Skip to main content
Top

2021 | OriginalPaper | Chapter

Morphing Musical Instrument Sounds with the Sinusoidal Model in the Sound Morphing Toolbox

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Sound morphing stands out among the sound transformation techniques in the literature due to its creative and research potential. The aim of sound morphing is to gradually blur the categorical distinction between the source and target sounds by blending sensory attributes. As such, the focus and ultimate challenge of most sound morphing techniques is to interpolate across dimensions of timbre perception to achieve the desired result. There are several sound morphing proposals in the literature with few open-source implementations freely available, making it difficult to reproduce the results, compare models, or simply use them in other applications such as music composition, sound design, and timbre research. This work describes how to morph musical instrument sounds with the sinusoidal model using the sound morphing toolbox (SMT), a freely available and open-source piece of software. The text describes the audio processing steps required to morph sounds with the SMT using a step-by-step example to illustrate the need for and the result of each step. The SMT contains implementations of a sound morphing algorithm in MATLAB ® that were designed to be as easy as possible to understand and use, giving the user control over the result and full customization.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Abe, M., III, J.O.S.: CQIFFT: Correcting bias in a sinusoidal parameter estimator based on quadratic interpolation of FFT magnitude peaks. Technical report STAN-M-117, Center for Computer Research in Music and Acoustics - Department of Music, Stanford University (2004) Abe, M., III, J.O.S.: CQIFFT: Correcting bias in a sinusoidal parameter estimator based on quadratic interpolation of FFT magnitude peaks. Technical report STAN-M-117, Center for Computer Research in Music and Acoustics - Department of Music, Stanford University (2004)
3.
go back to reference Boashash, B.: Estimating and interpreting the instantaneous frequency of a signal I. Fundamentals. Proc. IEEE 80(4), 520–538 (1992)CrossRef Boashash, B.: Estimating and interpreting the instantaneous frequency of a signal I. Fundamentals. Proc. IEEE 80(4), 520–538 (1992)CrossRef
4.
go back to reference Boashash, B.: Estimating and interpreting the instantaneous frequency of a signal. II. Algorithms and applications. Proc. IEEE 80(4), 540–568 (1992) Boashash, B.: Estimating and interpreting the instantaneous frequency of a signal. II. Algorithms and applications. Proc. IEEE 80(4), 540–568 (1992)
5.
go back to reference Caetano, M., Kafentzis, G.P., Mouchtaris, A., Stylianou, Y.: Full-band quasi-harmonic analysis and synthesis of musical instrument sounds with adaptive sinusoids. Appl. Sci. 6(5), 127 (2016)CrossRef Caetano, M., Kafentzis, G.P., Mouchtaris, A., Stylianou, Y.: Full-band quasi-harmonic analysis and synthesis of musical instrument sounds with adaptive sinusoids. Appl. Sci. 6(5), 127 (2016)CrossRef
6.
go back to reference Caetano, M., Rodet, X.: Musical instrument sound morphing guided by perceptually motivated features. IEEE Trans. Audio Speech Lang. Process. 21(8), 1666–1675 (2013)CrossRef Caetano, M., Rodet, X.: Musical instrument sound morphing guided by perceptually motivated features. IEEE Trans. Audio Speech Lang. Process. 21(8), 1666–1675 (2013)CrossRef
7.
go back to reference Caetano, M.: Morphing musical instrument sounds with the sound morphing Toolbox. In: Proceedings of the 14th International Symposium on Computer Music Interdisciplinary Research, CMMR 2019, Marseille, France, pp. 171–182, October 2019 Caetano, M.: Morphing musical instrument sounds with the sound morphing Toolbox. In: Proceedings of the 14th International Symposium on Computer Music Interdisciplinary Research, CMMR 2019, Marseille, France, pp. 171–182, October 2019
8.
go back to reference Caetano, M., Kafentzis, G.P., Degottex, G., Mouchtaris, A., Stylianou, Y.: Evaluating how well filtered white noise models the residual from sinusoidal modeling of musical instrument sounds. In: Proceedings of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), New Paltz, NY, pp. 1–4, October 2013 Caetano, M., Kafentzis, G.P., Degottex, G., Mouchtaris, A., Stylianou, Y.: Evaluating how well filtered white noise models the residual from sinusoidal modeling of musical instrument sounds. In: Proceedings of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), New Paltz, NY, pp. 1–4, October 2013
9.
go back to reference Camacho, A., Harris, J.G.: A sawtooth waveform inspired pitch estimator for speech and music. J. Acoust. Soc. Am. 124(3), 1638–1652 (2008)CrossRef Camacho, A., Harris, J.G.: A sawtooth waveform inspired pitch estimator for speech and music. J. Acoust. Soc. Am. 124(3), 1638–1652 (2008)CrossRef
10.
go back to reference Carral, S.: Determining the just noticeable difference in timbre through spectral morphing: a trombone example. Acta Acustica united with Acustica 97, 466–476 (05 2011) Carral, S.: Determining the just noticeable difference in timbre through spectral morphing: a trombone example. Acta Acustica united with Acustica 97, 466–476 (05 2011)
11.
go back to reference Driedger, J., Müller, M.: A review of time-scale modification of music signals. Appl. Sci. 6(2), 57 (2016) Driedger, J., Müller, M.: A review of time-scale modification of music signals. Appl. Sci. 6(2), 57 (2016)
12.
go back to reference Fitz, K., Haken, L., Lefvert, S., Champion, C., O’Donnell, M.: Cell-utes and flutter-tongued cats: Sound morphing using loris and the reassigned bandwidth-enhanced model. Comput. Music J. 27(3), 44–65 (2003)CrossRef Fitz, K., Haken, L., Lefvert, S., Champion, C., O’Donnell, M.: Cell-utes and flutter-tongued cats: Sound morphing using loris and the reassigned bandwidth-enhanced model. Comput. Music J. 27(3), 44–65 (2003)CrossRef
14.
go back to reference George, E.B., Smith, M.J.T.: Speech analysis/synthesis and modification using an analysis-by-synthesis/overlap-add sinusoidal model. IEEE Trans. Speech Audio Process. 5(5), 389–406 (1997)CrossRef George, E.B., Smith, M.J.T.: Speech analysis/synthesis and modification using an analysis-by-synthesis/overlap-add sinusoidal model. IEEE Trans. Speech Audio Process. 5(5), 389–406 (1997)CrossRef
15.
go back to reference George, E.B., Smith, M.J.T.: Analysis-by-synthesis/overlap-add sinusoidal modeling applied to the analysis and synthesis of musical tones. J. Audio Eng. Soc. 40(6), 497–516 (1992) George, E.B., Smith, M.J.T.: Analysis-by-synthesis/overlap-add sinusoidal modeling applied to the analysis and synthesis of musical tones. J. Audio Eng. Soc. 40(6), 497–516 (1992)
16.
go back to reference Grey, J.M., Gordon, J.W.: Perceptual effects of spectral modifications on musical timbres. J. Acoust. Soc. Am. 63(5), 1493–1500 (1978)CrossRef Grey, J.M., Gordon, J.W.: Perceptual effects of spectral modifications on musical timbres. J. Acoust. Soc. Am. 63(5), 1493–1500 (1978)CrossRef
17.
go back to reference Harris, F.J.: On the use of windows for harmonic analysis with the discrete Fourier transform. Proc. IEEE 66(1), 51–83 (1978)CrossRef Harris, F.J.: On the use of windows for harmonic analysis with the discrete Fourier transform. Proc. IEEE 66(1), 51–83 (1978)CrossRef
18.
go back to reference Harvey, J.: “Mortuos Plango, Vivos Voco”: a realization at IRCAM. Comput. Music J. 5(4), 22–24 (1981)CrossRef Harvey, J.: “Mortuos Plango, Vivos Voco”: a realization at IRCAM. Comput. Music J. 5(4), 22–24 (1981)CrossRef
19.
go back to reference Hejna, D., Musicus, B.R.: The SOLA-FS time-scale modification algorithm. Technical report BBN (1991) Hejna, D., Musicus, B.R.: The SOLA-FS time-scale modification algorithm. Technical report BBN (1991)
20.
go back to reference McAulay, R., Quatieri, T.: Magnitude-only reconstruction using a sinusoidal speech model. In: Proceedings ICASSP, vol. 9, pp. 441–444 (1984) McAulay, R., Quatieri, T.: Magnitude-only reconstruction using a sinusoidal speech model. In: Proceedings ICASSP, vol. 9, pp. 441–444 (1984)
21.
go back to reference McAulay, R., Quatieri, T.: Speech analysis/synthesis based on a sinusoidal representation. IEEE Trans. Acoust. Speech Signal Process. 34(4), 744–754 (1986)CrossRef McAulay, R., Quatieri, T.: Speech analysis/synthesis based on a sinusoidal representation. IEEE Trans. Acoust. Speech Signal Process. 34(4), 744–754 (1986)CrossRef
22.
go back to reference McNabb, M.: “Dreamsong”: the composition. Comput. Music J. 5(4), 36–53 (1981)CrossRef McNabb, M.: “Dreamsong”: the composition. Comput. Music J. 5(4), 36–53 (1981)CrossRef
23.
go back to reference Picinbono, B.: On instantaneous amplitude and phase of signals. IEEE Trans. Signal Process. 45(3), 552–560 (1997)CrossRef Picinbono, B.: On instantaneous amplitude and phase of signals. IEEE Trans. Signal Process. 45(3), 552–560 (1997)CrossRef
24.
go back to reference Portnoff, M.: Implementation of the digital phase vocoder using the fast Fourier transform. IEEE Trans. Acoust. Speech Signal Process. 24(3), 243–248 (1976)MathSciNetCrossRef Portnoff, M.: Implementation of the digital phase vocoder using the fast Fourier transform. IEEE Trans. Acoust. Speech Signal Process. 24(3), 243–248 (1976)MathSciNetCrossRef
25.
go back to reference Serra, X.: Musical sound modeling with sinusoids plus noise. In: Poli, G.D., Picialli, A., Pope, S.T., Roads, C. (eds.) Musical Signal Processing, pp. 91–122. Swets & Zeitlinger, Lisse, Switzerland (1996) Serra, X.: Musical sound modeling with sinusoids plus noise. In: Poli, G.D., Picialli, A., Pope, S.T., Roads, C. (eds.) Musical Signal Processing, pp. 91–122. Swets & Zeitlinger, Lisse, Switzerland (1996)
26.
go back to reference Serra, X., Smith, J.O.: Spectral modeling synthesis: a sound analysis/synthesis based on a deterministic plus stochastic decomposition. Comput. Music J. 14, 12–24 (1990)CrossRef Serra, X., Smith, J.O.: Spectral modeling synthesis: a sound analysis/synthesis based on a deterministic plus stochastic decomposition. Comput. Music J. 14, 12–24 (1990)CrossRef
27.
go back to reference Siedenburg, K., Jones-Mollerup, K., McAdams, S.: Acoustic and categorical dissimilarity of musical timbre: evidence from asymmetries between acoustic and chimeric sounds. Front. Psychol. 6, 1977 (2016)CrossRef Siedenburg, K., Jones-Mollerup, K., McAdams, S.: Acoustic and categorical dissimilarity of musical timbre: evidence from asymmetries between acoustic and chimeric sounds. Front. Psychol. 6, 1977 (2016)CrossRef
28.
go back to reference Slaney, M., Covell, M., Lassiter, B.: Automatic audio morphing. In: Proceedings ICASSP, vol. 2, pp. 1001–1004 (1996) Slaney, M., Covell, M., Lassiter, B.: Automatic audio morphing. In: Proceedings ICASSP, vol. 2, pp. 1001–1004 (1996)
29.
go back to reference Smith, J.O., Serra, X.: PARSHL: an analysis/synthesis program for non- harmonic sounds based on a sinusoidal representation. In: Proceedings ICMC, pp. 290–297 (1987) Smith, J.O., Serra, X.: PARSHL: an analysis/synthesis program for non- harmonic sounds based on a sinusoidal representation. In: Proceedings ICMC, pp. 290–297 (1987)
30.
go back to reference Tellman, E., Haken, L., Holloway, B.: Timbre morphing of sounds with unequal numbers of features. J. Audio Eng. Soc. 43(9), 678–689 (1995) Tellman, E., Haken, L., Holloway, B.: Timbre morphing of sounds with unequal numbers of features. J. Audio Eng. Soc. 43(9), 678–689 (1995)
31.
go back to reference Werner, K.J., Germain, F.G.: Sinusoidal parameter estimation using quadratic interpolation around power-scaled magnitude spectrum peaks. Appl. Sci. 6(10), 306 (2016)CrossRef Werner, K.J., Germain, F.G.: Sinusoidal parameter estimation using quadratic interpolation around power-scaled magnitude spectrum peaks. Appl. Sci. 6(10), 306 (2016)CrossRef
Metadata
Title
Morphing Musical Instrument Sounds with the Sinusoidal Model in the Sound Morphing Toolbox
Author
Marcelo Caetano
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-70210-6_31