Skip to main content
Top
Published in: Colloid and Polymer Science 2/2022

12-01-2022 | Original Contribution

Morphology transition of polyion complex (PIC) micelles with carboxybetaine as a shell induced at different block ratios and their pH-responsivity

Authors: Dongwook Kim, Hiro Honda, Hideki Matsuoka, Shin-ichi Yusa, Yoshiyuki Saruwatari

Published in: Colloid and Polymer Science | Issue 2/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this study, we investigated the morphology transition of polyion complex (PIC) micelles with the change in block ratio and pH-responsivity of PIC micelles or vesicles using entirely ionic diblock copolymers composed of carboxybetaine and ionic blocks. We used 2-((2-(methacryloylo-xy)ethyl)dimethylammonio)acetate (PGLBT) as carboxybetaine, poly(sodium styrenesulfonate) (PSSNa) as the anionic polymer, and poly[3-(methacrylamido)propyltrimethylammonium chlorid-e] (PMAPTAC) as the cationic polymer. The effect of pH on the PGLBT homopolymer and the PGLBT-containing diblock copolymer was examined by DLS, ELS, and transmittance, and a rapid change of state was observed between pH 4 and 2. At this pH, the carboxyl group of PGLBT was protonated to form a hydrogen bond in the molecule. Furthermore, at a lower pH, diblock copolymer behaved like a cationic polymer. The formation behavior of PIC micelles at different block ratios in the diblock copolymers was investigated by DLS, SLS, TEM, and AFM. PIC vesicles formed when the block ratio of ionic blocks to the PGLBT block was equal or larger (the content of PGLBT was 52% or less). On the other hand, PIC micelles were formed when the block ratio of PGLBT to ionic blocks was larger (the content of PGLBT was 68% or more). The pH-responsivity of PIC micelles was different from that of PIC vesicles. The size of PIC vesicles decreased by lowering pH and increased when the below pH 3. The behavior was the same as the change of state of PGLBT homopolymer with the change in pH. However, the size of PIC micelles increased by lowering pH from pH 6 to 3 and decreased at pH below pH 3. The PGLBT, which became the shell, changed its state with the change in pH and affected the aggregation number of micelles.

Graphical Abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Kobayashi M, Terayama Y, Kikuchi M, Takahara A (2013) Chain dimensions and surface characterization of superhydrophilic polymer brushes with zwitterion side groups. Soft Matter 9:5138–5148CrossRef Kobayashi M, Terayama Y, Kikuchi M, Takahara A (2013) Chain dimensions and surface characterization of superhydrophilic polymer brushes with zwitterion side groups. Soft Matter 9:5138–5148CrossRef
2.
go back to reference Leng C, Han X, Shao Q, Zhu Y, Li Y, Jiang S, Chen Z (2014) In situ probing of the surface hydration of zwitterionic polymer brushes: structural and environmental effects. J Phys Chem C 118:15840–15845CrossRef Leng C, Han X, Shao Q, Zhu Y, Li Y, Jiang S, Chen Z (2014) In situ probing of the surface hydration of zwitterionic polymer brushes: structural and environmental effects. J Phys Chem C 118:15840–15845CrossRef
3.
go back to reference Yameen B, Ali M, Neumann R, Ensinger W, Knoll W, Azzaroni O (2009) Single conical nanopores displaying pH- tunable rectifying characteristics. manipulating ionic transport with zwitterionic polymer brushes. J Am Chem Soc 131:2070–2071PubMedCrossRef Yameen B, Ali M, Neumann R, Ensinger W, Knoll W, Azzaroni O (2009) Single conical nanopores displaying pH- tunable rectifying characteristics. manipulating ionic transport with zwitterionic polymer brushes. J Am Chem Soc 131:2070–2071PubMedCrossRef
4.
go back to reference Ningrum EO, Ohfuka Y, Gotoh T, Sakohara S (2015) Effects of specific anions on the relationship between the ion-adsorption properties of sulfobetaine gel and its swelling behavior. Polymer 59:144–154CrossRef Ningrum EO, Ohfuka Y, Gotoh T, Sakohara S (2015) Effects of specific anions on the relationship between the ion-adsorption properties of sulfobetaine gel and its swelling behavior. Polymer 59:144–154CrossRef
5.
go back to reference Peng X, Liu H, Yin Q, Wu J, Chen P, Zhang G, Liu G, Wu C, Xie Y (2016) A zwitterionic gel electrolyte for efficient solid-state supercapacitors. Nat Commun 7:11782–11789PubMedPubMedCentralCrossRef Peng X, Liu H, Yin Q, Wu J, Chen P, Zhang G, Liu G, Wu C, Xie Y (2016) A zwitterionic gel electrolyte for efficient solid-state supercapacitors. Nat Commun 7:11782–11789PubMedPubMedCentralCrossRef
6.
go back to reference Ning J, Li G, Haraguchi K (2013) Synthesis of highly stretchable, mechanically tough, zwitterionic sulfobetaine nanocomposite gels with controlled thermosensitivities. Macromolecules 46:5317–5328CrossRef Ning J, Li G, Haraguchi K (2013) Synthesis of highly stretchable, mechanically tough, zwitterionic sulfobetaine nanocomposite gels with controlled thermosensitivities. Macromolecules 46:5317–5328CrossRef
7.
go back to reference John JV, Uthaman S, Augustine R, Lekshmi KM, Park IK, Kim I (2017) Biomimetic pH/redox dual stimuli-responsive zwitterionic polymer block poly(L-histidine) micelles for intracellular delivery of doxorubicin into tumor cells. Polym Chem 55:2061–2070CrossRef John JV, Uthaman S, Augustine R, Lekshmi KM, Park IK, Kim I (2017) Biomimetic pH/redox dual stimuli-responsive zwitterionic polymer block poly(L-histidine) micelles for intracellular delivery of doxorubicin into tumor cells. Polym Chem 55:2061–2070CrossRef
8.
go back to reference Kim Y, Binauld S, Stenzel MH (2012) Zwitterionic guanidine-based oligomeeres mimicking cell-penetrating peptides as a nontoxic alternative to cationic polymers to enhance the cellular uptake of micelles. Biomacromol 13:3418–3426CrossRef Kim Y, Binauld S, Stenzel MH (2012) Zwitterionic guanidine-based oligomeeres mimicking cell-penetrating peptides as a nontoxic alternative to cationic polymers to enhance the cellular uptake of micelles. Biomacromol 13:3418–3426CrossRef
9.
go back to reference Jiang J, Li J, Zhou B, Niu C, Wang W, Wu W, Liang J (2019) Fabrication of polymer micelles with zwitterionic shell and biodegradable core for reductively responsive release of doxorubicin. Polymers 11:1019–1031PubMedCentralCrossRef Jiang J, Li J, Zhou B, Niu C, Wang W, Wu W, Liang J (2019) Fabrication of polymer micelles with zwitterionic shell and biodegradable core for reductively responsive release of doxorubicin. Polymers 11:1019–1031PubMedCentralCrossRef
10.
go back to reference Kim D, Sakamoto H, Matsuoka H, Saruwatari Y (2020) Complex formation of sulfobetaine surfactant and ionic polymers and their stimuli responsivity. Langmuir 36:12990–13000PubMedCrossRef Kim D, Sakamoto H, Matsuoka H, Saruwatari Y (2020) Complex formation of sulfobetaine surfactant and ionic polymers and their stimuli responsivity. Langmuir 36:12990–13000PubMedCrossRef
11.
go back to reference Zhu J, Qing Y, Wang T, Zhu R, Wei J, Tao Q, Yuan P, He H (2011) Preparation and characterization of zwitterionic surfactant-modified montmorillonites. J Colloid Interface Sci 360:386–392PubMedCrossRef Zhu J, Qing Y, Wang T, Zhu R, Wei J, Tao Q, Yuan P, He H (2011) Preparation and characterization of zwitterionic surfactant-modified montmorillonites. J Colloid Interface Sci 360:386–392PubMedCrossRef
12.
go back to reference Casu A, Cabrini E, Dona A, Falqui A, Diaz-Fernandez Y, Milanese C, Taglietti A, Pallavicini P (2012) Controlled synthesis of gold nanostars by using a zwitterionic surfactant. Chem Eur J 18:9381–9390PubMedCrossRef Casu A, Cabrini E, Dona A, Falqui A, Diaz-Fernandez Y, Milanese C, Taglietti A, Pallavicini P (2012) Controlled synthesis of gold nanostars by using a zwitterionic surfactant. Chem Eur J 18:9381–9390PubMedCrossRef
13.
go back to reference Ishihara K, Nomura H, Mihara T, Kurita K, Iwasaki Y, Nakabayashi N (1998) Why do phospholipid polymers reduce protein adsorption? J Biomed Mater Res 39:323–330PubMedCrossRef Ishihara K, Nomura H, Mihara T, Kurita K, Iwasaki Y, Nakabayashi N (1998) Why do phospholipid polymers reduce protein adsorption? J Biomed Mater Res 39:323–330PubMedCrossRef
14.
go back to reference Sun Q, Su Y, Ma X, Wang Y, Jiang Z (2006) Improved antifouling property of zwitterionic ultrafiltration membrane composed of acrylonitrile and sulfobetaine copolymer. J Membr Sci 285:299–305CrossRef Sun Q, Su Y, Ma X, Wang Y, Jiang Z (2006) Improved antifouling property of zwitterionic ultrafiltration membrane composed of acrylonitrile and sulfobetaine copolymer. J Membr Sci 285:299–305CrossRef
15.
go back to reference Hadidi M, Zydney AL (2014) Fouling behavior of zwitterionic membranes: impact of electrostatic and hydrophobic interactions. J Membr Sci 452:97–103CrossRef Hadidi M, Zydney AL (2014) Fouling behavior of zwitterionic membranes: impact of electrostatic and hydrophobic interactions. J Membr Sci 452:97–103CrossRef
16.
go back to reference Wang Q, Zheng X, Deng Y, Zhao J, Chen Z, Huang J (2017) Stabilizing the α-phase of CsPbI3 perovskite by sulfobetaine zwitterions in one-step spin-coating films. Joule 1:371–382CrossRef Wang Q, Zheng X, Deng Y, Zhao J, Chen Z, Huang J (2017) Stabilizing the α-phase of CsPbI3 perovskite by sulfobetaine zwitterions in one-step spin-coating films. Joule 1:371–382CrossRef
17.
go back to reference Kim H, Nicholas HH, Kang JH, Bisnoff P, Sundararajan S, Thompson T, Barnes M, Hayward RC, Emrick T (2020) Polymer ZWITTERIONS FOR STABILIZATION of CsPbBr 3 perovskite nanoparticles and nanocomposite films. Angew Chem Int Ed 59:10802–10806CrossRef Kim H, Nicholas HH, Kang JH, Bisnoff P, Sundararajan S, Thompson T, Barnes M, Hayward RC, Emrick T (2020) Polymer ZWITTERIONS FOR STABILIZATION of CsPbBr 3 perovskite nanoparticles and nanocomposite films. Angew Chem Int Ed 59:10802–10806CrossRef
18.
go back to reference Wang D, Huang L, Chen Q, Hu L, Zeng F, Zhou X, Zhang L, Liu C, Wang X, Yan L, Xu B (2020) A dual function-enabled novel zwitterion to stabilize a Pb-I framework and passivate defects for highly efficient inverted planar perovskite solar cells. Chem Commun 56:6929–6932CrossRef Wang D, Huang L, Chen Q, Hu L, Zeng F, Zhou X, Zhang L, Liu C, Wang X, Yan L, Xu B (2020) A dual function-enabled novel zwitterion to stabilize a Pb-I framework and passivate defects for highly efficient inverted planar perovskite solar cells. Chem Commun 56:6929–6932CrossRef
19.
go back to reference Ladenheim H, Morawetz H (1957) A new type of polyampholyte: poly(4-vinyl pyridine betaine). J Polym Sci 26:251–254CrossRef Ladenheim H, Morawetz H (1957) A new type of polyampholyte: poly(4-vinyl pyridine betaine). J Polym Sci 26:251–254CrossRef
20.
go back to reference Lowe AB, McCormick CL (2002) Synthesis and solution properties of zwitterionic polymers. Chem Rev 102:4177–4190PubMedCrossRef Lowe AB, McCormick CL (2002) Synthesis and solution properties of zwitterionic polymers. Chem Rev 102:4177–4190PubMedCrossRef
21.
go back to reference Laschewsky A (2014) Structures and synthesis of zwitterionic polymers. Polymer 6:1544–1601CrossRef Laschewsky A (2014) Structures and synthesis of zwitterionic polymers. Polymer 6:1544–1601CrossRef
22.
go back to reference Thomas DB, Vasilieva YA, Armentrout RS, McCormick CL (2003) Synthesis, characterization, and aqueous solution behavior of electrolyte- and pH-responsive carboxybetaine-containing cyclocopolymers. Macromolecules 36:9710–9715CrossRef Thomas DB, Vasilieva YA, Armentrout RS, McCormick CL (2003) Synthesis, characterization, and aqueous solution behavior of electrolyte- and pH-responsive carboxybetaine-containing cyclocopolymers. Macromolecules 36:9710–9715CrossRef
23.
go back to reference Huynh V, Jesmer AH, Shoaib MM, Wylie RG (2019) Influence of hydrophobic cross-linkers on carboxybetaine copolymer stimuli response and hydrogel biological properties. Langmuir 35:1631–1641PubMedCrossRef Huynh V, Jesmer AH, Shoaib MM, Wylie RG (2019) Influence of hydrophobic cross-linkers on carboxybetaine copolymer stimuli response and hydrogel biological properties. Langmuir 35:1631–1641PubMedCrossRef
24.
go back to reference Hildebrand V, Laschewsky A, Zehm D (2014) On the hydrophilicity of polyzwitterion poly (N, N-dimethyl-N-(3-(methacylamido)propyl)ammoniopropane sulfonate) in water, deuterated water, and aqueous salt solutions. J Biomater Sci Polym Ed 25:1602–1618PubMedCrossRef Hildebrand V, Laschewsky A, Zehm D (2014) On the hydrophilicity of polyzwitterion poly (N, N-dimethyl-N-(3-(methacylamido)propyl)ammoniopropane sulfonate) in water, deuterated water, and aqueous salt solutions. J Biomater Sci Polym Ed 25:1602–1618PubMedCrossRef
25.
go back to reference Niskanen J, Tenhu H (2017) How to manipulate the upper critical solution temperature (USCT)? Polym Chem 8:220–232CrossRef Niskanen J, Tenhu H (2017) How to manipulate the upper critical solution temperature (USCT)? Polym Chem 8:220–232CrossRef
26.
go back to reference Iso K, Okada T (2000) Evaluation of electrostatic potential induced by anion-dominated partition into zwitterionic micelles and origin of selectivity in anion uptake. Langmuir 16:9199–9204CrossRef Iso K, Okada T (2000) Evaluation of electrostatic potential induced by anion-dominated partition into zwitterionic micelles and origin of selectivity in anion uptake. Langmuir 16:9199–9204CrossRef
27.
go back to reference Matsuda Y, Kobayashi M, Annaka M, Ishihara K, Takahara A (2008) Dimensions of a free linear polymer and polymer immobilized on silica nanoparticles of a zwitterionic polymer in aqueous solutions with various ionic strengths. Langmuir 24:8772–8778PubMedCrossRef Matsuda Y, Kobayashi M, Annaka M, Ishihara K, Takahara A (2008) Dimensions of a free linear polymer and polymer immobilized on silica nanoparticles of a zwitterionic polymer in aqueous solutions with various ionic strengths. Langmuir 24:8772–8778PubMedCrossRef
28.
go back to reference Yang J, Chen H, Xiao S, Shen M, Chen F, Fan P, Zhong M, Zheng J (2015) Salt-Responsive zwitterionic polymer brushes with tunable friction and antifouling properties. Langmuir 31:9125–9133PubMedCrossRef Yang J, Chen H, Xiao S, Shen M, Chen F, Fan P, Zhong M, Zheng J (2015) Salt-Responsive zwitterionic polymer brushes with tunable friction and antifouling properties. Langmuir 31:9125–9133PubMedCrossRef
29.
go back to reference Ni L, Meng J, Geise GM, Zhang Y, Zhou J (2015) Water and salt transport properties of zwitterionic polymers films. J Membr Sci 491:73–81CrossRef Ni L, Meng J, Geise GM, Zhang Y, Zhou J (2015) Water and salt transport properties of zwitterionic polymers films. J Membr Sci 491:73–81CrossRef
30.
go back to reference Harada A, Kataoka K (1995) Formation of polyion complex micelles in an aqueous milieu from a pair of oppositely-charged block copolymers with poly(ethylene glycol) segments. Macromolecules 28:5294–5299CrossRef Harada A, Kataoka K (1995) Formation of polyion complex micelles in an aqueous milieu from a pair of oppositely-charged block copolymers with poly(ethylene glycol) segments. Macromolecules 28:5294–5299CrossRef
31.
go back to reference Harada A, Kataoka K (1999) Chain length recognition: core-shell supramolecular assembly from oppositely charged block copolymers. Science 283:65–67PubMedCrossRef Harada A, Kataoka K (1999) Chain length recognition: core-shell supramolecular assembly from oppositely charged block copolymers. Science 283:65–67PubMedCrossRef
32.
go back to reference Israelachvili JN, Mitchell DJ, Ninham BW (1976) Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J Chem Soc, Faraday Trans 2(72):1525–1568CrossRef Israelachvili JN, Mitchell DJ, Ninham BW (1976) Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J Chem Soc, Faraday Trans 2(72):1525–1568CrossRef
33.
go back to reference Smart T, Lomas H, Massignani M, Flores-Merino MV, Perez LR, Battaglia G (2008) Block copolymer nanostructures. Nano Today 3:38–46CrossRef Smart T, Lomas H, Massignani M, Flores-Merino MV, Perez LR, Battaglia G (2008) Block copolymer nanostructures. Nano Today 3:38–46CrossRef
34.
go back to reference Chuanoi S, Anraku Y, Hori M, Kishimura A, Kataoka K (2014) Fabrication of polyion complex vesicles with enhanced salt and temperature resistance and their potential applications as enzymatic nanoreactors. Biomacromol 15:2389–2397CrossRef Chuanoi S, Anraku Y, Hori M, Kishimura A, Kataoka K (2014) Fabrication of polyion complex vesicles with enhanced salt and temperature resistance and their potential applications as enzymatic nanoreactors. Biomacromol 15:2389–2397CrossRef
35.
go back to reference Zhang J, Zhou Y, Zhu Z, Ge Z, Liu S (2008) Polyion complex micelles possessing thermoresponsive coronas and their covalent core stabilization via “click” chemistry. Macromolecules 41:1444–1454CrossRef Zhang J, Zhou Y, Zhu Z, Ge Z, Liu S (2008) Polyion complex micelles possessing thermoresponsive coronas and their covalent core stabilization via “click” chemistry. Macromolecules 41:1444–1454CrossRef
36.
go back to reference Shovsky A, Varga I, Makuska R, Claesson PM (2009) Formation and stability of water-soluble, molecular polyelectrolyte complexes: effects of charge density, mixing ratio, and polyelectrolyte concentration. Langmuir 25:6113–6121PubMedCrossRef Shovsky A, Varga I, Makuska R, Claesson PM (2009) Formation and stability of water-soluble, molecular polyelectrolyte complexes: effects of charge density, mixing ratio, and polyelectrolyte concentration. Langmuir 25:6113–6121PubMedCrossRef
37.
go back to reference Lindhoud S, Norde W, Stuart MAC (2009) Reversibility and relaxation behavior of polyelectrolyte complex micelle formation. J Phys Chem B 113:5431–5439PubMedCrossRef Lindhoud S, Norde W, Stuart MAC (2009) Reversibility and relaxation behavior of polyelectrolyte complex micelle formation. J Phys Chem B 113:5431–5439PubMedCrossRef
38.
go back to reference Kim D, Matsuoka H, Saruwatari Y (2020) Formation of sulfobetaine-containing entirely ionic PIC (polyion complex) micelles and their temperature responsivity. Langmuir 36:10130–10137PubMedCrossRef Kim D, Matsuoka H, Saruwatari Y (2020) Formation of sulfobetaine-containing entirely ionic PIC (polyion complex) micelles and their temperature responsivity. Langmuir 36:10130–10137PubMedCrossRef
39.
go back to reference Kim D, Matsuoka H, Yusa S, Saruwatari Y (2020) Collapse behavior of polyion complex (PIC) micelles upon salt addition and reforming behavior by dialysis and its temperature responsivity. Langmuir 36:15485–15492PubMedCrossRef Kim D, Matsuoka H, Yusa S, Saruwatari Y (2020) Collapse behavior of polyion complex (PIC) micelles upon salt addition and reforming behavior by dialysis and its temperature responsivity. Langmuir 36:15485–15492PubMedCrossRef
40.
go back to reference Jones RAL (2004) Soft condensed matter. Oxford University Press Jones RAL (2004) Soft condensed matter. Oxford University Press
41.
go back to reference Yin H, Zhou Z, Huang J, Zhen R, Zhang Y (2003) Temperature-induced micelle to vesicle transition in the sodium dodecylsulfate/dodecyltriethylammonium bromide system. Angew Chem Int Ed 42:2188–2191CrossRef Yin H, Zhou Z, Huang J, Zhen R, Zhang Y (2003) Temperature-induced micelle to vesicle transition in the sodium dodecylsulfate/dodecyltriethylammonium bromide system. Angew Chem Int Ed 42:2188–2191CrossRef
42.
go back to reference Moughton AO, O’Reilly RK (2010) Thermally induced micelle to vesicle morphology transition for a charged chain end diblock copolymer. Chem Commun 46:1091–1093CrossRef Moughton AO, O’Reilly RK (2010) Thermally induced micelle to vesicle morphology transition for a charged chain end diblock copolymer. Chem Commun 46:1091–1093CrossRef
43.
go back to reference Ohno S, Ishihara K, Yusa S (2016) Formation of polyion complex (PIC) micelles and vesicles with anionic pH-responsive unimer micelles and cationic diblock copolymers in water. Langmuir 32:3945–3953PubMedCrossRef Ohno S, Ishihara K, Yusa S (2016) Formation of polyion complex (PIC) micelles and vesicles with anionic pH-responsive unimer micelles and cationic diblock copolymers in water. Langmuir 32:3945–3953PubMedCrossRef
44.
go back to reference Blanazs A, Armes SP, Ryan AJ (2009) Self-assembled block copolymer aggregates: from micelles to vesicles and their biological applications. Macromol Rapid Commun 30:267–277PubMedCrossRef Blanazs A, Armes SP, Ryan AJ (2009) Self-assembled block copolymer aggregates: from micelles to vesicles and their biological applications. Macromol Rapid Commun 30:267–277PubMedCrossRef
45.
go back to reference Hattori G, Takenaka M, Sawamoto M, Terashima T (2018) Nanostructured materials via the pendant self-assembly of amphiphilic crystalline random copolymers. J Am Chem Soc 140:8376–8379PubMedCrossRef Hattori G, Takenaka M, Sawamoto M, Terashima T (2018) Nanostructured materials via the pendant self-assembly of amphiphilic crystalline random copolymers. J Am Chem Soc 140:8376–8379PubMedCrossRef
46.
go back to reference Gonzalez Y, Nakanishi H, Stjerndahl M, Kaler EW (2005) Influence of pH on the micelle-to-vesicle transition in aqueous mixtures of sodium dodecyl benzenesulfonate with histidine. J Phys Chem B 109:11675–11682PubMedCrossRef Gonzalez Y, Nakanishi H, Stjerndahl M, Kaler EW (2005) Influence of pH on the micelle-to-vesicle transition in aqueous mixtures of sodium dodecyl benzenesulfonate with histidine. J Phys Chem B 109:11675–11682PubMedCrossRef
47.
go back to reference Takahashi R, Sato T, Terao K, Yusa S (2016) Reversible vesicle-spherical micelle transition in a polyion complex micellar system induced by changing the mixing ratio of copolymer components. Macromolecules 49:3091–3099CrossRef Takahashi R, Sato T, Terao K, Yusa S (2016) Reversible vesicle-spherical micelle transition in a polyion complex micellar system induced by changing the mixing ratio of copolymer components. Macromolecules 49:3091–3099CrossRef
48.
go back to reference Mitsukami Y, Donovan MS, Lowe AB, McCormick CL (2001) Water-soluble polymers. 81. Direct synthesis of hydrophilic styrenic-based homopolymers and block copolymers in aqueous solution via RAFT. Macromolecules 34:2248–2256CrossRef Mitsukami Y, Donovan MS, Lowe AB, McCormick CL (2001) Water-soluble polymers. 81. Direct synthesis of hydrophilic styrenic-based homopolymers and block copolymers in aqueous solution via RAFT. Macromolecules 34:2248–2256CrossRef
49.
go back to reference Kim D, Matsuoka H, Saruwatari Y (2019) Synthesis and stimuli responsivity of diblock copolymers composed of sulfobetaine and ionic blocks: influence of the block ratio. Langmuir 35:1590–1597PubMedCrossRef Kim D, Matsuoka H, Saruwatari Y (2019) Synthesis and stimuli responsivity of diblock copolymers composed of sulfobetaine and ionic blocks: influence of the block ratio. Langmuir 35:1590–1597PubMedCrossRef
50.
go back to reference Smoluchowski MV (1916) Drei Vorträge über Diffusion, Brownsche Molekularbewegung und Koagulation von Kolloidteilchen. Phys Z 17:557–585 Smoluchowski MV (1916) Drei Vorträge über Diffusion, Brownsche Molekularbewegung und Koagulation von Kolloidteilchen. Phys Z 17:557–585
51.
go back to reference Einstein A (1905) Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann der Physik 322:549–560CrossRef Einstein A (1905) Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann der Physik 322:549–560CrossRef
52.
go back to reference Zimm BH (1948) The scattering of light and the radial distribution function of high polymer solutions. J Chem Phys 16:1093–1099CrossRef Zimm BH (1948) The scattering of light and the radial distribution function of high polymer solutions. J Chem Phys 16:1093–1099CrossRef
53.
go back to reference Kharlampieva E, Pristinski D, Sukhishvili SA (2007) Hydrogen-bonded multilayers of poly(carboxybetaine)s. Macromolecules 40:6967–6972CrossRef Kharlampieva E, Pristinski D, Sukhishvili SA (2007) Hydrogen-bonded multilayers of poly(carboxybetaine)s. Macromolecules 40:6967–6972CrossRef
54.
go back to reference Zou Q, Habermann-Rottinghaus SM, Murphy KP (1998) Urea effects on protein stability: hydrogen bonding and the hydrophobic effect. Proteins 31:107–115PubMedCrossRef Zou Q, Habermann-Rottinghaus SM, Murphy KP (1998) Urea effects on protein stability: hydrogen bonding and the hydrophobic effect. Proteins 31:107–115PubMedCrossRef
55.
go back to reference Sagle LB, Zhang Y, Litosh VA, Chen X, Cho Y, Cremer PS (2009) Investigating the hydrogen-bonding model of urea denaturation. J Am Chem Soc 131:9304–9310PubMedCrossRef Sagle LB, Zhang Y, Litosh VA, Chen X, Cho Y, Cremer PS (2009) Investigating the hydrogen-bonding model of urea denaturation. J Am Chem Soc 131:9304–9310PubMedCrossRef
56.
go back to reference Jones AOF, Leech CK, Mclntyre GJ, Wilson CC, Thomas LH (2014) Engineering short, strong hydrogen bonds in urea di-carboxylic acid complexes. CrystEngComm 16:8177–8184CrossRef Jones AOF, Leech CK, Mclntyre GJ, Wilson CC, Thomas LH (2014) Engineering short, strong hydrogen bonds in urea di-carboxylic acid complexes. CrystEngComm 16:8177–8184CrossRef
57.
go back to reference Patterson JP, Robin MP, Chassenieux C, Colombani O, O’Reilly RK (2014) The analysis of solution self-assembled polymeric nanomaterials. Chem Soc Rev 43:2412–2425PubMedCrossRef Patterson JP, Robin MP, Chassenieux C, Colombani O, O’Reilly RK (2014) The analysis of solution self-assembled polymeric nanomaterials. Chem Soc Rev 43:2412–2425PubMedCrossRef
Metadata
Title
Morphology transition of polyion complex (PIC) micelles with carboxybetaine as a shell induced at different block ratios and their pH-responsivity
Authors
Dongwook Kim
Hiro Honda
Hideki Matsuoka
Shin-ichi Yusa
Yoshiyuki Saruwatari
Publication date
12-01-2022
Publisher
Springer Berlin Heidelberg
Published in
Colloid and Polymer Science / Issue 2/2022
Print ISSN: 0303-402X
Electronic ISSN: 1435-1536
DOI
https://doi.org/10.1007/s00396-021-04921-7

Other articles of this Issue 2/2022

Colloid and Polymer Science 2/2022 Go to the issue

Premium Partners