Skip to main content
Top
Published in: Structural and Multidisciplinary Optimization 5/2021

23-02-2021 | Research Paper

Multi-fidelity modeling with different input domain definitions using deep Gaussian processes

Authors: Ali Hebbal, Loïc Brevault, Mathieu Balesdent, El-Ghazali Talbi, Nouredine Melab

Published in: Structural and Multidisciplinary Optimization | Issue 5/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Multi-fidelity approaches combine different models built on a scarce but accurate dataset (high-fidelity dataset), and a large but approximate one (low-fidelity dataset) in order to improve the prediction accuracy. Gaussian processes (GPs) are one of the popular approaches to exhibit the correlations between these different fidelity levels. Deep Gaussian processes (DGPs) that are functional compositions of GPs have also been adapted to multi-fidelity using the multi-fidelity deep Gaussian process (MF-DGP) model. This model increases the expressive power compared to GPs by considering non-linear correlations between fidelities within a Bayesian framework. However, these multi-fidelity methods consider only the case where the inputs of the different fidelity models are defined over the same domain of definition (e.g., same variables, same dimensions). However, due to simplification in the modeling of the low fidelity, some variables may be omitted or a different parametrization may be used compared to the high-fidelity model. In this paper, deep Gaussian processes for multi-fidelity (MF-DGP) are extended to the case where a different parametrization is used for each fidelity. The performance of the proposed multi-fidelity modeling technique is assessed on analytical test cases and on structural and aerodynamic real physical problems.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Amari S-I, Douglas SC (1998) Why natural gradient?. In: Proceedings of the 1998 IEEE international conference on acoustics, speech and signal processing, ICASSP’98 (Cat. No. 98CH36181), vol 2. IEEE, pp 1213–1216 Amari S-I, Douglas SC (1998) Why natural gradient?. In: Proceedings of the 1998 IEEE international conference on acoustics, speech and signal processing, ICASSP’98 (Cat. No. 98CH36181), vol 2. IEEE, pp 1213–1216
go back to reference Armstrong JS, Collopy F (1992) Error measures for generalizing about forecasting methods: empirical comparisons. Int J Forecast 8(1):69–80CrossRef Armstrong JS, Collopy F (1992) Error measures for generalizing about forecasting methods: empirical comparisons. Int J Forecast 8(1):69–80CrossRef
go back to reference Bandler JW, Cheng QS, Dakroury SA, Mohamed AS, Bakr MH, Madsen K, Sondergaard J (2004) Space mapping: the state of the art. IEEE Transactions on Microwave theory and techniques 52(1):337–361CrossRef Bandler JW, Cheng QS, Dakroury SA, Mohamed AS, Bakr MH, Madsen K, Sondergaard J (2004) Space mapping: the state of the art. IEEE Transactions on Microwave theory and techniques 52(1):337–361CrossRef
go back to reference Bandler JW, Koziel S, Madsen K (2006) Space mapping for engineering optimization. SIAG/Optimization Views-and-News Special Issue on Surrogate/Derivative-free Optimization 17(1):19–26 Bandler JW, Koziel S, Madsen K (2006) Space mapping for engineering optimization. SIAG/Optimization Views-and-News Special Issue on Surrogate/Derivative-free Optimization 17(1):19–26
go back to reference Bauchau OA, Craig JI (2009) Euler-bernoulli beam theory. In: Structural analysis. Springer, pp 173–221 Bauchau OA, Craig JI (2009) Euler-bernoulli beam theory. In: Structural analysis. Springer, pp 173–221
go back to reference Bekasiewicz A, Koziel S (2015) Efficient multi-fidelity design optimization of microwave filters using adjoint sensitivity. International Journal of RF and Microwave Computer-Aided Engineering 25(2):178–183CrossRef Bekasiewicz A, Koziel S (2015) Efficient multi-fidelity design optimization of microwave filters using adjoint sensitivity. International Journal of RF and Microwave Computer-Aided Engineering 25(2):178–183CrossRef
go back to reference Berci M, Toropov VV, Hewson RW, Gaskell PH (2014) Multidisciplinary multifidelity optimisation of a flexible wing aerofoil with reference to a small uav. Struct Multidiscip Optim 50(4):683–699CrossRef Berci M, Toropov VV, Hewson RW, Gaskell PH (2014) Multidisciplinary multifidelity optimisation of a flexible wing aerofoil with reference to a small uav. Struct Multidiscip Optim 50(4):683–699CrossRef
go back to reference Bjornstad JF (1990) Predictive likelihood: a review. Stat Sci, 5(2) pp 242–254 Bjornstad JF (1990) Predictive likelihood: a review. Stat Sci, 5(2) pp 242–254
go back to reference Brevault L, Balesdent M, Hebbal A (2020) Multi-objective multidisciplinary design optimization approach for partially reusable launch vehicle design. J Spacecr Rocket, pp 1–17 Brevault L, Balesdent M, Hebbal A (2020) Multi-objective multidisciplinary design optimization approach for partially reusable launch vehicle design. J Spacecr Rocket, pp 1–17
go back to reference Brooks CJ, Forrester AIJ, Keane AJ, Shahpar S (2011) Multi-fidelity design optimisation of a transonic compressor rotor Brooks CJ, Forrester AIJ, Keane AJ, Shahpar S (2011) Multi-fidelity design optimisation of a transonic compressor rotor
go back to reference Cutajar K, Pullin M, Damianou A, Lawrence N, González J (2019) Deep gaussian processes for multi-fidelity modeling. arXiv:1903.07320 Cutajar K, Pullin M, Damianou A, Lawrence N, González J (2019) Deep gaussian processes for multi-fidelity modeling. arXiv:1903.​07320
go back to reference Damianou A, Lawrence N (2013) Deep gaussian processes. In: Artificial intelligence and statistics, pp 207–215 Damianou A, Lawrence N (2013) Deep gaussian processes. In: Artificial intelligence and statistics, pp 207–215
go back to reference Matthews AGG, van der Wilk M, Tom Nickson K, Fujii AB, León-Villagrá P, Ghahramani Z, Hensman J (2017) GPflow: a Gaussian process library using TensorFlow. J Mach Learn Res 18 (40):1–6MathSciNetMATH Matthews AGG, van der Wilk M, Tom Nickson K, Fujii AB, León-Villagrá P, Ghahramani Z, Hensman J (2017) GPflow: a Gaussian process library using TensorFlow. J Mach Learn Res 18 (40):1–6MathSciNetMATH
go back to reference Dong H, Song B, Wang P, Huang S (2015) Multi-fidelity information fusion based on prediction of kriging. Struct Multidiscip Optim 51(6):1267–1280CrossRef Dong H, Song B, Wang P, Huang S (2015) Multi-fidelity information fusion based on prediction of kriging. Struct Multidiscip Optim 51(6):1267–1280CrossRef
go back to reference Forrester A, Sobester A, Keane A (2008) Engineering design via surrogate modelling: a practical guide. Wiley, New YorkCrossRef Forrester A, Sobester A, Keane A (2008) Engineering design via surrogate modelling: a practical guide. Wiley, New YorkCrossRef
go back to reference Giselle Fernández-Godino M, Park C, Kim N-H, Haftka RT (2016) Review of multi-fidelity models. arXiv:1609.07196 Giselle Fernández-Godino M, Park C, Kim N-H, Haftka RT (2016) Review of multi-fidelity models. arXiv:1609.​07196
go back to reference Gloudemans J, Davis P, Gelhausen P (1996) A rapid geometry modeler for conceptual aircraft. In: 34th aerospace sciences meeting and exhibit, p 52 Gloudemans J, Davis P, Gelhausen P (1996) A rapid geometry modeler for conceptual aircraft. In: 34th aerospace sciences meeting and exhibit, p 52
go back to reference Gratiet LL, Garnier J (2014) Recursive co-kriging model for design of computer experiments with multiple levels of fidelity. International Journal for Uncertainty Quantification 4(5) Gratiet LL, Garnier J (2014) Recursive co-kriging model for design of computer experiments with multiple levels of fidelity. International Journal for Uncertainty Quantification 4(5)
go back to reference Hao P, Feng S, Li Y, Bo W, Chen H (2020) Adaptive infill sampling criterion for multi-fidelity gradient-enhanced kriging model. Struct Multidiscip Optim, 62 pp 1–21 Hao P, Feng S, Li Y, Bo W, Chen H (2020) Adaptive infill sampling criterion for multi-fidelity gradient-enhanced kriging model. Struct Multidiscip Optim, 62 pp 1–21
go back to reference Hebbal A, Brevault L, Balesdent M, Talbi E-G, Melab N (2019) Multi-fidelity modeling using dgps: improvements and a generalization to varying input space dimensions Hebbal A, Brevault L, Balesdent M, Talbi E-G, Melab N (2019) Multi-fidelity modeling using dgps: improvements and a generalization to varying input space dimensions
go back to reference Iyappan P, Ganguli R (2020) Multi-fidelity analysis and uncertainty quantification of beam vibration using correction response surfaces. International Journal for Computational Methods in Engineering Science and Mechanics 21(1):26–42MathSciNetCrossRef Iyappan P, Ganguli R (2020) Multi-fidelity analysis and uncertainty quantification of beam vibration using correction response surfaces. International Journal for Computational Methods in Engineering Science and Mechanics 21(1):26–42MathSciNetCrossRef
go back to reference Jensen JLWV, et al. (1906) Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta Mathematica 30:175–193MathSciNetCrossRef Jensen JLWV, et al. (1906) Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta Mathematica 30:175–193MathSciNetCrossRef
go back to reference Jin R, Chen W, Simpson TW (2001) Comparative studies of metamodelling techniques under multiple modelling criteria. Struct Multidiscip Optim 23(1):1–13CrossRef Jin R, Chen W, Simpson TW (2001) Comparative studies of metamodelling techniques under multiple modelling criteria. Struct Multidiscip Optim 23(1):1–13CrossRef
go back to reference Jones DR, Schonlau M, Welch WJ (1998) Efficient global optimization of expensive black-box functions. J Glob Optim 13(4):455–492MathSciNetCrossRef Jones DR, Schonlau M, Welch WJ (1998) Efficient global optimization of expensive black-box functions. J Glob Optim 13(4):455–492MathSciNetCrossRef
go back to reference Jonsson IM, Leifsson L, Koziel S, Tesfahunegn YA, Bekasiewicz A (2015) Shape optimization of trawl-doors using variable-fidelity models and space mapping. In: ICCS, pp 905–913 Jonsson IM, Leifsson L, Koziel S, Tesfahunegn YA, Bekasiewicz A (2015) Shape optimization of trawl-doors using variable-fidelity models and space mapping. In: ICCS, pp 905–913
go back to reference Kennedy MC, O’Hagan A (2001) Bayesian calibration of computer models. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 63(3):425–464MathSciNetCrossRef Kennedy MC, O’Hagan A (2001) Bayesian calibration of computer models. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 63(3):425–464MathSciNetCrossRef
go back to reference Kim HS, Koc M, Ni J (2007) A hybrid multi-fidelity approach to the optimal design of warm forming processes using a knowledge-based artificial neural network. Int J Mach Tools Manuf 47(2):211–222CrossRef Kim HS, Koc M, Ni J (2007) A hybrid multi-fidelity approach to the optimal design of warm forming processes using a knowledge-based artificial neural network. Int J Mach Tools Manuf 47(2):211–222CrossRef
go back to reference Koziel S (2010) Computationally efficient multi-fidelity multi-grid design optimization of microwave structures. ACES Journal-Applied Computational Electromagnetics Society 25(7):578 Koziel S (2010) Computationally efficient multi-fidelity multi-grid design optimization of microwave structures. ACES Journal-Applied Computational Electromagnetics Society 25(7):578
go back to reference Kuya Y, Takeda K, Zhang X, Forrester AIJ (2011) Multifidelity surrogate modeling of experimental and computational aerodynamic data sets. AIAA J 49(2):289–298CrossRef Kuya Y, Takeda K, Zhang X, Forrester AIJ (2011) Multifidelity surrogate modeling of experimental and computational aerodynamic data sets. AIAA J 49(2):289–298CrossRef
go back to reference Li W, Chen S, Jiang Z, Apley DW, Lu Z, Chen W (2016) Integrating bayesian calibration, bias correction, and machine learning for the 2014 sandia verification and validation challenge problem. Journal of Verification, Validation and Uncertainty Quantification 1(1) Li W, Chen S, Jiang Z, Apley DW, Lu Z, Chen W (2016) Integrating bayesian calibration, bias correction, and machine learning for the 2014 sandia verification and validation challenge problem. Journal of Verification, Validation and Uncertainty Quantification 1(1)
go back to reference Liu Z, Xu H, Zhu P (2020) An adaptive multi-fidelity approach for design optimization of mesostructure-structure systems. Struct Multidiscip Optim, 62 pp 1–12 Liu Z, Xu H, Zhu P (2020) An adaptive multi-fidelity approach for design optimization of mesostructure-structure systems. Struct Multidiscip Optim, 62 pp 1–12
go back to reference Minisci E, Vasile M (2013) Robust design of a reentry unmanned space vehicle by multifidelity evolution control. AIAA journal 51(6):1284–1295CrossRef Minisci E, Vasile M (2013) Robust design of a reentry unmanned space vehicle by multifidelity evolution control. AIAA journal 51(6):1284–1295CrossRef
go back to reference Paleyes A, Pullin M, Mahsereci M, Lawrence N, González J (2019) Emulation of physical processes with emukit. In: Second workshop on machine learning and the physical sciences, NeurIPS Paleyes A, Pullin M, Mahsereci M, Lawrence N, González J (2019) Emulation of physical processes with emukit. In: Second workshop on machine learning and the physical sciences, NeurIPS
go back to reference Peherstorfer B, Willcox K, Gunzburger M (2018) Survey of multifidelity methods in uncertainty propagation, inference, and optimization. Siam Review 60(3):550–591MathSciNetCrossRef Peherstorfer B, Willcox K, Gunzburger M (2018) Survey of multifidelity methods in uncertainty propagation, inference, and optimization. Siam Review 60(3):550–591MathSciNetCrossRef
go back to reference Perdikaris P, Raissi M, Damianou A, Lawrence ND, Karniadakis GE (2017) Nonlinear information fusion algorithms for data-efficient multi-fidelity modelling. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 473(2198):20160751CrossRef Perdikaris P, Raissi M, Damianou A, Lawrence ND, Karniadakis GE (2017) Nonlinear information fusion algorithms for data-efficient multi-fidelity modelling. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 473(2198):20160751CrossRef
go back to reference Rasmussen C, Williams Christopher KI (2006) Gaussian processes for machine learning, vol 1. MIT Press, CambridgeMATH Rasmussen C, Williams Christopher KI (2006) Gaussian processes for machine learning, vol 1. MIT Press, CambridgeMATH
go back to reference Rayas-Sanchez J (2016) Power in simplicity with asm: tracing the aggressive space mapping algorithm over two decades of development and engineering applications. IEEE Microw Mag 17(4):64–76CrossRef Rayas-Sanchez J (2016) Power in simplicity with asm: tracing the aggressive space mapping algorithm over two decades of development and engineering applications. IEEE Microw Mag 17(4):64–76CrossRef
go back to reference Rayas-Sánchez JE (2004) Em-based optimization of microwave circuits using artificial neural networks: the state-of-the-art. IEEE Transactions on Microwave Theory and Techniques 52(1):420–435CrossRef Rayas-Sánchez JE (2004) Em-based optimization of microwave circuits using artificial neural networks: the state-of-the-art. IEEE Transactions on Microwave Theory and Techniques 52(1):420–435CrossRef
go back to reference Reddy JN (2019) Introduction to the Finite Element Method, Fourth Edition. McGraw-Hill Education. New York Reddy JN (2019) Introduction to the Finite Element Method, Fourth Edition. McGraw-Hill Education. New York
go back to reference Reeve ST, Strachan A (2017) Error correction in multi-fidelity molecular dynamics simulations using functional uncertainty quantification. J Comput Phys 334:207–220MathSciNetCrossRef Reeve ST, Strachan A (2017) Error correction in multi-fidelity molecular dynamics simulations using functional uncertainty quantification. J Comput Phys 334:207–220MathSciNetCrossRef
go back to reference Robinson TD, Eldred MS, Willcox KE, Haimes R (2008) Surrogate-based optimization using multifidelity models with variable parameterization and corrected space mapping. Aiaa Journal 46(11):2814–2822CrossRef Robinson TD, Eldred MS, Willcox KE, Haimes R (2008) Surrogate-based optimization using multifidelity models with variable parameterization and corrected space mapping. Aiaa Journal 46(11):2814–2822CrossRef
go back to reference Salimbeni H, Deisenroth M (2017) Doubly stochastic variational inference for deep gaussian processes. In: Advances in neural information processing systems, pp 4588–4599 Salimbeni H, Deisenroth M (2017) Doubly stochastic variational inference for deep gaussian processes. In: Advances in neural information processing systems, pp 4588–4599
go back to reference Shah H, Hosder S, Koziel S, Tesfahunegn YA, Leifsson L (2015) Multi-fidelity robust aerodynamic design optimization under mixed uncertainty. Aerosp Sci Technol 45:17–29CrossRef Shah H, Hosder S, Koziel S, Tesfahunegn YA, Leifsson L (2015) Multi-fidelity robust aerodynamic design optimization under mixed uncertainty. Aerosp Sci Technol 45:17–29CrossRef
go back to reference Shen X, Hu W, Dong S (2019) Multidisciplinary and multifidelity optimization for twin-web turbine disc with asymmetric temperature distribution. Struct Multidiscip Optim 60(2):803–816CrossRef Shen X, Hu W, Dong S (2019) Multidisciplinary and multifidelity optimization for twin-web turbine disc with asymmetric temperature distribution. Struct Multidiscip Optim 60(2):803–816CrossRef
go back to reference Shi M, Lv L, Sun W, Song X (2020) A multi-fidelity surrogate model based on support vector regression. Struct Multidiscip Optim, 61 pp 1–13 Shi M, Lv L, Sun W, Song X (2020) A multi-fidelity surrogate model based on support vector regression. Struct Multidiscip Optim, 61 pp 1–13
go back to reference Song X, Lv L, Sun W, Zhang J (2019) A radial basis function-based multi-fidelity surrogate model: exploring correlation between high-fidelity and low-fidelity models. Struct Multidiscip Optim 60(3):965–981CrossRef Song X, Lv L, Sun W, Zhang J (2019) A radial basis function-based multi-fidelity surrogate model: exploring correlation between high-fidelity and low-fidelity models. Struct Multidiscip Optim 60(3):965–981CrossRef
go back to reference Stander JN, Venter G, Kamper MJ (2016) High fidelity multidisciplinary design optimisation of an electromagnetic device. Struct Multidiscip Optim 53(5):1113–1127CrossRef Stander JN, Venter G, Kamper MJ (2016) High fidelity multidisciplinary design optimisation of an electromagnetic device. Struct Multidiscip Optim 53(5):1113–1127CrossRef
go back to reference Tao S, Apley DW, Chen W, Garbo A, Pate DJ, German BJ (2019) Input mapping for model calibration with application to wing aerodynamics. AIAA J, 57 pp 2734–2745 Tao S, Apley DW, Chen W, Garbo A, Pate DJ, German BJ (2019) Input mapping for model calibration with application to wing aerodynamics. AIAA J, 57 pp 2734–2745
go back to reference Vitali R, Haftka RT, Sankar BV (2002) Multi-fidelity design of stiffened composite panel with a crack. Struct Multidiscip Optim 23(5):347–356CrossRef Vitali R, Haftka RT, Sankar BV (2002) Multi-fidelity design of stiffened composite panel with a crack. Struct Multidiscip Optim 23(5):347–356CrossRef
go back to reference Wang G, Shan S (2007) Review of metamodeling techniques in support of engineering design optimization. J Mech Des 129(4):370–380CrossRef Wang G, Shan S (2007) Review of metamodeling techniques in support of engineering design optimization. J Mech Des 129(4):370–380CrossRef
go back to reference Wang F, Xiong F, Chen S, Song J (2019) Multi-fidelity uncertainty propagation using polynomial chaos and gaussian process modeling. Struct Multidiscip Optim 60(4):1583–1604CrossRef Wang F, Xiong F, Chen S, Song J (2019) Multi-fidelity uncertainty propagation using polynomial chaos and gaussian process modeling. Struct Multidiscip Optim 60(4):1583–1604CrossRef
go back to reference Xiong S, Qian PZG, Wu CFJ (2013) Sequential design and analysis of high-accuracy and low-accuracy computer codes. Technometrics 55(1):37–46MathSciNetCrossRef Xiong S, Qian PZG, Wu CFJ (2013) Sequential design and analysis of high-accuracy and low-accuracy computer codes. Technometrics 55(1):37–46MathSciNetCrossRef
go back to reference Yi J, Wu F, Qi Z, Cheng Y, Ling H, Liu J (2020) An active-learning method based on multi-fidelity kriging model for structural reliability analysis. Struct Multidiscip Optim, 63 pp 1–23 Yi J, Wu F, Qi Z, Cheng Y, Ling H, Liu J (2020) An active-learning method based on multi-fidelity kriging model for structural reliability analysis. Struct Multidiscip Optim, 63 pp 1–23
Metadata
Title
Multi-fidelity modeling with different input domain definitions using deep Gaussian processes
Authors
Ali Hebbal
Loïc Brevault
Mathieu Balesdent
El-Ghazali Talbi
Nouredine Melab
Publication date
23-02-2021
Publisher
Springer Berlin Heidelberg
Published in
Structural and Multidisciplinary Optimization / Issue 5/2021
Print ISSN: 1615-147X
Electronic ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-020-02802-1

Other articles of this Issue 5/2021

Structural and Multidisciplinary Optimization 5/2021 Go to the issue

Premium Partners