Skip to main content
Top

2017 | OriginalPaper | Chapter

19. Nano-enabled Multifunctional Materials for Aerospace Applications

Authors : K. Balasubramanian, Manoj Tirumali, Yutika Badhe, Y R Mahajan

Published in: Aerospace Materials and Material Technologies

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter discusses the significance of nano-enabled multifunctional materials for aerospace applications. Several studies of these materials report research breakthroughs on the in situ formation of nanostructures and hierarchical structures, and their effects on the improvement of both functional and structural properties for space and aircraft applications such as the EMI shielding, thermal, electrical and opto-magnetic properties, fracture toughness and strength. The materials discussed here relate mostly to polymers.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Mouritz AP, Feih S, Kandare SE, Kandare Z, Mathys Z, Gibson AG, Des Jardin PE, Case SW, Lattimer BY (2009) Review of fire structural modelling of polymer composites. Compos Part 40(12):1800–1814 Mouritz AP, Feih S, Kandare SE, Kandare Z, Mathys Z, Gibson AG, Des Jardin PE, Case SW, Lattimer BY (2009) Review of fire structural modelling of polymer composites. Compos Part 40(12):1800–1814
2.
go back to reference Kurahatti Singh RV, Surendranathan AO, Kori Nirbhay SA (2010) Defence applications of polymer nanocomposites. Defence Sci J 60(5):551–563CrossRef Kurahatti Singh RV, Surendranathan AO, Kori Nirbhay SA (2010) Defence applications of polymer nanocomposites. Defence Sci J 60(5):551–563CrossRef
5.
go back to reference Wee WH, Zong RG, Maguire SS, Sangari PH, Lucas, Durand P (2008) Major trends in polymeric composites technology composite materials research progress. Nova Science Publishers Inc., New York, USA, pp 107–127 Wee WH, Zong RG, Maguire SS, Sangari PH, Lucas, Durand P (2008) Major trends in polymeric composites technology composite materials research progress. Nova Science Publishers Inc., New York, USA, pp 107–127
6.
go back to reference Tao X (2011) Recent advances in shape memory alloy. Polymers 52(22):4985–5000CrossRef Tao X (2011) Recent advances in shape memory alloy. Polymers 52(22):4985–5000CrossRef
7.
go back to reference Zhang Y, Wenyi L (2011) Structure analysis and choosing materials for the aerospace multi-functional structure of electronic equipment. In: Proceedings of international conference on computer engineering and applications (IPCSIT), vol 2:240–243 Zhang Y, Wenyi L (2011) Structure analysis and choosing materials for the aerospace multi-functional structure of electronic equipment. In: Proceedings of international conference on computer engineering and applications (IPCSIT), vol 2:240–243
8.
go back to reference Defense Committee on Materials Research for Structural and Multifunctional Materials (2003) Materials research to meet 21st century defense needs. In: Proceedings of committee on materials research for defense, Washington DC, USA, pp 27–53 Defense Committee on Materials Research for Structural and Multifunctional Materials (2003) Materials research to meet 21st century defense needs. In: Proceedings of committee on materials research for defense, Washington DC, USA, pp 27–53
9.
go back to reference Meyyappan M (2005) Nanotechnology in aerospace applications. RTO-EN-AVT-129, Paper 7. Neuilly-sur-Seine, France, pp 7.1–7.37 Meyyappan M (2005) Nanotechnology in aerospace applications. RTO-EN-AVT-129, Paper 7. Neuilly-sur-Seine, France, pp 7.1–7.37
10.
go back to reference Suresh Kumar KVVS, Reddy M, Kumar A, Rohini Devi G (2013) Development and characterization of polymer–ceramic continuous fiber reinforced functionally graded composites for aerospace application. Aerosp Sci Technol 26(1):185–191CrossRef Suresh Kumar KVVS, Reddy M, Kumar A, Rohini Devi G (2013) Development and characterization of polymer–ceramic continuous fiber reinforced functionally graded composites for aerospace application. Aerosp Sci Technol 26(1):185–191CrossRef
11.
12.
go back to reference Cooley WG (2005) Application of functionally graded materials in aircraft structures. M.Sc. thesis, Department of Aeronautics and Astronautics, M.SC thesis, Air Institute of Technology, Wright-Patterson Air Force Base, Ohio, USA Cooley WG (2005) Application of functionally graded materials in aircraft structures. M.Sc. thesis, Department of Aeronautics and Astronautics, M.SC thesis, Air Institute of Technology, Wright-Patterson Air Force Base, Ohio, USA
13.
go back to reference Gibson R (2010) A review of recent research on mechanics of multifunctional composite materials and structures. Compos Struct 92(12):2793–2810 Gibson R (2010) A review of recent research on mechanics of multifunctional composite materials and structures. Compos Struct 92(12):2793–2810
14.
go back to reference Dr Morgan AB (2011) Design and application of multi-functional materials. Mater Matters 2(1):1–6 Dr Morgan AB (2011) Design and application of multi-functional materials. Mater Matters 2(1):1–6
15.
go back to reference Atkinson HV (2001) Structural and functional materials. Mater Sci Eng II:1–13 Atkinson HV (2001) Structural and functional materials. Mater Sci Eng II:1–13
16.
go back to reference Schottner G (2001) Hybrid sol-gel-derived polymers: applications of multifunctional materials. Chem Mater 13(10):3422–3435CrossRef Schottner G (2001) Hybrid sol-gel-derived polymers: applications of multifunctional materials. Chem Mater 13(10):3422–3435CrossRef
17.
go back to reference Baur J, Silverman E (2007) Challenges and opportunities in multifunctional nanocomposite structures for aerospace applications. Mater Res Soc 32(4):328–334CrossRef Baur J, Silverman E (2007) Challenges and opportunities in multifunctional nanocomposite structures for aerospace applications. Mater Res Soc 32(4):328–334CrossRef
18.
go back to reference Li C, Thostenson ET, Chou TW (2008) Sensors and actuators based on carbon nanotubes and their composites: a review. Compos Sci Technol 68(6):1227–1249CrossRef Li C, Thostenson ET, Chou TW (2008) Sensors and actuators based on carbon nanotubes and their composites: a review. Compos Sci Technol 68(6):1227–1249CrossRef
19.
go back to reference Gibson RF, Ayorinde EO, Wen YF (2007) Vibrations of carbon nanotubes and their composites: a review. Compos Sci Technol 67(1):1–28CrossRef Gibson RF, Ayorinde EO, Wen YF (2007) Vibrations of carbon nanotubes and their composites: a review. Compos Sci Technol 67(1):1–28CrossRef
20.
go back to reference Sun L, Gibson RF, Gordaninejad F, Suhr J (2009) Energy absorption capability of nanocomposites: a review. Compos Sci Technol 69(14):2392–2409CrossRef Sun L, Gibson RF, Gordaninejad F, Suhr J (2009) Energy absorption capability of nanocomposites: a review. Compos Sci Technol 69(14):2392–2409CrossRef
21.
go back to reference Bauhofer W, Kovacs JZ (2009) A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos Sci Technol 69(10):1486–1498CrossRef Bauhofer W, Kovacs JZ (2009) A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos Sci Technol 69(10):1486–1498CrossRef
22.
go back to reference Montalvao D, Maia NMM, Ribeiro AMR (2006) A review of vibration-based structural health monitoring with special emphasis on composite materials. Shock Vib Digest 38(4):295–324CrossRef Montalvao D, Maia NMM, Ribeiro AMR (2006) A review of vibration-based structural health monitoring with special emphasis on composite materials. Shock Vib Digest 38(4):295–324CrossRef
23.
go back to reference Zou Y, Tong L, Steven GP (2000) Vibration-based model dependent damage identification and health monitoring for composite structures—a review. J Sound Vib 230(2):357–378CrossRef Zou Y, Tong L, Steven GP (2000) Vibration-based model dependent damage identification and health monitoring for composite structures—a review. J Sound Vib 230(2):357–378CrossRef
24.
go back to reference Wu DY, Meure S, Solomon D (2008) Self-healing polymeric materials: a review of recent developments. Prog Polym Sci 33(5):479–522CrossRef Wu DY, Meure S, Solomon D (2008) Self-healing polymeric materials: a review of recent developments. Prog Polym Sci 33(5):479–522CrossRef
25.
go back to reference Sodano HA, Inman DJ, Park G (2004) Review of power harvesting from vibration using piezoelectric materials. Shock Vib Digest 36(3):197–205CrossRef Sodano HA, Inman DJ, Park G (2004) Review of power harvesting from vibration using piezoelectric materials. Shock Vib Digest 36(3):197–205CrossRef
26.
go back to reference Park G, Rosing T, Todd MD, Farrar CR, Hodgkiss W (2008) Energy harvesting for structural health monitoring sensor networks. J Infrastruct Syst 14(1):64–79CrossRef Park G, Rosing T, Todd MD, Farrar CR, Hodgkiss W (2008) Energy harvesting for structural health monitoring sensor networks. J Infrastruct Syst 14(1):64–79CrossRef
27.
go back to reference RyszardPilawka SP, Rosłaniec Z (2012) Epoxy composites with carbon nanotubes. Adv Manuf Sci Tech 36(3):67–79 RyszardPilawka SP, Rosłaniec Z (2012) Epoxy composites with carbon nanotubes. Adv Manuf Sci Tech 36(3):67–79
28.
go back to reference Yasmin A, Daniel IM (2004) Mechanical and thermal properties of graphite platelet/epoxycomposites. Polymer 45(24):8211–8219CrossRef Yasmin A, Daniel IM (2004) Mechanical and thermal properties of graphite platelet/epoxycomposites. Polymer 45(24):8211–8219CrossRef
29.
go back to reference Nigrawal A, Chand N (2010) Electrical and thermal investigations on exfoliated graphite filled epoxy gradient composites. Malays Polym J 5(2):130–139 Nigrawal A, Chand N (2010) Electrical and thermal investigations on exfoliated graphite filled epoxy gradient composites. Malays Polym J 5(2):130–139
30.
go back to reference Huda Z, Edi P (2013) Selection in design of structures and engines of supersonic aircrafts: a review. Mater Des 46(2013):552–560 Huda Z, Edi P (2013) Selection in design of structures and engines of supersonic aircrafts: a review. Mater Des 46(2013):552–560
31.
go back to reference Balasubramanian K, Tirumalai M (2013) High Temperature Polymer Nanocomposites. In: Structural Nanocomposites: Perspectives for Future Applications (Engineering Materials), James N (ed), Springer, Berlin, pp. 165–186 Balasubramanian K, Tirumalai M (2013) High Temperature Polymer Nanocomposites. In: Structural Nanocomposites: Perspectives for Future Applications (Engineering Materials), James N (ed), Springer, Berlin, pp. 165–186
33.
go back to reference Jonghwan S, Wei Z, Ajayan PM, Koratkar NA (2006) Temperature-activated interfacial friction damping in carbon nanotube polymer composites. Nano Lett 6(2):219–223CrossRef Jonghwan S, Wei Z, Ajayan PM, Koratkar NA (2006) Temperature-activated interfacial friction damping in carbon nanotube polymer composites. Nano Lett 6(2):219–223CrossRef
34.
go back to reference Kashiwagi T, Fangming DU, Douglas JF, Winey KL, Harris RH Jr, Shields JR (2005) Nanoparticle networks reduce the flammability of polymer nanocomposites. Nat Mater 4(12):928–933CrossRef Kashiwagi T, Fangming DU, Douglas JF, Winey KL, Harris RH Jr, Shields JR (2005) Nanoparticle networks reduce the flammability of polymer nanocomposites. Nat Mater 4(12):928–933CrossRef
35.
go back to reference Coleman JN, Khan H, Gun’Ko YK (2006) Mechanical reinforcement of polymers using carbon nanotubes. Adv Mater 18(6):689–706CrossRef Coleman JN, Khan H, Gun’Ko YK (2006) Mechanical reinforcement of polymers using carbon nanotubes. Adv Mater 18(6):689–706CrossRef
36.
go back to reference Dalton AB, Collins S, Muñoz E, Razal JM, Ebron VH, Ferraris JP, Coleman JN, Kim BG, Baughman RH (2003) Super-tough carbon-nanotube fibres. Nature 423(6941):703–704CrossRef Dalton AB, Collins S, Muñoz E, Razal JM, Ebron VH, Ferraris JP, Coleman JN, Kim BG, Baughman RH (2003) Super-tough carbon-nanotube fibres. Nature 423(6941):703–704CrossRef
37.
go back to reference Zhang M, Fang S, Zakhidov AA, Lee SB, Aliev AE, Williams CD, Atkinson KR, Baughman RH (2005) Strong, transparent, multifunctional, carbon nanotube sheets. Science 309(5738):1215–1219CrossRef Zhang M, Fang S, Zakhidov AA, Lee SB, Aliev AE, Williams CD, Atkinson KR, Baughman RH (2005) Strong, transparent, multifunctional, carbon nanotube sheets. Science 309(5738):1215–1219CrossRef
38.
go back to reference Velasco-Santos C, Martínez-Herná AL, Ndez FT, Castañ VM (2003) Improvement of thermal and mechanical properties of carbon nanotube composites through chemical functionalization. Chem Mater 15(23):4470–4475CrossRef Velasco-Santos C, Martínez-Herná AL, Ndez FT, Castañ VM (2003) Improvement of thermal and mechanical properties of carbon nanotube composites through chemical functionalization. Chem Mater 15(23):4470–4475CrossRef
39.
go back to reference Kis AC, Salvetat G, Lee JP, Couteau T, Kulik E, Benoit A, Brugger W, Forro JL (2004) Reinforcement of single-walled carbon nanotube bundles by intertube bridging. Nat Mater 3(2004):53–157 Kis AC, Salvetat G, Lee JP, Couteau T, Kulik E, Benoit A, Brugger W, Forro JL (2004) Reinforcement of single-walled carbon nanotube bundles by intertube bridging. Nat Mater 3(2004):53–157
40.
go back to reference Patton RD Jr, Wang C, Hill L, Day JR (2002) Ablation, mechanical and thermal conductivity properties of vapor grown carbon fiber / phenolic matrix composites. Compos Part A-Appl S 33(2):243–251CrossRef Patton RD Jr, Wang C, Hill L, Day JR (2002) Ablation, mechanical and thermal conductivity properties of vapor grown carbon fiber / phenolic matrix composites. Compos Part A-Appl S 33(2):243–251CrossRef
41.
go back to reference Tibbetts GG, Lake ML, Strong KL, Rice BP (2007) A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites. Compos Sci Technol 67(7–8):1709–1718CrossRef Tibbetts GG, Lake ML, Strong KL, Rice BP (2007) A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites. Compos Sci Technol 67(7–8):1709–1718CrossRef
42.
go back to reference Kimberly AT, Saliba TE (1995) Mechanism of the pyrolysis of phenolic resin in carbon/phenolic composite. Carbon 33(11):1509–1515CrossRef Kimberly AT, Saliba TE (1995) Mechanism of the pyrolysis of phenolic resin in carbon/phenolic composite. Carbon 33(11):1509–1515CrossRef
43.
go back to reference Srikanth I, Padmavathi N, Suresh Kumar P, Anil Kumar G, Subrahmanyam Ch (2013) Mechanical, thermal and ablative properties of zirconia, CNT modified carbon/phenolic composites. Compos Sci Tech 80:1–7 Srikanth I, Padmavathi N, Suresh Kumar P, Anil Kumar G, Subrahmanyam Ch (2013) Mechanical, thermal and ablative properties of zirconia, CNT modified carbon/phenolic composites. Compos Sci Tech 80:1–7
44.
go back to reference Mouritz AP, Gibson AG (2006) Fire properties of polymer composite materials. 1st ed. solid mechanics and its applications. (pbk), 14:163–213 Mouritz AP, Gibson AG (2006) Fire properties of polymer composite materials. 1st ed. solid mechanics and its applications. (pbk), 14:163–213
45.
go back to reference Balasubramanian K, Yutika B (2014) Indian patent, cost effective processing of defect/ blister free ablative composites of functionally tailored resins of ultra high temperature ceramics for layered composite. Patent number: 641/MUM/2014 Balasubramanian K, Yutika B (2014) Indian patent, cost effective processing of defect/ blister free ablative composites of functionally tailored resins of ultra high temperature ceramics for layered composite. Patent number: 641/MUM/2014
46.
go back to reference Abdalla MO, Ludwick A, Mitchell T (2003) Boron-modified phenolic resins for high performance applications. Polymer 44(24):7353–7359CrossRef Abdalla MO, Ludwick A, Mitchell T (2003) Boron-modified phenolic resins for high performance applications. Polymer 44(24):7353–7359CrossRef
47.
go back to reference Kawamoto AM, Pardini LC, Diniz MF, Lourenco VL, Takahashi MFK (2010) Synthesis of a boron modified phenolic resin. J Aerosp Technol Manage 2(2):169–182CrossRef Kawamoto AM, Pardini LC, Diniz MF, Lourenco VL, Takahashi MFK (2010) Synthesis of a boron modified phenolic resin. J Aerosp Technol Manage 2(2):169–182CrossRef
48.
go back to reference Yu H, Liu J, Wen X, Jiang Z, Wang Y, Wang L, Zheng J (2011) Charring polymer wrapped carbon nanotubes for simultaneously improving the flame retardancy and mechanical properties of epoxy resin. Polymer 52(21):4891–4898CrossRef Yu H, Liu J, Wen X, Jiang Z, Wang Y, Wang L, Zheng J (2011) Charring polymer wrapped carbon nanotubes for simultaneously improving the flame retardancy and mechanical properties of epoxy resin. Polymer 52(21):4891–4898CrossRef
49.
go back to reference Zhang Y, Shen S, Liu Y (2013) The effect of titanium incorporation on the thermal stability of phenol-formaldehyde resin and its carbonization microstructure. Polym Degrad Stab 98(2):514–518CrossRef Zhang Y, Shen S, Liu Y (2013) The effect of titanium incorporation on the thermal stability of phenol-formaldehyde resin and its carbonization microstructure. Polym Degrad Stab 98(2):514–518CrossRef
50.
go back to reference Cho Donghwan (1996) Phenolic composites fabricated using h3po4-coated carbon fibres. J Mater Sci Lett 15(20):1786–1788CrossRef Cho Donghwan (1996) Phenolic composites fabricated using h3po4-coated carbon fibres. J Mater Sci Lett 15(20):1786–1788CrossRef
51.
go back to reference Dhami TL, Bahl OP, Awasthy BR (1995) Oxidation-resistant carbon-carbon composites up to 1700 °C. Carbon 33(4):479–490CrossRef Dhami TL, Bahl OP, Awasthy BR (1995) Oxidation-resistant carbon-carbon composites up to 1700 °C. Carbon 33(4):479–490CrossRef
52.
go back to reference Tirumalai M, Balasubramanian K, Kumaraswamy A (2013) Epoxy composites of graphene oxide (GO): a review. In: Proceedings of IEEE-International Conference on Research and Development Prospectus on Engineering and Technology (ICRDPET), EGS Pillay Engineering College, 29–30 March, 2013 Nagapattinam, India, pp. 94–98 Tirumalai M, Balasubramanian K, Kumaraswamy A (2013) Epoxy composites of graphene oxide (GO): a review. In: Proceedings of IEEE-International Conference on Research and Development Prospectus on Engineering and Technology (ICRDPET), EGS Pillay Engineering College, 29–30 March, 2013 Nagapattinam, India, pp. 94–98
53.
go back to reference Sanoj P, Balasubramanian K (2014) Hybrid carbon-carbon ablative composites for thermal protection in aerospace. J Compos 2014:1–15CrossRef Sanoj P, Balasubramanian K (2014) Hybrid carbon-carbon ablative composites for thermal protection in aerospace. J Compos 2014:1–15CrossRef
54.
go back to reference Kovalcikova A, Dusza J, Sajgalik P (2009) Thermal shock resistance and fracture toughness of liquid-phase-sintered SiC-based ceramics. J Eur Ceramic Soc 29(11):2387–2394CrossRef Kovalcikova A, Dusza J, Sajgalik P (2009) Thermal shock resistance and fracture toughness of liquid-phase-sintered SiC-based ceramics. J Eur Ceramic Soc 29(11):2387–2394CrossRef
55.
go back to reference Yamada K, Kamiya N (1999) High temperature mechanical properties of Si3N4–MoSi2 and Si3N4–SiC composites with network structures of second phases. Mater Sci Eng A 261(1999):270–277 Yamada K, Kamiya N (1999) High temperature mechanical properties of Si3N4–MoSi2 and Si3N4–SiC composites with network structures of second phases. Mater Sci Eng A 261(1999):270–277
56.
go back to reference Zhang XH, Wang Z, Hu P, Han W, Hong CQ (2009) Mechanical properties and thermal shock resistance of ZrB2–SiC ceramic toughened with graphite flake and SiC whiskers. Scripta Materialia 61(8):809–812CrossRef Zhang XH, Wang Z, Hu P, Han W, Hong CQ (2009) Mechanical properties and thermal shock resistance of ZrB2–SiC ceramic toughened with graphite flake and SiC whiskers. Scripta Materialia 61(8):809–812CrossRef
57.
go back to reference Buchheit AA, Hilmas GE, Fahrenholtz WG, Deason DM (2009) Thermal shock resistance of an AlN–BN–SiC ceramic. J Am Ceramic Soc 92(6):1358–1361CrossRef Buchheit AA, Hilmas GE, Fahrenholtz WG, Deason DM (2009) Thermal shock resistance of an AlN–BN–SiC ceramic. J Am Ceramic Soc 92(6):1358–1361CrossRef
58.
go back to reference Badhe Y, Balasubramanian K (2014) Novel Novel hybrid ablative composites of resorcinol formaldehyde as thermal protection systems forre-entry vehicles. RSC Adv 4:28956–28963CrossRef Badhe Y, Balasubramanian K (2014) Novel Novel hybrid ablative composites of resorcinol formaldehyde as thermal protection systems forre-entry vehicles. RSC Adv 4:28956–28963CrossRef
59.
go back to reference Wang J, Jiang N, Jiang H (2010) Micro-structural evolution of phenol-formaldehyde resin modified by boron carbide at elevated temperatures. Mater Chem Phys 120(1):187–192CrossRef Wang J, Jiang N, Jiang H (2010) Micro-structural evolution of phenol-formaldehyde resin modified by boron carbide at elevated temperatures. Mater Chem Phys 120(1):187–192CrossRef
60.
go back to reference Konstantinov AO (1995) Sublimation growth of SiC. In: Properties of Silicon Carbide. Harris GL (ed), INSPEC, the Institution of Electrical Engineers, London, UK, pp. 170–203 Konstantinov AO (1995) Sublimation growth of SiC. In: Properties of Silicon Carbide. Harris GL (ed), INSPEC, the Institution of Electrical Engineers, London, UK, pp. 170–203
61.
go back to reference Livingston F, Sarney W, Niesz K, Ould-Ely T, Tao A, Morse D (2009) Bio-inspired synthesis and laser processing of nanostructured barium titanate thin-films: implications for uncooled IR sensor development SPIE Proc 7321:1–13 Livingston F, Sarney W, Niesz K, Ould-Ely T, Tao A, Morse D (2009) Bio-inspired synthesis and laser processing of nanostructured barium titanate thin-films: implications for uncooled IR sensor development SPIE Proc 7321:1–13
62.
go back to reference Huang J, Virji S, Weiller B, Kaner R (2003) Polyanilinenanofibers: facile synthesis and chemical sensors. J Am Chem Soc 125(2):314–315CrossRef Huang J, Virji S, Weiller B, Kaner R (2003) Polyanilinenanofibers: facile synthesis and chemical sensors. J Am Chem Soc 125(2):314–315CrossRef
63.
go back to reference Virji S, Huang J, Kaner R, Weiller B (2005) Polyanilinenanofiber composites with metal salts: chemical sensors for hydrogen sulphide. Small 1(6):624–627CrossRef Virji S, Huang J, Kaner R, Weiller B (2005) Polyanilinenanofiber composites with metal salts: chemical sensors for hydrogen sulphide. Small 1(6):624–627CrossRef
64.
go back to reference Virji S, Huang J, Kaner R, Weiller B (2004) Polyanilinenanofiber gas sensors: examination of response mechanisms. Nano Lett 4(3):491–496CrossRef Virji S, Huang J, Kaner R, Weiller B (2004) Polyanilinenanofiber gas sensors: examination of response mechanisms. Nano Lett 4(3):491–496CrossRef
65.
go back to reference Virji S, Huang J, Kaner RB, Weiller BH (2004) Polyaniline nanofiber gas sensors: Examination of response mechanisms. Nano Lett 4:491–496 Virji S, Huang J, Kaner RB, Weiller BH (2004) Polyaniline nanofiber gas sensors: Examination of response mechanisms. Nano Lett 4:491–496
66.
go back to reference Virji S, Kaner R, Weiller B (2007) Hydrogen sensors based on conductivity changes in polyanilinenanofibers. J Phys Chem B 110(44):22266–22270CrossRef Virji S, Kaner R, Weiller B (2007) Hydrogen sensors based on conductivity changes in polyanilinenanofibers. J Phys Chem B 110(44):22266–22270CrossRef
67.
go back to reference Kulinich A, Farzaneh M (2009) How wetting hysteresis influences ice adhesion strength on superhydrophobic surfaces. Langmuir 25(16):8854–8856CrossRef Kulinich A, Farzaneh M (2009) How wetting hysteresis influences ice adhesion strength on superhydrophobic surfaces. Langmuir 25(16):8854–8856CrossRef
68.
go back to reference Zhang G, Wang D, Gu Z, Mchwald H (2005) Facile fabrication of super-hydrophobic surfaces from binary colloidal assembly. Langmuir 21(20):9143–9148CrossRef Zhang G, Wang D, Gu Z, Mchwald H (2005) Facile fabrication of super-hydrophobic surfaces from binary colloidal assembly. Langmuir 21(20):9143–9148CrossRef
69.
go back to reference Liu B, He Y, Fan Y, Wang X (2006) Fabricating super-hydrophobic lotus-leaf-like surfaces through soft-lithographic imprinting. Macromol Rapid Commun 27(21):1859–1864CrossRef Liu B, He Y, Fan Y, Wang X (2006) Fabricating super-hydrophobic lotus-leaf-like surfaces through soft-lithographic imprinting. Macromol Rapid Commun 27(21):1859–1864CrossRef
70.
go back to reference Jiang L, Zhao Y, Zhai J (2004) Alotus-leaf-like super hydrophobic surface: a porous microsphere/nanofiber composite film prepared by electro hydrodynamics. Angew Chem Int Ed 43(33):4338–4341 Jiang L, Zhao Y, Zhai J (2004) Alotus-leaf-like super hydrophobic surface: a porous microsphere/nanofiber composite film prepared by electro hydrodynamics. Angew Chem Int Ed 43(33):4338–4341
71.
go back to reference Sahoo BN, Balasubramanian K, Sabarish B (2014) Controlled fabrication of non-fluoropolymer composite film on glass surfaces with hierarchically nano structured fibers. Prog Org Coat 77(4):904–907CrossRef Sahoo BN, Balasubramanian K, Sabarish B (2014) Controlled fabrication of non-fluoropolymer composite film on glass surfaces with hierarchically nano structured fibers. Prog Org Coat 77(4):904–907CrossRef
72.
go back to reference Sahoo BN, Balasubramanian K (2014) Facile synthesis of nano cauliflower and nano broccoli like hierarchical super hydrophobic composite coating using pvdf/carbon soot particles via gelation technique. J Colloid Interface Sci 436:111–121 Sahoo BN, Balasubramanian K (2014) Facile synthesis of nano cauliflower and nano broccoli like hierarchical super hydrophobic composite coating using pvdf/carbon soot particles via gelation technique. J Colloid Interface Sci 436:111–121
73.
go back to reference Sahoo BN, Balasubramanian K (2014) An experimental design for the investigation of water repellent property of candle soot particles. Mater Chem Phys 148(1–2):134–142CrossRef Sahoo BN, Balasubramanian K (2014) An experimental design for the investigation of water repellent property of candle soot particles. Mater Chem Phys 148(1–2):134–142CrossRef
74.
go back to reference Sahoo BN, Balasubramanain K (2014) Photoluminescent carbon soot particles derived from controlled combustion of camphor for superhydrophobic application. RSC Adv 4(22):11331–11342CrossRef Sahoo BN, Balasubramanain K (2014) Photoluminescent carbon soot particles derived from controlled combustion of camphor for superhydrophobic application. RSC Adv 4(22):11331–11342CrossRef
75.
go back to reference Banerjee S, Tyagi AK (eds) (2012) Functional materials: preparation, processing and applications. Elsevier, New York, USA Banerjee S, Tyagi AK (eds) (2012) Functional materials: preparation, processing and applications. Elsevier, New York, USA
76.
go back to reference Guozhong G (2003) Nanostructures and Nanomaterials. Imperial College Press, London, UK, pp 51–269 Guozhong G (2003) Nanostructures and Nanomaterials. Imperial College Press, London, UK, pp 51–269
Metadata
Title
Nano-enabled Multifunctional Materials for Aerospace Applications
Authors
K. Balasubramanian
Manoj Tirumali
Yutika Badhe
Y R Mahajan
Copyright Year
2017
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-2134-3_19

Premium Partner