Skip to main content
Top
Published in: Journal of Nanoparticle Research 11/2014

01-11-2014 | Research Paper

ATMP-stabilized iron nanoparticles: chelator-controlled nanoparticle synthesis

Authors: Lauren F. Greenlee, Nikki S. Rentz

Published in: Journal of Nanoparticle Research | Issue 11/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this study, we characterize iron nanoparticles synthesized in water in the presence of a phosphonate chelator, amino tris(methylene phosphonic acid) (ATMP) for a range of molar ratios of ATMP to iron. An increase in the molar ratio from 0.05 to 0.8 decreases nanoparticle size from approximately 150 nm to less than 10 nm. Zeta potential measurements were used to evaluate colloidal stability. Zeta potential values varied as a function of pH, and zeta potential values decreased with increasing pH. At lower molar ratios of ATMP to iron, the zeta potential varied between 15 and −40 mV, passing through an isoelectric point at pH 7.5. At higher ratios, the zeta potential was negative across the measured pH range of 2–12 and varied from −2 to −55 mV. Diffraction analysis indicates that ATMP-stabilized iron nanoparticles may have a nano-crystalline structure, potentially with regions of amorphous iron. Characterization results of ATMP-stabilized iron nanoparticles are compared to results obtained for carboxymethyl cellulose (CMC)-stabilized iron nanoparticles. CMC stabilization caused similar peak broadening in diffraction spectra as for ATMP, suggesting similar nano-crystalline/amorphous structure; however, an increase in the molar ratio of CMC to iron did not cause the same reduction in nanoparticle size as was observed for ATMP-stabilized iron nanoparticles.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abid AD, Kanematsu M, Young TM, Kennedy IM (2013) Arsenic removal from water using flame-synthesized iron oxide nanoparticles with variable oxidation states. Aerosol Sci Technol 47:169–176CrossRef Abid AD, Kanematsu M, Young TM, Kennedy IM (2013) Arsenic removal from water using flame-synthesized iron oxide nanoparticles with variable oxidation states. Aerosol Sci Technol 47:169–176CrossRef
go back to reference Alayoglu S, Eichhorn B (2008) Rh-Pt bimetallic catalysts: Synthesis, characterization, and catalysis of core–shell, alloy and monometallic nanoparticles. J Am Chem Soc 130:17479–17486. doi:10.1021/ja8061425 CrossRef Alayoglu S, Eichhorn B (2008) Rh-Pt bimetallic catalysts: Synthesis, characterization, and catalysis of core–shell, alloy and monometallic nanoparticles. J Am Chem Soc 130:17479–17486. doi:10.​1021/​ja8061425 CrossRef
go back to reference Alayoglu S, Nilekar AU, Mavrikakis M, Eichhorn B (2008) Ru–Pt core–shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. Nat Mater 7:333–338. doi:10.1038/nmat2156 CrossRef Alayoglu S, Nilekar AU, Mavrikakis M, Eichhorn B (2008) Ru–Pt core–shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. Nat Mater 7:333–338. doi:10.​1038/​nmat2156 CrossRef
go back to reference Barazzouk S, Lefevre M, Dodelet J-P (2009) Oxygen reduction in PEM fuel cells: Fe-based electrocatalysts made with high surface area activated carbon supports. J Electrochem Soc 156:B1466–B1474CrossRef Barazzouk S, Lefevre M, Dodelet J-P (2009) Oxygen reduction in PEM fuel cells: Fe-based electrocatalysts made with high surface area activated carbon supports. J Electrochem Soc 156:B1466–B1474CrossRef
go back to reference Barron AR (2014) The interaction of carboxylic acids with aluminium oxides: journeying from a basic understanding of alumina nanoparticles to water treatment for industrial and humanitarian applications. Dalton Trans 43:8127–8143CrossRef Barron AR (2014) The interaction of carboxylic acids with aluminium oxides: journeying from a basic understanding of alumina nanoparticles to water treatment for industrial and humanitarian applications. Dalton Trans 43:8127–8143CrossRef
go back to reference Bhaumik M, Choi HJ, McCrindle RI, Maity A (2014) Composite nanofibers prepared from metallic iron nanoparticles and polyaniline: high performance for water treatment applications. J Colloid Interface Sci 425:75–82CrossRef Bhaumik M, Choi HJ, McCrindle RI, Maity A (2014) Composite nanofibers prepared from metallic iron nanoparticles and polyaniline: high performance for water treatment applications. J Colloid Interface Sci 425:75–82CrossRef
go back to reference Bokare V, Jung J-l, Chang Y-Y, Chang Y-S (2013) Reductive dechlorination of octachlorodibenzo-p-dioxin by nanosized zero-valent zinc: modeling of rate kinetics and congener profile. J Hazard Mater 250–251:397–402CrossRef Bokare V, Jung J-l, Chang Y-Y, Chang Y-S (2013) Reductive dechlorination of octachlorodibenzo-p-dioxin by nanosized zero-valent zinc: modeling of rate kinetics and congener profile. J Hazard Mater 250–251:397–402CrossRef
go back to reference Bosbach D, Hall C, Putnis A (1998) Mineral precipitation and dissolution in aqueous solution: in-situ microscopic observations on barite (001) with atomic force microscopy. Chem Geol 151:143–160CrossRef Bosbach D, Hall C, Putnis A (1998) Mineral precipitation and dissolution in aqueous solution: in-situ microscopic observations on barite (001) with atomic force microscopy. Chem Geol 151:143–160CrossRef
go back to reference Cao J, Xu R, Tang H, Tang S, Cao M (2011) Synthesis of monodispersed CMC-stabilized Fe–Cu bimetal nanoparticles for in situ reductive dechlorination of 1,2,4-trichlorobenzene. Sci Total Environ 409:2336–2341CrossRef Cao J, Xu R, Tang H, Tang S, Cao M (2011) Synthesis of monodispersed CMC-stabilized Fe–Cu bimetal nanoparticles for in situ reductive dechlorination of 1,2,4-trichlorobenzene. Sci Total Environ 409:2336–2341CrossRef
go back to reference Carroll KJ, Hudgins DM, Brown LW, Yoon SD, Heiman D, Harris VG, Carpenter EE (2010a) Annealing of amorphous FexCo100−x nanoparticles synthesized by a modified aqueous reduction using NaBH4. J Appl Phys 107:3. doi:10.1063/1.3334172 09a303 Carroll KJ, Hudgins DM, Brown LW, Yoon SD, Heiman D, Harris VG, Carpenter EE (2010a) Annealing of amorphous FexCo100−x nanoparticles synthesized by a modified aqueous reduction using NaBH4. J Appl Phys 107:3. doi:10.​1063/​1.​3334172 09a303
go back to reference Che HX, Yeap SP, Ahmad AL, Lim J (2014) Layer-by-layer assembly of iron oxide magnetic nanoparticles decorated silica colloid for water remediation. Chem Eng J 243:68–78CrossRef Che HX, Yeap SP, Ahmad AL, Lim J (2014) Layer-by-layer assembly of iron oxide magnetic nanoparticles decorated silica colloid for water remediation. Chem Eng J 243:68–78CrossRef
go back to reference Chen KL, Elimelech M (2009) Relating colloidal stability of fullerene (C-60) nanoparticles to nanoparticle charge and electrokinetic properties. Environ Sci Technol 43:7270–7276. doi:10.1021/es900185p CrossRef Chen KL, Elimelech M (2009) Relating colloidal stability of fullerene (C-60) nanoparticles to nanoparticle charge and electrokinetic properties. Environ Sci Technol 43:7270–7276. doi:10.​1021/​es900185p CrossRef
go back to reference Chen Y, Gu X, Nie C-G, Jiang Z-Y, Xie Z-X, Lin C-J (2005) Shape controlled growth of gold nanoparticles by a solution synthesis. Chem Commun 33:4181–4183. doi:10.1039/B504911C CrossRef Chen Y, Gu X, Nie C-G, Jiang Z-Y, Xie Z-X, Lin C-J (2005) Shape controlled growth of gold nanoparticles by a solution synthesis. Chem Commun 33:4181–4183. doi:10.​1039/​B504911C CrossRef
go back to reference Chen KL, Mylon SE, Elimelech M (2007) Enhanced aggregation of alginate-coated iron oxide (hematite) nanoparticles in the presence of calcium, strontium and barium cations. Langmuir 23:5920–5928. doi:10.1021/la063744k CrossRef Chen KL, Mylon SE, Elimelech M (2007) Enhanced aggregation of alginate-coated iron oxide (hematite) nanoparticles in the presence of calcium, strontium and barium cations. Langmuir 23:5920–5928. doi:10.​1021/​la063744k CrossRef
go back to reference Chen W, Kim J, Sun S, Chen S (2008) Electrocatalytic reduction of oxygen by FePt alloy nanoparticles. J Phys Chem C 112:3891–3898CrossRef Chen W, Kim J, Sun S, Chen S (2008) Electrocatalytic reduction of oxygen by FePt alloy nanoparticles. J Phys Chem C 112:3891–3898CrossRef
go back to reference Chun CL, Baer DR, Matson DW, Amonette JE, Penn RL (2010) Characterization and reactivity of iron nanoparticles prepared with added Cu, Pd and Ni. Environ Sci Technol 44:5079–5085. doi:10.1021/es903278e CrossRef Chun CL, Baer DR, Matson DW, Amonette JE, Penn RL (2010) Characterization and reactivity of iron nanoparticles prepared with added Cu, Pd and Ni. Environ Sci Technol 44:5079–5085. doi:10.​1021/​es903278e CrossRef
go back to reference Crane RA, Scott TB (2012) Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. J Hazard Mater 211–212:112–125CrossRef Crane RA, Scott TB (2012) Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. J Hazard Mater 211–212:112–125CrossRef
go back to reference Crane RA, Scott TB (2014) The removal of uranium onto nanoscale zero-valent iron particles in anoxic batch systems. J Nanomater 2014:956360CrossRef Crane RA, Scott TB (2014) The removal of uranium onto nanoscale zero-valent iron particles in anoxic batch systems. J Nanomater 2014:956360CrossRef
go back to reference Dave SR, Gao X (2009) Monodisperse magnetic nanoparticles for biodetection, imaging and drug delivery: a versatile and evolving technology WIREs. Nanomed Nanobiotechnol 1:583–601CrossRef Dave SR, Gao X (2009) Monodisperse magnetic nanoparticles for biodetection, imaging and drug delivery: a versatile and evolving technology WIREs. Nanomed Nanobiotechnol 1:583–601CrossRef
go back to reference Du H, Li B, Kang F, Fu R, Zeng Y (2007) Carbon aerogel supported Pt–Ru catalysts for using as the anode of direct methanol fuel cells. Carbon 45:429–435CrossRef Du H, Li B, Kang F, Fu R, Zeng Y (2007) Carbon aerogel supported Pt–Ru catalysts for using as the anode of direct methanol fuel cells. Carbon 45:429–435CrossRef
go back to reference Duan W, Satoh K, Sawada K (2001) Stability and structure of ethylenedinitrilopoly(methylphosphonate) complexes of the divalent transition metal ions in aqueous solution. Bull Chem Soc Jpn 74:487–493CrossRef Duan W, Satoh K, Sawada K (2001) Stability and structure of ethylenedinitrilopoly(methylphosphonate) complexes of the divalent transition metal ions in aqueous solution. Bull Chem Soc Jpn 74:487–493CrossRef
go back to reference Feitz AJ, Joo SH, Guan J, Sun Q, Sedlak DL, Waite TD (2005) Oxidative transformation of contaminants using colloidal zero-valent iron. Colloids Surf A 265:88–94CrossRef Feitz AJ, Joo SH, Guan J, Sun Q, Sedlak DL, Waite TD (2005) Oxidative transformation of contaminants using colloidal zero-valent iron. Colloids Surf A 265:88–94CrossRef
go back to reference Glavee GN, Klabunde KJ, Sorensen CM, Hadjipanayis GC (1993) Borohydride reduction of cobalt ions in water—chemistry leading to nanoscale metal, boride or borate particles. Langmuir 9:162–169CrossRef Glavee GN, Klabunde KJ, Sorensen CM, Hadjipanayis GC (1993) Borohydride reduction of cobalt ions in water—chemistry leading to nanoscale metal, boride or borate particles. Langmuir 9:162–169CrossRef
go back to reference Gong KP, Su D, Adzic RR (2010) Platinum-monolayer shell on AuNi(0.5)Fe nanoparticle core electrocatalyst with high activity and stability for the oxygen reduction reaction. J Am Chem Soc 132:14364–14366. doi:10.1021/ja1063873 CrossRef Gong KP, Su D, Adzic RR (2010) Platinum-monolayer shell on AuNi(0.5)Fe nanoparticle core electrocatalyst with high activity and stability for the oxygen reduction reaction. J Am Chem Soc 132:14364–14366. doi:10.​1021/​ja1063873 CrossRef
go back to reference Gong Y, Liu Y, Xiong Z, Zhao D (2014) Immobilization of mercury by carboxymethyl cellulose stabilized iron sulfide nanoparticles: reaction mechanism and effects of stabilizer and water chemistry. Environ Sci Technol 48:3986–3994CrossRef Gong Y, Liu Y, Xiong Z, Zhao D (2014) Immobilization of mercury by carboxymethyl cellulose stabilized iron sulfide nanoparticles: reaction mechanism and effects of stabilizer and water chemistry. Environ Sci Technol 48:3986–3994CrossRef
go back to reference Greenlee LF, Hooker S (2012a) Characterization of stabilized zero valent iron nanoparticles. In: Boellinghaus T, Lexow J, Kishi T, Kitagawa M (eds) Materials challenges and testing for supply of energy and resources. Springer, Berlin, pp 173–188CrossRef Greenlee LF, Hooker S (2012a) Characterization of stabilized zero valent iron nanoparticles. In: Boellinghaus T, Lexow J, Kishi T, Kitagawa M (eds) Materials challenges and testing for supply of energy and resources. Springer, Berlin, pp 173–188CrossRef
go back to reference Guin D, Manorama SV, Radha S, Nigam AK (2006) One-pot size and shape controlled synthesis of DMSO capped iron oxide nanoparticles. Bull Mater Sci 29:617–621CrossRef Guin D, Manorama SV, Radha S, Nigam AK (2006) One-pot size and shape controlled synthesis of DMSO capped iron oxide nanoparticles. Bull Mater Sci 29:617–621CrossRef
go back to reference He F, Zhao DY (2005) Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water. Environ Sci Technol 39:3314–3320. doi:10.1021/es048743y CrossRef He F, Zhao DY (2005) Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water. Environ Sci Technol 39:3314–3320. doi:10.​1021/​es048743y CrossRef
go back to reference He F, Zhao DY (2007) Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers. Environ Sci Technol 41:6216–6221. doi:10.1021/es0705543 CrossRef He F, Zhao DY (2007) Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers. Environ Sci Technol 41:6216–6221. doi:10.​1021/​es0705543 CrossRef
go back to reference He F, Zhao DY, Liu JC, Roberts CB (2007) Stabilization of Fe–Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. Ind Eng Chem Res 46:29–34. doi:10.1021/ie0610896 CrossRef He F, Zhao DY, Liu JC, Roberts CB (2007) Stabilization of Fe–Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. Ind Eng Chem Res 46:29–34. doi:10.​1021/​ie0610896 CrossRef
go back to reference Hua M, Zhang S, Pan B, Zhang W, Lv L, Zhang Q (2012) Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J Hazard Mater 211–212:317–331CrossRef Hua M, Zhang S, Pan B, Zhang W, Lv L, Zhang Q (2012) Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J Hazard Mater 211–212:317–331CrossRef
go back to reference Huang QG, Shi XY, Pinto RA, Petersen EJ, Weber WJ (2008) Tunable synthesis and immobilization of zero-valent iron nanoparticles for environmental applications. Environ Sci Technol 42:8884–8889CrossRef Huang QG, Shi XY, Pinto RA, Petersen EJ, Weber WJ (2008) Tunable synthesis and immobilization of zero-valent iron nanoparticles for environmental applications. Environ Sci Technol 42:8884–8889CrossRef
go back to reference Jose D, Matthiesen JE, Parsons C, Sorensen CM, Klabunde KJ (2012) Size focusing of nanoparticles by thermodynamic control through ligand interactions molecular clusters compared with nanoparticles of metals. J Phys Chem Lett 3:885–890CrossRef Jose D, Matthiesen JE, Parsons C, Sorensen CM, Klabunde KJ (2012) Size focusing of nanoparticles by thermodynamic control through ligand interactions molecular clusters compared with nanoparticles of metals. J Phys Chem Lett 3:885–890CrossRef
go back to reference Kang B, Ceder G (2009) Battery materials for ultrafast charging and discharging. Nature 458:190–193CrossRef Kang B, Ceder G (2009) Battery materials for ultrafast charging and discharging. Nature 458:190–193CrossRef
go back to reference Keenan CR, Sedlak DL (2008) Ligand-enhanced reactive oxidant generation by nanoparticulate zero-valent iron and oxygen. Environ Sci Technol 42:6936–6941. doi:10.1021/es801438f CrossRef Keenan CR, Sedlak DL (2008) Ligand-enhanced reactive oxidant generation by nanoparticulate zero-valent iron and oxygen. Environ Sci Technol 42:6936–6941. doi:10.​1021/​es801438f CrossRef
go back to reference Kim J-Y, Lee J-S (2009) Synthesis and thermally reversible assembly of DNA-gold nanoparticle cluster conjugates. Nano Lett 9:4564–4569CrossRef Kim J-Y, Lee J-S (2009) Synthesis and thermally reversible assembly of DNA-gold nanoparticle cluster conjugates. Nano Lett 9:4564–4569CrossRef
go back to reference Kim JH, Tratnyek PG, Chang YS (2008) Rapid dechlorination of polychlorinated dibenzo-p-dioxins by bimetallic and nanosized zerovalent iron. Environ Sci Technol 42:4106–4112. doi:10.1021/es702560k CrossRef Kim JH, Tratnyek PG, Chang YS (2008) Rapid dechlorination of polychlorinated dibenzo-p-dioxins by bimetallic and nanosized zerovalent iron. Environ Sci Technol 42:4106–4112. doi:10.​1021/​es702560k CrossRef
go back to reference Lee I, Morales R, Albiter MA, Zaera F (2008) Synthesis of heterogeneous catalysts with well shaped platinum particles to control reaction selectivity. Proc Natl Acad Sci 105:15241–15246. doi:10.1073/pnas.0805691105 CrossRef Lee I, Morales R, Albiter MA, Zaera F (2008) Synthesis of heterogeneous catalysts with well shaped platinum particles to control reaction selectivity. Proc Natl Acad Sci 105:15241–15246. doi:10.​1073/​pnas.​0805691105 CrossRef
go back to reference Li Z, Niu Q (2014) Ionic liquid-assisted synthesis of Au-Pt bimetallic particles for enhanced methanol electrooxidation. ACS Sustain Chem Eng 2:533–536CrossRef Li Z, Niu Q (2014) Ionic liquid-assisted synthesis of Au-Pt bimetallic particles for enhanced methanol electrooxidation. ACS Sustain Chem Eng 2:533–536CrossRef
go back to reference Li L et al (2006) Synthesis, properties, and environmental applications of nanoscale iron-based materials: a review. Crit Rev Environ Sci Technol 36:405–431CrossRef Li L et al (2006) Synthesis, properties, and environmental applications of nanoscale iron-based materials: a review. Crit Rev Environ Sci Technol 36:405–431CrossRef
go back to reference Lin J, Zhou WL, Kumbhar A, Wiemann J, Fang JY, Carpenter EE, O’Connor CJ (2001) Gold-coated iron (Fe@Au) nanoparticles: synthesis, characterization, and magnetic field-induced self-assembly. J Solid State Chem 159:26–31. doi:10.1006/jssc.2001.9117 CrossRef Lin J, Zhou WL, Kumbhar A, Wiemann J, Fang JY, Carpenter EE, O’Connor CJ (2001) Gold-coated iron (Fe@Au) nanoparticles: synthesis, characterization, and magnetic field-induced self-assembly. J Solid State Chem 159:26–31. doi:10.​1006/​jssc.​2001.​9117 CrossRef
go back to reference Liu JF, Zhao ZS, Jiang GB (2008) Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. Environ Sci Technol 42:6949–6954CrossRef Liu JF, Zhao ZS, Jiang GB (2008) Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. Environ Sci Technol 42:6949–6954CrossRef
go back to reference Liu J, He F, Gunn TM, Zhao D, Roberts CB (2009) Precise seed-mediated growth and size-controlled synthesis of palladium nanoparticles using a green chemistry approach. Langmuir 25:7116–7128CrossRef Liu J, He F, Gunn TM, Zhao D, Roberts CB (2009) Precise seed-mediated growth and size-controlled synthesis of palladium nanoparticles using a green chemistry approach. Langmuir 25:7116–7128CrossRef
go back to reference Lv X, Xu Z, Yan Z, Li X (2011) Bimetallic nickel-iron-supported Pd electrocatalyst for ethanol electrooxidation in alkaline solution. Electrocatalysis 2:82–88CrossRef Lv X, Xu Z, Yan Z, Li X (2011) Bimetallic nickel-iron-supported Pd electrocatalyst for ethanol electrooxidation in alkaline solution. Electrocatalysis 2:82–88CrossRef
go back to reference Mahmoud ME, Abdelwahab MS, Fathallah EM (2013) Design of novel nano-sorbents based on nano-magnetic iron oxide–bound-nano-silicon oxide–immobilized-triethylenetetramine for implementation in water treatment of heavy metals. Chem Eng J 223:318–327CrossRef Mahmoud ME, Abdelwahab MS, Fathallah EM (2013) Design of novel nano-sorbents based on nano-magnetic iron oxide–bound-nano-silicon oxide–immobilized-triethylenetetramine for implementation in water treatment of heavy metals. Chem Eng J 223:318–327CrossRef
go back to reference Maiyalagan T, Scott K (2010) Performance of carbon nanofiber supported Pd–Ni catalysts for electro-oxidation of ethanol in alkaline medium. J Power Sources 195:5246–5251CrossRef Maiyalagan T, Scott K (2010) Performance of carbon nanofiber supported Pd–Ni catalysts for electro-oxidation of ethanol in alkaline medium. J Power Sources 195:5246–5251CrossRef
go back to reference Makinson JD, Lee JS, Magner SH, De Angelis RJ, Weins WN, Hieronymus AS (2000) X-ray diffraction signatures of defects in nanocrystalline materials. Adv X-ray Anal 42:407–411 Makinson JD, Lee JS, Magner SH, De Angelis RJ, Weins WN, Hieronymus AS (2000) X-ray diffraction signatures of defects in nanocrystalline materials. Adv X-ray Anal 42:407–411
go back to reference Martell AE (1978) Chelating agents for metal buffering and analysis in solution. Pure Appl Chem 50:813–829CrossRef Martell AE (1978) Chelating agents for metal buffering and analysis in solution. Pure Appl Chem 50:813–829CrossRef
go back to reference Martell AE, Smith RM, Motekaitis RJ (2004) NIST critically selected stability constants of metal complexes, Version 8. Texas A&M University, College Station Martell AE, Smith RM, Motekaitis RJ (2004) NIST critically selected stability constants of metal complexes, Version 8. Texas A&M University, College Station
go back to reference Naka K, Tanaka H, Chujo Y (2007) pH responsive aggregation of imidazolium cations-modified gold nanoparticles with poly(acrylic acid) in aqueous solution. Polym J 39:1122–1127CrossRef Naka K, Tanaka H, Chujo Y (2007) pH responsive aggregation of imidazolium cations-modified gold nanoparticles with poly(acrylic acid) in aqueous solution. Polym J 39:1122–1127CrossRef
go back to reference Ng LY, Mohammed AW, Leo CP, Hilal N (2013) Polymeric membranes incorporated with metal/metal oxide nanoparticles: a comprehensive review. Desalination 308:15–33CrossRef Ng LY, Mohammed AW, Leo CP, Hilal N (2013) Polymeric membranes incorporated with metal/metal oxide nanoparticles: a comprehensive review. Desalination 308:15–33CrossRef
go back to reference Nurmi JT et al (2005) Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics. Environ Sci Technol 39:1221–1230CrossRef Nurmi JT et al (2005) Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics. Environ Sci Technol 39:1221–1230CrossRef
go back to reference Pang X, Zhao L, Han W, Xin X (2013) A general and robust strategy for the synthesis of nearly monodisperse colloidal nanocrystals. Nat Nanotechnol 8:426–431CrossRef Pang X, Zhao L, Han W, Xin X (2013) A general and robust strategy for the synthesis of nearly monodisperse colloidal nanocrystals. Nat Nanotechnol 8:426–431CrossRef
go back to reference Patterson AL (1939) The Scherrer formula for X-ray particle size determination. Phys Rev 56:978–982CrossRef Patterson AL (1939) The Scherrer formula for X-ray particle size determination. Phys Rev 56:978–982CrossRef
go back to reference Personick ML, Mirkin CA (2013) Making sense of the mayhem behind shape control in the synthesis of gold nanoparticles. J Am Chem Soc 135:18238–18247CrossRef Personick ML, Mirkin CA (2013) Making sense of the mayhem behind shape control in the synthesis of gold nanoparticles. J Am Chem Soc 135:18238–18247CrossRef
go back to reference Ponder SM, Darab JG, Mallouk TE (2000) Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environ Sci Technol 34:2564–2569CrossRef Ponder SM, Darab JG, Mallouk TE (2000) Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environ Sci Technol 34:2564–2569CrossRef
go back to reference Popov K, Ronkkomaki H, Lajunen LHJ (2001) Critical evaluation of stability constants of phosphonic acids (IUPAC technical report). Pure Appl Chem 73:1641–1677CrossRef Popov K, Ronkkomaki H, Lajunen LHJ (2001) Critical evaluation of stability constants of phosphonic acids (IUPAC technical report). Pure Appl Chem 73:1641–1677CrossRef
go back to reference Qu X, Alvarez PJJ, Li Q (2013) Applications of nanotechnology in water and wastewater treatment. Water Res 47:3931–3946CrossRef Qu X, Alvarez PJJ, Li Q (2013) Applications of nanotechnology in water and wastewater treatment. Water Res 47:3931–3946CrossRef
go back to reference Rahman MS, Gagnon GA (2014) Bench-scale evaluation of drinking water treatment parameters on iron particles and water quality. Water Res 48:137–147CrossRef Rahman MS, Gagnon GA (2014) Bench-scale evaluation of drinking water treatment parameters on iron particles and water quality. Water Res 48:137–147CrossRef
go back to reference Ramos MAV, Yan W, Li XQ, Koel BE, Zhang WX (2009) Simultaneous oxidation and reduction of arsenic by zero-valent iron nanoparticles: understanding the significance of the core–shell structure. J Phys Chem C 113:14591–14594. doi:10.1021/jp9051837 CrossRef Ramos MAV, Yan W, Li XQ, Koel BE, Zhang WX (2009) Simultaneous oxidation and reduction of arsenic by zero-valent iron nanoparticles: understanding the significance of the core–shell structure. J Phys Chem C 113:14591–14594. doi:10.​1021/​jp9051837 CrossRef
go back to reference Sawada K, Araki T, Suzuki T (1987) Complex formation of amino polyphosphonates. 1. Potentiometric and nuclear magnetic resonance studies of nitrilotris(methylenephosphonato) complexes of the alkaline-earth-metal ions. Inorg Chem 26:1199–1204CrossRef Sawada K, Araki T, Suzuki T (1987) Complex formation of amino polyphosphonates. 1. Potentiometric and nuclear magnetic resonance studies of nitrilotris(methylenephosphonato) complexes of the alkaline-earth-metal ions. Inorg Chem 26:1199–1204CrossRef
go back to reference Shalkevich N, Shalkevich A, Si-Ahmed L, Buergi T (2009) Reversible formation of gold nanoparticle-surfactant composite assemblies for the preparation of concentrated colloidal solutions. Phys Chem Chem Phys 11:10175–10179CrossRef Shalkevich N, Shalkevich A, Si-Ahmed L, Buergi T (2009) Reversible formation of gold nanoparticle-surfactant composite assemblies for the preparation of concentrated colloidal solutions. Phys Chem Chem Phys 11:10175–10179CrossRef
go back to reference Stankus DP, Lohse SE, Hutchison JE, Nason JA (2010) Interactions between natural organic matter and gold nanoparticles stabilized with different organic capping agents. Environ Sci Technol 45:3238–3244CrossRef Stankus DP, Lohse SE, Hutchison JE, Nason JA (2010) Interactions between natural organic matter and gold nanoparticles stabilized with different organic capping agents. Environ Sci Technol 45:3238–3244CrossRef
go back to reference Sun S, Murray CB, Weller D, Folks L, Moser A (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287:1989–1992CrossRef Sun S, Murray CB, Weller D, Folks L, Moser A (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287:1989–1992CrossRef
go back to reference Wang CB, Zhang WX (1997) Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ Sci Technol 31:2154–2156CrossRef Wang CB, Zhang WX (1997) Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ Sci Technol 31:2154–2156CrossRef
go back to reference Wang CM, Baer DR, Thomas LE, Amonette JE, Antony J, Qiang Y, Duscher G (2005) Void formation during early stages of passivation: initial oxidation of iron nanoparticles at room temperature. J Appl Phys 98:094308(094307). doi:10.1063/1.2130890 094308 Wang CM, Baer DR, Thomas LE, Amonette JE, Antony J, Qiang Y, Duscher G (2005) Void formation during early stages of passivation: initial oxidation of iron nanoparticles at room temperature. J Appl Phys 98:094308(094307). doi:10.​1063/​1.​2130890 094308
go back to reference Wang CM, Baer DR, Amonette JE, Engelhard MH, Antony J, Qiang Y (2009) Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles. J Am Chem Soc 131:8824–8832. doi:10.1021/ja900353f CrossRef Wang CM, Baer DR, Amonette JE, Engelhard MH, Antony J, Qiang Y (2009) Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles. J Am Chem Soc 131:8824–8832. doi:10.​1021/​ja900353f CrossRef
go back to reference Wang M et al (2013) PdNi hollow nanoparticles for improved electrocatalytic oxygen reduction in alkaline environments. ACS Appl Mater Interfaces 5:12708–12715CrossRef Wang M et al (2013) PdNi hollow nanoparticles for improved electrocatalytic oxygen reduction in alkaline environments. ACS Appl Mater Interfaces 5:12708–12715CrossRef
go back to reference Warner CL et al (2010) High-performance, superparamagnetic nanoparticle-based heavy metal sorbents for removal of contaminants from natural waters. ChemSusChem 3:749–757CrossRef Warner CL et al (2010) High-performance, superparamagnetic nanoparticle-based heavy metal sorbents for removal of contaminants from natural waters. ChemSusChem 3:749–757CrossRef
go back to reference Wittstock A, Zielasek V, Biener J, Friend CM, Baumer M (2010) Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature. Science 327:319–322. doi:10.1126/science.1183591 CrossRef Wittstock A, Zielasek V, Biener J, Friend CM, Baumer M (2010) Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature. Science 327:319–322. doi:10.​1126/​science.​1183591 CrossRef
go back to reference Xu Y, Qin Y, Palchoudhury S, Bao Y (2011) Water-soluble iron oxide nanoparticles with high stability and selective surface functionality. Langmuir 27:8990–8997CrossRef Xu Y, Qin Y, Palchoudhury S, Bao Y (2011) Water-soluble iron oxide nanoparticles with high stability and selective surface functionality. Langmuir 27:8990–8997CrossRef
go back to reference Xu P et al (2012) Use of iron oxide nanomaterials in wastewater treatment: a review. Sci Total Environ 424:1–10CrossRef Xu P et al (2012) Use of iron oxide nanomaterials in wastewater treatment: a review. Sci Total Environ 424:1–10CrossRef
go back to reference Yang H, Zhong X, Dong Z, Wang J, Jin J, Ma J (2012) A highly active hydrazine fuel cell catalyst consisting of a Ni–Fe nanoparticle alloy plated on carbon materials by pulse reversal. RSC Adv 2:5038–5040CrossRef Yang H, Zhong X, Dong Z, Wang J, Jin J, Ma J (2012) A highly active hydrazine fuel cell catalyst consisting of a Ni–Fe nanoparticle alloy plated on carbon materials by pulse reversal. RSC Adv 2:5038–5040CrossRef
Metadata
Title
ATMP-stabilized iron nanoparticles: chelator-controlled nanoparticle synthesis
Authors
Lauren F. Greenlee
Nikki S. Rentz
Publication date
01-11-2014
Publisher
Springer Netherlands
Published in
Journal of Nanoparticle Research / Issue 11/2014
Print ISSN: 1388-0764
Electronic ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-014-2712-8

Other articles of this Issue 11/2014

Journal of Nanoparticle Research 11/2014 Go to the issue

Premium Partners