, Kingsman DD, Bianchini GM (1985) Kinetics of combustion synthesis of TiB2. Mater Sci Eng 71:321 Holt JB, Kingsman DD, Bianchini GM (1985) Kinetics of combustion synthesis of TiB2. Mater Sci Eng 71:321
111.
go back to reference Cirakoglu M, Bhaduri S, Bhaduri SB (2000) Controlled combustion synthesis in the Ti–B system with ZrO2 addition. Mater Sci Eng 282:223 Cirakoglu M, Bhaduri S, Bhaduri SB (2000) Controlled combustion synthesis in the Ti–B system with ZrO2 addition. Mater Sci Eng 282:223
112.
go back to reference Baik S, Becher PF (1987) Effect of oxygen contamination on densification of TiB2. J Am Ceram Soc 70:527–530 Baik S, Becher PF (1987) Effect of oxygen contamination on densification of TiB2. J Am Ceram Soc 70:527–530
113.
go back to reference Ferber MK, Becher PF, Finch CB (1983) Effect of microstructures on the properties of TiB2 ceramics. Commun Am Soc, 64(1):2–4 Ferber MK, Becher PF, Finch CB (1983) Effect of microstructures on the properties of TiB2 ceramics. Commun Am Soc, 64(1):2–4
114.
go back to reference Li LH, Kim HE, Kang ES (2002) Sintering and mechanical properties of titanium diboride with aluminum nitride as a sintering Aid. J Eur Ceram Soc 22:973 Li LH, Kim HE, Kang ES (2002) Sintering and mechanical properties of titanium diboride with aluminum nitride as a sintering Aid. J Eur Ceram Soc 22:973
115.
go back to reference Atri R, Ravi Chandran KS, Jha SK (1999) Elastic Properties of in-situ processed Ti–TiB composites measured by impulse excitation of vibration. Mater Sci Eng A 271:150CrossRef Atri R, Ravi Chandran KS, Jha SK (1999) Elastic Properties of in-situ processed Ti–TiB composites measured by impulse excitation of vibration. Mater Sci Eng A 271:150CrossRef
116.
go back to reference Sahay SS, Ravi Chandran KS, Atri R, Hen RB, Rubin J (1999) Evolution of microstructure and phases, in situ processed Ti–TiB composites contacting high volume fractions of TiB whiskers. J Mater 14:4214 Sahay SS, Ravi Chandran KS, Atri R, Hen RB, Rubin J (1999) Evolution of microstructure and phases, in situ processed Ti–TiB composites contacting high volume fractions of TiB whiskers. J Mater 14:4214
117.
go back to reference Panda KB, Ravi Chandran KS (2003) Ti–TiB functionally graded materials through reaction sintering: synthesis, microstructure and properties. Metall Mater Trans, vol 34A Panda KB, Ravi Chandran KS (2003) Ti–TiB functionally graded materials through reaction sintering: synthesis, microstructure and properties. Metall Mater Trans, vol 34A
118.
go back to reference Ravi Chandran KS, Panda KB, Sahay SS (2004) TiBw-reinforced Ti composites: processing, properties, application prospects and research needs, an overview: Ti–B alloys and composites. J Met 56:42 Ravi Chandran KS, Panda KB, Sahay SS (2004) TiBw-reinforced Ti composites: processing, properties, application prospects and research needs, an overview: Ti–B alloys and composites. J Met 56:42
119.
go back to reference Kumari S, Eswara Prasad N, Ravi Chandran KS, Malakondaiah G (2004) High temperature deformation behaviour of Ti–TiBw in-situ metal matrix composites, Ti–B alloys and composite. J Met 56:51 Kumari S, Eswara Prasad N, Ravi Chandran KS, Malakondaiah G (2004) High temperature deformation behaviour of Ti–TiBw in-situ metal matrix composites, Ti–B alloys and composite. J Met 56:51
120.
go back to reference DeGraef M, Lofvander JPA, Levi CG (1991) The structure of complex monoborides in γ-TiAl alloys with Ta and B additions. Acta Metall Mater 39:2381–2391CrossRef DeGraef M, Lofvander JPA, Levi CG (1991) The structure of complex monoborides in γ-TiAl alloys with Ta and B additions. Acta Metall Mater 39:2381–2391CrossRef
121.
go back to reference Cao G, Geng L, Naka M (2006) Elastic properties of titanium monoboride measured by nano indentation. Am Ceram Soc, vol 89 Cao G, Geng L, Naka M (2006) Elastic properties of titanium monoboride measured by nano indentation. Am Ceram Soc, vol 89
122.
go back to reference Madtha S, Lee C, Ravi Chandran KS (2008) Physical and Mechanical properties of nano structural titanium boride (TiB) ceramic. J Am Ceram Soc 91:1319CrossRef Madtha S, Lee C, Ravi Chandran KS (2008) Physical and Mechanical properties of nano structural titanium boride (TiB) ceramic. J Am Ceram Soc 91:1319CrossRef
123.
go back to reference Zhang ZH, Shen XB, Wang FC, Lee SK (2011) A new rapid route for in situ synthesizing monolithic TiB ceramic. J Am Ceram Soc 94:2754CrossRef Zhang ZH, Shen XB, Wang FC, Lee SK (2011) A new rapid route for in situ synthesizing monolithic TiB ceramic. J Am Ceram Soc 94:2754CrossRef
125.
go back to reference Chen HM, Zheng F, Liu HS et al (2009) Thermodynamic assessment of B–Zr and Si–Zr binary systems. J Alloys Compd 468:209CrossRef Chen HM, Zheng F, Liu HS et al (2009) Thermodynamic assessment of B–Zr and Si–Zr binary systems. J Alloys Compd 468:209CrossRef
126.
go back to reference Rudy E, Windisch S (1966) Techn. Rept. AFML-TR-65-2, vol VIII. Wright Patterson AFB, Dayton, Ohio, USA, pp 1–33 Rudy E, Windisch S (1966) Techn. Rept. AFML-TR-65-2, vol VIII. Wright Patterson AFB, Dayton, Ohio, USA, pp 1–33
127.
go back to reference Callmer B, Rudy L, Windisch S, Tergenius L, Thomas JO (1978) J Solid State Chem 26:275CrossRef Callmer B, Rudy L, Windisch S, Tergenius L, Thomas JO (1978) J Solid State Chem 26:275CrossRef
128.
go back to reference Guo SQ (2009) Densification of ZrB2-based composites and their mechanical and physical properties: A review. J Eur Ceram Soc 29:995CrossRef Guo SQ (2009) Densification of ZrB2-based composites and their mechanical and physical properties: A review. J Eur Ceram Soc 29:995CrossRef
129.
go back to reference Fahrenholtz WG, Hilmas GE, Chamberlain AL, Zimmermann JW, Fahrenholtz (2004) Processing and characterization of ZrB-based ultra-high temperature monolithic and fibrous monolithic ceramics. J Mater Sci 39:5951CrossRef Fahrenholtz WG, Hilmas GE, Chamberlain AL, Zimmermann JW, Fahrenholtz (2004) Processing and characterization of ZrB-based ultra-high temperature monolithic and fibrous monolithic ceramics. J Mater Sci 39:5951CrossRef
130.
go back to reference Thomson R (1990) Production, fabrication, and uses of borides. In: Freer R (ed) The physics and chemistry of carbides, nitrides and borides. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 113–120 Thomson R (1990) Production, fabrication, and uses of borides. In: Freer R (ed) The physics and chemistry of carbides, nitrides and borides. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 113–120
131.
go back to reference Schwarzkopf P, Kieffer R (1953) Refractory hard metals. Macmillan Co., New York, USA Schwarzkopf P, Kieffer R (1953) Refractory hard metals. Macmillan Co., New York, USA
132.
go back to reference Chamberlain AL, Fahrenholtz WG, Hilmas GE (2006) Low temperature densification of zirconium diboride by reactive hot pressing. J Am Ceram Soc 89:36–38CrossRef Chamberlain AL, Fahrenholtz WG, Hilmas GE (2006) Low temperature densification of zirconium diboride by reactive hot pressing. J Am Ceram Soc 89:36–38CrossRef
133.
go back to reference Zhang GJ, Deng ZY, Kondo N, Yang JF, Ohji T (2000) Reactive hot pressing of ZrB2–SiC composites. J Am Ceram Soc 83:23–30 Zhang GJ, Deng ZY, Kondo N, Yang JF, Ohji T (2000) Reactive hot pressing of ZrB2–SiC composites. J Am Ceram Soc 83:23–30
134.
go back to reference Guo SQ, Nishimura T, Kagawa Y et al (2008) Spark plasma sintering of zirconium diboride. J Am Ceram Soc 91:28–48 Guo SQ, Nishimura T, Kagawa Y et al (2008) Spark plasma sintering of zirconium diboride. J Am Ceram Soc 91:28–48
Metadata
Title
Monolithic Ceramics for Aerospace Applications
Authors
N. Eswara Prasad
S. B. Bhaduri
Copyright Year
2017
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-2134-3_18

Premium Partner