Skip to main content
Top
Published in: Journal of Materials Science 1/2015

01-01-2015 | Original Paper

Morphology and oxygen vacancy investigation of strontium titanate-based photo electrochemical cells

Authors: D. Hertkorn, M. Benkler, U. Gleißner, F. Büker, C. Megnin, C. Müller, T. Hanemann, H. Reinecke

Published in: Journal of Materials Science | Issue 1/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper single band gap photo electrochemical cells (PECs) are presented, which consist of strontium titanate (SrTiO3) photo anodes on nickel cathodes in potassium hydroxide electrolyte. SrTiO3 powders are deposited on nickel substrates by electrophoresis before sintering with varying temperatures, times, cooling rates, gas types, and gas flow rates. The external quantum efficiency (EQE) of such PECs mainly depends on the morphology and the amount of oxygen vacancies in SrTiO3 lattice. At first, the morphology is investigated, which can be adjusted by the particle size as well as the sinter temperature and time. Nanopowder-based PECs sintered above the starting sinter temperature indicate the best charge carrier transport and hence allow high EQEs. The sinter time influences the specific surface area, but not the EQE in this investigation. Secondly, the generation of oxygen vacancies is investigated, which depends on the oxygen partial pressure and the equilibration temperature. Low oxygen partial pressures and high equilibration temperatures increase the amount of oxygen vacancies, which can be set by the gas type and its flow rate or the cooling rate and an additional heating step, respectively. It can be shown that PECs have to possess a low amount of oxygen vacancies to reach high EQE values, but not too low to allow for sufficient conductivity. This point is shown through our finding that the samples with lower and higher concentrations exhibit very low photo activity. Oxygen vacancies can be considered as intrinsic donors and hence increase electrical conductivity which is necessary but also act as recombination centers. For SrTiO3 nanopowder-based samples, which have been sintered at 1200 °C for 20 min with a cooling rate of 10 K/s in reducing gas (with 5 vol% H2) and a low flow rate of 1.7 l/h, very high external quantum efficiencies of 64.2 % under 365 nm illumination can be achieved.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q, Santori EA, Lewis NS (2010) Solar water splitting cells. Chem Rev 110:6446–6473CrossRef Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q, Santori EA, Lewis NS (2010) Solar water splitting cells. Chem Rev 110:6446–6473CrossRef
2.
go back to reference Sabio EM, Chamousis RL, Browning ND, Osterloh FE (2012) Photocatalytic water splitting with suspended calcium niobium oxides: why nanoscale is better than bulk—a kinetic analysis. J Phys Chem C 116:3161–3170CrossRef Sabio EM, Chamousis RL, Browning ND, Osterloh FE (2012) Photocatalytic water splitting with suspended calcium niobium oxides: why nanoscale is better than bulk—a kinetic analysis. J Phys Chem C 116:3161–3170CrossRef
3.
go back to reference Wu S et al (2008) Enhancement in dye-sensitized solar cells based on MgO-coated TiO2 electrodes by reactive DC magnetron sputtering. Nanotechnology 19:215704CrossRef Wu S et al (2008) Enhancement in dye-sensitized solar cells based on MgO-coated TiO2 electrodes by reactive DC magnetron sputtering. Nanotechnology 19:215704CrossRef
4.
go back to reference Bockris J, Itho K (1984) Stacked thin film electrode from iron oxide. J Appl Phys 56:874–876CrossRef Bockris J, Itho K (1984) Stacked thin film electrode from iron oxide. J Appl Phys 56:874–876CrossRef
5.
go back to reference Hida Y, Kozuka H (2005) Photo anodic properties of sol–gel-derived iron oxide thin films with embedded gold nanoparticles: effects of polyvinylpyrrolidone in coating solutions. Thin Solid Films 476:264–271CrossRef Hida Y, Kozuka H (2005) Photo anodic properties of sol–gel-derived iron oxide thin films with embedded gold nanoparticles: effects of polyvinylpyrrolidone in coating solutions. Thin Solid Films 476:264–271CrossRef
6.
go back to reference Mori R, Takahashi K, Yoko T (2005) Photoelectrochemical and photocatalytic properties of multilayered TiO2 thin films with a spinodal phase separation structure prepared by a sol–gel process. J Mater Res 20:121–127CrossRef Mori R, Takahashi K, Yoko T (2005) Photoelectrochemical and photocatalytic properties of multilayered TiO2 thin films with a spinodal phase separation structure prepared by a sol–gel process. J Mater Res 20:121–127CrossRef
7.
go back to reference Karn RK, Srivastava ON (1998) On the structural and photochemical studies of In2O3-admixed nanostructured TiO2 with regard to hydrogen production through photoelectrolysis. Int J Hydrog Energy 23:439–444CrossRef Karn RK, Srivastava ON (1998) On the structural and photochemical studies of In2O3-admixed nanostructured TiO2 with regard to hydrogen production through photoelectrolysis. Int J Hydrog Energy 23:439–444CrossRef
8.
go back to reference Wrighton MS, Ellis AB, Wolczanski PT, Morse DL, Abrahamson HB, Ginley DS (1976) Strontium titanate photoelectrodes. Efficient photoassisted electrolysis of water at zero applied potential. J Am Chem Soc 98:2774–2779CrossRef Wrighton MS, Ellis AB, Wolczanski PT, Morse DL, Abrahamson HB, Ginley DS (1976) Strontium titanate photoelectrodes. Efficient photoassisted electrolysis of water at zero applied potential. J Am Chem Soc 98:2774–2779CrossRef
9.
go back to reference de Kreuk CW, de Groot JLB (1981) Photocorrosion of strontium titanate photoanodes. Sol Energ Mater 5:437–444CrossRef de Kreuk CW, de Groot JLB (1981) Photocorrosion of strontium titanate photoanodes. Sol Energ Mater 5:437–444CrossRef
10.
go back to reference Marozau I et al (2009) Optical properties of nitrogen-substituted strontium titantate thin films prepared by pulsed laser deposition. Materials 2:1388–1401CrossRef Marozau I et al (2009) Optical properties of nitrogen-substituted strontium titantate thin films prepared by pulsed laser deposition. Materials 2:1388–1401CrossRef
11.
go back to reference Jia A, Su Z, Lou L, Liu S (2010) Synthesis and characterization of highly-active nickel and lanthanum co-doped SrTiO3. Solid State Sci 12:1140–1145CrossRef Jia A, Su Z, Lou L, Liu S (2010) Synthesis and characterization of highly-active nickel and lanthanum co-doped SrTiO3. Solid State Sci 12:1140–1145CrossRef
12.
go back to reference Ashokkumar M (1998) An overview on semiconductor particulate systems for photoproduction of hydrogen. Int J Hydrog Energy 23:427–438CrossRef Ashokkumar M (1998) An overview on semiconductor particulate systems for photoproduction of hydrogen. Int J Hydrog Energy 23:427–438CrossRef
13.
go back to reference Maruska HP, Ghosh AK (1979) A study of oxide-based heterostructure photoelectrodes. Sol Energ Mater 1:411–429CrossRef Maruska HP, Ghosh AK (1979) A study of oxide-based heterostructure photoelectrodes. Sol Energ Mater 1:411–429CrossRef
14.
go back to reference Matsumura M, Hiramoto M, Tsubomura H (1983) Photoelectrolysis of water under visible light with doped SrTiO3 electrodes. J Electrochem Soc 130:326–330CrossRef Matsumura M, Hiramoto M, Tsubomura H (1983) Photoelectrolysis of water under visible light with doped SrTiO3 electrodes. J Electrochem Soc 130:326–330CrossRef
15.
go back to reference Mavroides JG, Kafalas JA, Kolesar DF (1976) Photoelectrolysis of water in cells with SrTiO3 anodes. Appl Phys Lett 28:241–243CrossRef Mavroides JG, Kafalas JA, Kolesar DF (1976) Photoelectrolysis of water in cells with SrTiO3 anodes. Appl Phys Lett 28:241–243CrossRef
16.
go back to reference Yoon KH, Kim TH (1987) Photoeffects in undoped and doped SrTiO3 ceramic electrodes. J Solid State Chem 67:359–363CrossRef Yoon KH, Kim TH (1987) Photoeffects in undoped and doped SrTiO3 ceramic electrodes. J Solid State Chem 67:359–363CrossRef
17.
go back to reference Shuk P, Jantz R, Guth H-U (2012) Oxygen sensors with advanced oxide electrode materials. Int J Smart Sens Intell Syst 5:233–245 Shuk P, Jantz R, Guth H-U (2012) Oxygen sensors with advanced oxide electrode materials. Int J Smart Sens Intell Syst 5:233–245
18.
go back to reference Brailsford AD, Yussouff M, Logothetis EM (1997) A first-principles model of zirconia oxygen sensor. Sensor Actuat 44:321–326CrossRef Brailsford AD, Yussouff M, Logothetis EM (1997) A first-principles model of zirconia oxygen sensor. Sensor Actuat 44:321–326CrossRef
19.
go back to reference Walters LC, Grace RE (1967) Formation of point defects in strontium titanate. J Phys Chem Solids 28:239–244CrossRef Walters LC, Grace RE (1967) Formation of point defects in strontium titanate. J Phys Chem Solids 28:239–244CrossRef
20.
go back to reference Eades WD, Swanson RM (1985) Calculation of surface generation and recombination velocities at the Si–SiO2 interface. J Appl Phys 58:4267CrossRef Eades WD, Swanson RM (1985) Calculation of surface generation and recombination velocities at the Si–SiO2 interface. J Appl Phys 58:4267CrossRef
21.
go back to reference Hertkorn D, Elsenheimer HC, Bruch R, Paul F, Müller C, Hanemann T, Reinecke H (2013) Thickness variation of electrophoretically deposited strontium titanate films for photo electrochemical H2 generation. J Appl Phys 114(2):027020CrossRef Hertkorn D, Elsenheimer HC, Bruch R, Paul F, Müller C, Hanemann T, Reinecke H (2013) Thickness variation of electrophoretically deposited strontium titanate films for photo electrochemical H2 generation. J Appl Phys 114(2):027020CrossRef
22.
go back to reference Neville RC (1995) Solar energy conversion: the solar cell, 2nd edn. Elsevier, New York Neville RC (1995) Solar energy conversion: the solar cell, 2nd edn. Elsevier, New York
23.
go back to reference Kelzenberg MD, Boettcher SW, Petykiewicz JA, Turner-Evans DB, Putnam MC, Warren EL, Spurgeon JM, Briggs RM, Lewis NS, Atwater HA (2010) Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nat Mater 9:239–244CrossRef Kelzenberg MD, Boettcher SW, Petykiewicz JA, Turner-Evans DB, Putnam MC, Warren EL, Spurgeon JM, Briggs RM, Lewis NS, Atwater HA (2010) Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nat Mater 9:239–244CrossRef
24.
go back to reference Moos R, Härdtl KH (1997) Defect chemistry of donor-doped and undoped strontium titanate ceramics between 1000 and 1400 °C. J Am Ceram Soc 10:2549–2562 Moos R, Härdtl KH (1997) Defect chemistry of donor-doped and undoped strontium titanate ceramics between 1000 and 1400 °C. J Am Ceram Soc 10:2549–2562
25.
go back to reference Waser R (1991) Bulk conductivity and defect chemistry of acceptor-doped strontium titanate in the quenched state. J Am Ceram Soc 74:1934–1940CrossRef Waser R (1991) Bulk conductivity and defect chemistry of acceptor-doped strontium titanate in the quenched state. J Am Ceram Soc 74:1934–1940CrossRef
26.
go back to reference Moulson AJ, Herbert JM (2003) Electroceramics: materials, properties, applications, 2nd edn. John Wiley & Son Ltd, New YorkCrossRef Moulson AJ, Herbert JM (2003) Electroceramics: materials, properties, applications, 2nd edn. John Wiley & Son Ltd, New YorkCrossRef
27.
go back to reference Albery WJ, O’Shea GJ, Smith AL (1996) Interpretation and use of Mott–Schottky plots at the semiconductor/electrolyte interface. J Chem Soc Faraday Trans 92(20):4083–4085CrossRef Albery WJ, O’Shea GJ, Smith AL (1996) Interpretation and use of Mott–Schottky plots at the semiconductor/electrolyte interface. J Chem Soc Faraday Trans 92(20):4083–4085CrossRef
28.
go back to reference Gomes WP, Cardon F (1962) Electron energy levels in semiconductor electrochemistry. Prog Surf Sci 12(2):155–216CrossRef Gomes WP, Cardon F (1962) Electron energy levels in semiconductor electrochemistry. Prog Surf Sci 12(2):155–216CrossRef
29.
go back to reference Green MA (1982) Solar cells, operating principles, technology, and system applications. Prentice-Hall Inc., Englewood Cliffs Green MA (1982) Solar cells, operating principles, technology, and system applications. Prentice-Hall Inc., Englewood Cliffs
30.
go back to reference Hagfeldt A, Grätzel M (1995) Light-induced redox reactions in nanocrystalline systems. Chem Rev 95:49CrossRef Hagfeldt A, Grätzel M (1995) Light-induced redox reactions in nanocrystalline systems. Chem Rev 95:49CrossRef
Metadata
Title
Morphology and oxygen vacancy investigation of strontium titanate-based photo electrochemical cells
Authors
D. Hertkorn
M. Benkler
U. Gleißner
F. Büker
C. Megnin
C. Müller
T. Hanemann
H. Reinecke
Publication date
01-01-2015
Publisher
Springer US
Published in
Journal of Materials Science / Issue 1/2015
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-014-8563-y

Other articles of this Issue 1/2015

Journal of Materials Science 1/2015 Go to the issue

Premium Partners