Skip to main content
Top
Published in: Journal of Nanoparticle Research 11/2014

01-11-2014 | Research Paper

Multi-edged wrinkled graphene-like carbon-wrapped carbon nanotubes and highly conductive Pt-free counter electrode for dye-sensitized solar cells

Authors: Mridula Baro, Sundara Ramaprabhu

Published in: Journal of Nanoparticle Research | Issue 11/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Multi-edged wrinkled graphene-like carbon-wrapped carbon nanotubes (GWC) is demonstrated as a Pt-free counter electrode for dye-sensitized solar cells (DSSCs). GWC, with wrinkled graphene-like surface and one-dimensional tubular structure, exhibits significant electrocatalytic activity toward the reduction of triiodide due to the highly defective multi-edges and good conductivity. Raman spectroscopy studies suggest the presence of significantly higher defects in the GWC sample in comparison to multi-walled carbon nanotubes (MWNTs) and hydrogen exfoliated graphene (HEG). Four-probe measurement studies show better specific resistance (11.30 Ω cm), sheet resistance (4.52 × 103 Ωsq−1), and conductivity (8.84 Sm−1) of GWC film compared to HEG, but less compared to MWNTs. The impact of GWC properties on DSSC performance is studied by cyclic voltammetry and electrochemical impedance spectroscopy. The GWC counter electrode shows enhanced catalytic activity and power conversion efficiency (6.15 %) compared to that of MWNTs (5.12 %) and HEG (5.42 %). We also compare the catalytic activity and power conversion efficiency of GWC with Pt and find approaching that of Pt (6.68 %).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Aravind SSJ, Eswaraiah V, Ramaprabhu S (2011) Facile synthesis of one dimensional graphene wrapped carbon nanotube composite by chemical vapour deposition. J Mater Chem 21:15179–15182CrossRef Aravind SSJ, Eswaraiah V, Ramaprabhu S (2011) Facile synthesis of one dimensional graphene wrapped carbon nanotube composite by chemical vapour deposition. J Mater Chem 21:15179–15182CrossRef
go back to reference Bahr JL, Tour JM (2002) Covalent chemistry of single-wall carbon nanotubes. J Mater Chem 12:1952–1958CrossRef Bahr JL, Tour JM (2002) Covalent chemistry of single-wall carbon nanotubes. J Mater Chem 12:1952–1958CrossRef
go back to reference Banerjee S, Hemraj-Benny T, Wong SS (2005) Covalent surface chemistry of single-walled carbon nanotubes. Adv. Mater 17:17–29CrossRef Banerjee S, Hemraj-Benny T, Wong SS (2005) Covalent surface chemistry of single-walled carbon nanotubes. Adv. Mater 17:17–29CrossRef
go back to reference Dresselhaus MS, Thomas IL (2001) Alternative energy technologies. Nature 414:332–337CrossRef Dresselhaus MS, Thomas IL (2001) Alternative energy technologies. Nature 414:332–337CrossRef
go back to reference Fan B, Mei X, Sun K, Ouyang J (2008) Conducting polymer/carbon nanotube composite as counter electrode of dye-sensitized solar cells. Appl Phys Lett 93:143103–143104CrossRef Fan B, Mei X, Sun K, Ouyang J (2008) Conducting polymer/carbon nanotube composite as counter electrode of dye-sensitized solar cells. Appl Phys Lett 93:143103–143104CrossRef
go back to reference Hagfeldt A, Boschloo G, Sun LC, Kloo L, Pettersson H (2010) Dye-sensitized solar cells. Chem Rev 2010:6595–6663CrossRef Hagfeldt A, Boschloo G, Sun LC, Kloo L, Pettersson H (2010) Dye-sensitized solar cells. Chem Rev 2010:6595–6663CrossRef
go back to reference Han J, Kim H, Kim DY, Jo SM, Jang SY (2010) Water-soluble polyelectrolyte-grafted multi-walled carbon nanotube thin films for efficient counter electrode of dye-sensitized solar cells. ACS Nano 4:3503–3509CrossRef Han J, Kim H, Kim DY, Jo SM, Jang SY (2010) Water-soluble polyelectrolyte-grafted multi-walled carbon nanotube thin films for efficient counter electrode of dye-sensitized solar cells. ACS Nano 4:3503–3509CrossRef
go back to reference Hsieh CT, Yang BH, Chen WY (2012) Accelerated-aging-test-for-carbon-composite-counter- electrodes-based-dye-sensitized-solar-cells. J. Photoenergy, Int. doi:10.1155/2012/709581 Hsieh CT, Yang BH, Chen WY (2012) Accelerated-aging-test-for-carbon-composite-counter- electrodes-based-dye-sensitized-solar-cells. J. Photoenergy, Int. doi:10.​1155/​2012/​709581
go back to reference Jang J (2006) Conducting polymer nanomaterials and their applications. Adv Polym Sci 199:189–260CrossRef Jang J (2006) Conducting polymer nanomaterials and their applications. Adv Polym Sci 199:189–260CrossRef
go back to reference Kaniyoor A, Baby TT, Ramaprabhu S (2010) Graphene synthesis via hydrogen induced low temperature exfoliation of graphite oxide. J Mater Chem 20:8467–8469CrossRef Kaniyoor A, Baby TT, Ramaprabhu S (2010) Graphene synthesis via hydrogen induced low temperature exfoliation of graphite oxide. J Mater Chem 20:8467–8469CrossRef
go back to reference Kneton KR, McCreery RL (1992) Effects of redox system structure on electron-transfer kinetics at ordered graphite and glassy carbon electrodes. Anal Chem 64:2518–2524CrossRef Kneton KR, McCreery RL (1992) Effects of redox system structure on electron-transfer kinetics at ordered graphite and glassy carbon electrodes. Anal Chem 64:2518–2524CrossRef
go back to reference Lee WC, Ramasamy E, Lee DW, Song JS (2009) Efficient dye-sensitized solar cells with catalytic multiwall carbon nanotube counter electrodes. ACS Appl Mater Interfaces 1:1145–1149CrossRef Lee WC, Ramasamy E, Lee DW, Song JS (2009) Efficient dye-sensitized solar cells with catalytic multiwall carbon nanotube counter electrodes. ACS Appl Mater Interfaces 1:1145–1149CrossRef
go back to reference Li D, Müller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105CrossRef Li D, Müller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105CrossRef
go back to reference Mei X, Cho SJ, Fan B, Ouyang J (2012) High-performance dye-sensitized solar cells with gel-coated binder-free carbon nanotube films as counter electrode. Nanotechnology 21:395202(1)–395202(9) Mei X, Cho SJ, Fan B, Ouyang J (2012) High-performance dye-sensitized solar cells with gel-coated binder-free carbon nanotube films as counter electrode. Nanotechnology 21:395202(1)–395202(9)
go back to reference Murakami TN, Ito S, Wang Q, Nazeeruddin MK, Bessho T, Cesar I, Liska P, Humphry-Baker R, Comte P, Péchy P, Grätzel M (2006) Highly efficient dye-sensitized solar cells based on carbon black counter electrodes. J Electrochem Soc 153:A2255–A2261CrossRef Murakami TN, Ito S, Wang Q, Nazeeruddin MK, Bessho T, Cesar I, Liska P, Humphry-Baker R, Comte P, Péchy P, Grätzel M (2006) Highly efficient dye-sensitized solar cells based on carbon black counter electrodes. J Electrochem Soc 153:A2255–A2261CrossRef
go back to reference O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye- sensitized colloidal TiO2 films. Nature 353:737–740CrossRef O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye- sensitized colloidal TiO2 films. Nature 353:737–740CrossRef
go back to reference Olsen E, Hagen G, Eric Lindquist S (2000) Dissolution of platinum in methoxy propionitrile containing LiI/I2. Sol Energy Mater Sol Cells 63:267–273CrossRef Olsen E, Hagen G, Eric Lindquist S (2000) Dissolution of platinum in methoxy propionitrile containing LiI/I2. Sol Energy Mater Sol Cells 63:267–273CrossRef
go back to reference Papageorgiou N (2004) Counter-electrode function in nanocrystalline photoelectrochemical cell configurations. Coord Chem Rev 248:1421–1446CrossRef Papageorgiou N (2004) Counter-electrode function in nanocrystalline photoelectrochemical cell configurations. Coord Chem Rev 248:1421–1446CrossRef
go back to reference Ramasamy E, Lee WJ, Lee DY, Song JS (2007) Nanocarbon counterelectrode for dye- sensitized solar cells. Appl Phys Lett 90:173103CrossRef Ramasamy E, Lee WJ, Lee DY, Song JS (2007) Nanocarbon counterelectrode for dye- sensitized solar cells. Appl Phys Lett 90:173103CrossRef
go back to reference Reich S, Thomsen C (2004) Raman Spectroscopy of Graphite. Philos Trans R Soc Lond A 362:2271–2288CrossRef Reich S, Thomsen C (2004) Raman Spectroscopy of Graphite. Philos Trans R Soc Lond A 362:2271–2288CrossRef
go back to reference Roy-Mayhew JD, Bozym DJ, Punckt C, Aksay IA (2010) Functionalized graphene as a catalytic counter electrode in dye-sensitized solar cells. ACS Nano 4:6203–6211CrossRef Roy-Mayhew JD, Bozym DJ, Punckt C, Aksay IA (2010) Functionalized graphene as a catalytic counter electrode in dye-sensitized solar cells. ACS Nano 4:6203–6211CrossRef
go back to reference Saito Y, Kitamura T, Wada Y, Yanagida S (2002) Application of poly(3,4-ethylenedioxythiophene) to counter electrode in dye-sensitized solar cells. Chem Lett 31:1060–1061CrossRef Saito Y, Kitamura T, Wada Y, Yanagida S (2002) Application of poly(3,4-ethylenedioxythiophene) to counter electrode in dye-sensitized solar cells. Chem Lett 31:1060–1061CrossRef
go back to reference Sauvage F, Chen D, Comte P, Huang F, Heiniger LP, Cheng YB, Caruso RA, Graetzel M (2010) Dye-sensitized solar cells employing a single film of mesoporous TiO2 beads achieve power conversion efficiencies over 10 %. ACS Nano 4:4420–4425CrossRef Sauvage F, Chen D, Comte P, Huang F, Heiniger LP, Cheng YB, Caruso RA, Graetzel M (2010) Dye-sensitized solar cells employing a single film of mesoporous TiO2 beads achieve power conversion efficiencies over 10 %. ACS Nano 4:4420–4425CrossRef
go back to reference Shaijumon MM, Ramaprabhu S (2003) Synthesis of CNTs by pyrolysis of acetylene using alloy hydride materials as catalyst and their hydrogen adsorption studies. Chem Phys Lett 374:513–520CrossRef Shaijumon MM, Ramaprabhu S (2003) Synthesis of CNTs by pyrolysis of acetylene using alloy hydride materials as catalyst and their hydrogen adsorption studies. Chem Phys Lett 374:513–520CrossRef
go back to reference Tasis D, Tagmatarchis N, Bianca A, Prato M (2006) Chemistry of carbon nanotubes. Chem Rev 106:1105–1136CrossRef Tasis D, Tagmatarchis N, Bianca A, Prato M (2006) Chemistry of carbon nanotubes. Chem Rev 106:1105–1136CrossRef
go back to reference Trancik JE, Barton SC, Hone J (2008) Transparent and catalytic carbon nanotube films. Nano Lett 8:982–987CrossRef Trancik JE, Barton SC, Hone J (2008) Transparent and catalytic carbon nanotube films. Nano Lett 8:982–987CrossRef
go back to reference Tuinstra F, Koenig JL (1970) Raman spectrum of graphite. J Chem Phys 53:1126–1130CrossRef Tuinstra F, Koenig JL (1970) Raman spectrum of graphite. J Chem Phys 53:1126–1130CrossRef
go back to reference Vinayan BP, Nagar R, Raman V, Rajalakshmi N, Dhathathreyan KS, Ramaprabhu S (2012) Synthesis of graphene-multiwalled carbon nanotubes hybrid nanostructure by strengthened electrostatic interaction and its lithium ion battery application. J Mater Chem 22:9949–9956CrossRef Vinayan BP, Nagar R, Raman V, Rajalakshmi N, Dhathathreyan KS, Ramaprabhu S (2012) Synthesis of graphene-multiwalled carbon nanotubes hybrid nanostructure by strengthened electrostatic interaction and its lithium ion battery application. J Mater Chem 22:9949–9956CrossRef
go back to reference Wu MX, Ma TL (2012) Platinum-free catalysts as counter electrodes in dye-sensitized solar cells. ChemSusChem 5:1343–1357CrossRef Wu MX, Ma TL (2012) Platinum-free catalysts as counter electrodes in dye-sensitized solar cells. ChemSusChem 5:1343–1357CrossRef
go back to reference Xia J, Masaki N, Jiang K, Yanagida S (2007) The influence of doping ions on poly(3,4-ethylenedioxythiophene) as a counter electrode of a dye-sensitized solar cell. J Mater Chem 17:2845–2850CrossRef Xia J, Masaki N, Jiang K, Yanagida S (2007) The influence of doping ions on poly(3,4-ethylenedioxythiophene) as a counter electrode of a dye-sensitized solar cell. J Mater Chem 17:2845–2850CrossRef
go back to reference Zhang M, Fang S, Zakhidov AA, Lee SB, Aliev AE, Williams CD, Atkinson KR, Baughman RH (2005) Strong, transparent, multifunctional, carbon nanotube sheets. Science 309:1215–1219CrossRef Zhang M, Fang S, Zakhidov AA, Lee SB, Aliev AE, Williams CD, Atkinson KR, Baughman RH (2005) Strong, transparent, multifunctional, carbon nanotube sheets. Science 309:1215–1219CrossRef
Metadata
Title
Multi-edged wrinkled graphene-like carbon-wrapped carbon nanotubes and highly conductive Pt-free counter electrode for dye-sensitized solar cells
Authors
Mridula Baro
Sundara Ramaprabhu
Publication date
01-11-2014
Publisher
Springer Netherlands
Published in
Journal of Nanoparticle Research / Issue 11/2014
Print ISSN: 1388-0764
Electronic ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-014-2711-9

Other articles of this Issue 11/2014

Journal of Nanoparticle Research 11/2014 Go to the issue

Premium Partners