Skip to main content
Top
Published in: Structural and Multidisciplinary Optimization 1/2018

06-09-2017 | RESEARCH PAPER

Multi-material topology optimization with multiple volume constraints: a general approach applied to ground structures with material nonlinearity

Authors: Xiaojia Shelly Zhang, Glaucio H. Paulino, Adeildo S. Ramos Jr.

Published in: Structural and Multidisciplinary Optimization | Issue 1/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Multi-material topology optimization is a practical tool that allows for improved structural designs. However, most studies are presented in the context of continuum topology optimization – few studies focus on truss topology optimization. Moreover, most work in this field has been restricted to linear material behavior with limited volume constraint settings for multiple materials. To address these issues, we propose an efficient multi-material topology optimization formulation considering material nonlinearity. The proposed formulation handles an arbitrary number of candidate materials with flexible material properties, features freely specified material layers, and includes a generalized volume constraint setting. To efficiently handle such arbitrary volume constraints, we derive a design update scheme that performs robust updates of the design variables associated with each volume constraint independently. The derivation is based on the separable feature of the dual problem of the convex approximated primal subproblem with respect to the Lagrange multipliers, and thus the update of design variables in each volume constraint only depends on the corresponding Lagrange multiplier. Through examples in 2D and 3D, using combinations of Ogden-based, bilinear, and linear materials, we demonstrate that the proposed multi-material topology optimization framework with the presented update scheme leads to a design tool that not only finds the optimal topology but also selects the proper type and amount of material. The design update scheme is named ZPR (phonetically, zipper), after the initials of the authors’ last names (Zhang-Paulino-Ramos Jr.).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Achtziger W (1996) Truss topology optimization including bar properties different for tension and compression. Struct Optim 12(1): 63–74CrossRef Achtziger W (1996) Truss topology optimization including bar properties different for tension and compression. Struct Optim 12(1): 63–74CrossRef
go back to reference Achtziger W (1999a) Local stability of trusses in the context of topology optimization part i: Exact modelling. Struct Multidiscip Optim 17(4):235–246MathSciNet Achtziger W (1999a) Local stability of trusses in the context of topology optimization part i: Exact modelling. Struct Multidiscip Optim 17(4):235–246MathSciNet
go back to reference Achtziger W (1999b) Local stability of trusses in the context of topology optimization part II: a numerical approach. Struct Optim 17(4):247–258 Achtziger W (1999b) Local stability of trusses in the context of topology optimization part II: a numerical approach. Struct Optim 17(4):247–258
go back to reference Amir O, Sigmund O (2013) Reinforcement layout design for concrete structures based on continuum damage and truss topology optimization. Struct Multidiscip Optim 47(2):157–174MathSciNetCrossRefMATH Amir O, Sigmund O (2013) Reinforcement layout design for concrete structures based on continuum damage and truss topology optimization. Struct Multidiscip Optim 47(2):157–174MathSciNetCrossRefMATH
go back to reference Ben-Tal A, Jarre F, Kočvara M, Nemirovski A, Zowe J (2000) Optimal design of trusses under a nonconvex global buckling constraint. Optim Eng 1(2):189–213MathSciNetCrossRefMATH Ben-Tal A, Jarre F, Kočvara M, Nemirovski A, Zowe J (2000) Optimal design of trusses under a nonconvex global buckling constraint. Optim Eng 1(2):189–213MathSciNetCrossRefMATH
go back to reference Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9-10):635–654CrossRefMATH Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9-10):635–654CrossRefMATH
go back to reference Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods, and applications. Springer, BerlinMATH Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods, and applications. Springer, BerlinMATH
go back to reference Bogomolny M, Amir O (2012) Conceptual design of reinforced concrete structures using topology optimization with elastoplastic material modeling. Int J Numer Methods Eng 90(13):1578–1597CrossRefMATH Bogomolny M, Amir O (2012) Conceptual design of reinforced concrete structures using topology optimization with elastoplastic material modeling. Int J Numer Methods Eng 90(13):1578–1597CrossRefMATH
go back to reference Bonet J, Wood RD (2008) Nonlinear continuum mechanics for finite element analysis. Cambridge University Press Bonet J, Wood RD (2008) Nonlinear continuum mechanics for finite element analysis. Cambridge University Press
go back to reference Christensen P, Klarbring A (2009) An introduction to structural optimization. Springer Science & Business Media, LinköpingMATH Christensen P, Klarbring A (2009) An introduction to structural optimization. Springer Science & Business Media, LinköpingMATH
go back to reference Cui M, Chen H (2014) An improved alternating active-phase algorithm for multi-material topology optimization problems. In: Applied mechanics and materials, Trans Tech Publ, vol 635, pp 105–111 Cui M, Chen H (2014) An improved alternating active-phase algorithm for multi-material topology optimization problems. In: Applied mechanics and materials, Trans Tech Publ, vol 635, pp 105–111
go back to reference Dorn WS, Gomory RE, Greenberg HJ (1964) Automatic design of optimal structures. J de Mecanique 3:25–52 Dorn WS, Gomory RE, Greenberg HJ (1964) Automatic design of optimal structures. J de Mecanique 3:25–52
go back to reference Gaynor A, Guest J, Moen C (2012) Reinforced concrete force visualization and design using bilinear truss-continuum topology optimization. J Struct Eng 139(4):607–618CrossRef Gaynor A, Guest J, Moen C (2012) Reinforced concrete force visualization and design using bilinear truss-continuum topology optimization. J Struct Eng 139(4):607–618CrossRef
go back to reference Groenwold AA, Etman LFP (2008) On the equivalence of optimality criterion and sequential approximate optimization methods in the classical topology layout problem. Int J Numer Methods Eng 73(3):297–316MathSciNetCrossRefMATH Groenwold AA, Etman LFP (2008) On the equivalence of optimality criterion and sequential approximate optimization methods in the classical topology layout problem. Int J Numer Methods Eng 73(3):297–316MathSciNetCrossRefMATH
go back to reference Hvejsel CF, Lund E (2011) Material interpolation schemes for unified topology and multi-material optimization. Struct Multidiscip Optim 43(6):811–825CrossRefMATH Hvejsel CF, Lund E (2011) Material interpolation schemes for unified topology and multi-material optimization. Struct Multidiscip Optim 43(6):811–825CrossRefMATH
go back to reference Kirsch U (1993) Structural optimization: fundamentals and applications. Springer, BerlinCrossRef Kirsch U (1993) Structural optimization: fundamentals and applications. Springer, BerlinCrossRef
go back to reference Klarbring A, Rönnqvist M (1995) Nested approach to structural optimization in nonsmooth mechanics. Struct Optim 10(2):79–86CrossRef Klarbring A, Rönnqvist M (1995) Nested approach to structural optimization in nonsmooth mechanics. Struct Optim 10(2):79–86CrossRef
go back to reference Mei Y, Wang X (2004) A level set method for structural topology optimization with multi-constraints and multi-materials. Acta Mech Sinica 20(5):507–518MathSciNetCrossRef Mei Y, Wang X (2004) A level set method for structural topology optimization with multi-constraints and multi-materials. Acta Mech Sinica 20(5):507–518MathSciNetCrossRef
go back to reference Ogden RW (1984) Non-linear elastic deformations. Dover Publications Inc, MineolaMATH Ogden RW (1984) Non-linear elastic deformations. Dover Publications Inc, MineolaMATH
go back to reference Park J, Sutradhar A (2015) A multi-resolution method for 3D multi-material topology optimization. Comput Methods Appl Mech Eng 285:571–586MathSciNetCrossRef Park J, Sutradhar A (2015) A multi-resolution method for 3D multi-material topology optimization. Comput Methods Appl Mech Eng 285:571–586MathSciNetCrossRef
go back to reference Ramos AS Jr, Paulino GH (2015) Convex topology optimization for hyperelastic trusses based on the ground-structure approach. Struct Multidiscip Optim 51(2):287–304MathSciNetCrossRef Ramos AS Jr, Paulino GH (2015) Convex topology optimization for hyperelastic trusses based on the ground-structure approach. Struct Multidiscip Optim 51(2):287–304MathSciNetCrossRef
go back to reference Ramos AS Jr, Paulino GH (2016) Filtering structures out of ground structures – a discrete filtering tool for structural design optimization. Struct Multidiscip Optim 54(1):95–116MathSciNetCrossRef Ramos AS Jr, Paulino GH (2016) Filtering structures out of ground structures – a discrete filtering tool for structural design optimization. Struct Multidiscip Optim 54(1):95–116MathSciNetCrossRef
go back to reference Rozvany GIN (1996) Difficulties in truss topology optimization with stress, local buckling and system stability constraints. Struct Optim 11(3):213–217CrossRef Rozvany GIN (1996) Difficulties in truss topology optimization with stress, local buckling and system stability constraints. Struct Optim 11(3):213–217CrossRef
go back to reference Rozvany GIN, Bendsoe MP, Kirsch U (1995) Layout optimization of structures. Appl Mech Rev 48 (2):41–119CrossRef Rozvany GIN, Bendsoe MP, Kirsch U (1995) Layout optimization of structures. Appl Mech Rev 48 (2):41–119CrossRef
go back to reference Sigmund O, Torquato S (1997) Design of materials with extreme thermal expansion using a three-phase topology optimization method. J Mech Phys Solids 45(6):1037–1067MathSciNetCrossRef Sigmund O, Torquato S (1997) Design of materials with extreme thermal expansion using a three-phase topology optimization method. J Mech Phys Solids 45(6):1037–1067MathSciNetCrossRef
go back to reference Sokół T (2011) A 99 line code for discretized Michell truss optimization written in Mathematica. Struct Multidiscip Optim 43(2): 181–190CrossRefMATH Sokół T (2011) A 99 line code for discretized Michell truss optimization written in Mathematica. Struct Multidiscip Optim 43(2): 181–190CrossRefMATH
go back to reference Stanković T, Mueller J, Egan P, Shea K (2015) A generalized optimality criteria method for optimization of additively manufactured multimaterial lattice structures. J Mech Des 137(11):111,405–1CrossRef Stanković T, Mueller J, Egan P, Shea K (2015) A generalized optimality criteria method for optimization of additively manufactured multimaterial lattice structures. J Mech Des 137(11):111,405–1CrossRef
go back to reference Stegmann J, Lund E (2005) Discrete material optimization of general composite shell structures. Int J Numer Methods Eng 62(14):2009–2027CrossRefMATH Stegmann J, Lund E (2005) Discrete material optimization of general composite shell structures. Int J Numer Methods Eng 62(14):2009–2027CrossRefMATH
go back to reference Stolpe M, Svanberg K (2001) An alternative interpolation scheme for minimum compliance topology optimization. Struct Multidiscip Optim 22(2):116–124CrossRef Stolpe M, Svanberg K (2001) An alternative interpolation scheme for minimum compliance topology optimization. Struct Multidiscip Optim 22(2):116–124CrossRef
go back to reference Svanberg K (1987) The method of moving asymptotes – a new method for structural optimization. Int J Numer Methods Eng 24(2): 359–373MathSciNetCrossRefMATH Svanberg K (1987) The method of moving asymptotes – a new method for structural optimization. Int J Numer Methods Eng 24(2): 359–373MathSciNetCrossRefMATH
go back to reference Talischi C, Paulino GH (2013) An operator splitting algorithm for Tikhonov-regularized topology optimization. Comput Methods Appl Mech Eng 253:599–608MathSciNetCrossRefMATH Talischi C, Paulino GH (2013) An operator splitting algorithm for Tikhonov-regularized topology optimization. Comput Methods Appl Mech Eng 253:599–608MathSciNetCrossRefMATH
go back to reference Tavakoli R, Mohseni SM (2014) Alternating active-phase algorithm for multimaterial topology optimization problems: a 115-line matlab implementation. Struct Multidiscip Optim 49(4):621–642MathSciNetCrossRef Tavakoli R, Mohseni SM (2014) Alternating active-phase algorithm for multimaterial topology optimization problems: a 115-line matlab implementation. Struct Multidiscip Optim 49(4):621–642MathSciNetCrossRef
go back to reference Tikhonov A, Arsenin V (1977) Methods for solving ill-posed problems. Wiley, New YorkMATH Tikhonov A, Arsenin V (1977) Methods for solving ill-posed problems. Wiley, New YorkMATH
go back to reference Tyas A, Gilbert M, Pritchard T (2006) Practical plastic layout optimization of trusses incorporating stability considerations. Comput Struct 84(3C4):115–126CrossRef Tyas A, Gilbert M, Pritchard T (2006) Practical plastic layout optimization of trusses incorporating stability considerations. Comput Struct 84(3C4):115–126CrossRef
go back to reference Victoria M, Querin OM, Martí P (2011) Generation of strut-and-tie models by topology design using different material properties in tension and compression. Struct Multidiscip Optim 44(2): 247–258CrossRef Victoria M, Querin OM, Martí P (2011) Generation of strut-and-tie models by topology design using different material properties in tension and compression. Struct Multidiscip Optim 44(2): 247–258CrossRef
go back to reference Wallin M, Ivarsson N, Ristinmaa M (2015) Large strain phase-field-based multi-material topology optimization. Int J Numer Methods Eng 104(9):887–904MathSciNetCrossRefMATH Wallin M, Ivarsson N, Ristinmaa M (2015) Large strain phase-field-based multi-material topology optimization. Int J Numer Methods Eng 104(9):887–904MathSciNetCrossRefMATH
go back to reference Wang MY, Wang X (2004) Color level sets: a multi-phase method for structural topology optimization with multiple materials. Comput Methods Appl Mech Eng 193(6):469–496MathSciNetCrossRefMATH Wang MY, Wang X (2004) Color level sets: a multi-phase method for structural topology optimization with multiple materials. Comput Methods Appl Mech Eng 193(6):469–496MathSciNetCrossRefMATH
go back to reference Wang MY, Wang X (2005) A level-set based variational method for design and optimization of heterogeneous objects. Comput Aided Des 37(3):321–337CrossRef Wang MY, Wang X (2005) A level-set based variational method for design and optimization of heterogeneous objects. Comput Aided Des 37(3):321–337CrossRef
go back to reference Wang MY, Chen S, Wang X, Mei Y (2005) Design of multimaterial compliant mechanisms using level-set methods. J Mech Des 127(5):941–956CrossRef Wang MY, Chen S, Wang X, Mei Y (2005) Design of multimaterial compliant mechanisms using level-set methods. J Mech Des 127(5):941–956CrossRef
go back to reference Yin L, Ananthasuresh G (2001) Topology optimization of compliant mechanisms with multiple materials using a peak function material interpolation scheme. Struct Multidiscip Optim 23(1):49–62CrossRef Yin L, Ananthasuresh G (2001) Topology optimization of compliant mechanisms with multiple materials using a peak function material interpolation scheme. Struct Multidiscip Optim 23(1):49–62CrossRef
go back to reference Yin L, Yang W (2001) Optimality criteria method for topology optimization under multiple constraints. Comput Struct 79(20):1839–1850CrossRef Yin L, Yang W (2001) Optimality criteria method for topology optimization under multiple constraints. Comput Struct 79(20):1839–1850CrossRef
go back to reference Zegard T, Paulino GH (2013) Truss layout optimization within a continuum. Struct Multidiscip Optim 48 (1):1–16CrossRefMATH Zegard T, Paulino GH (2013) Truss layout optimization within a continuum. Struct Multidiscip Optim 48 (1):1–16CrossRefMATH
go back to reference Zegard T, Paulino GH (2014) GRAND – Ground Structure based topology optimization for arbitrary 2D domains using MATLAB. Struct Multidiscip Optim 50(5):861–882MathSciNetCrossRef Zegard T, Paulino GH (2014) GRAND – Ground Structure based topology optimization for arbitrary 2D domains using MATLAB. Struct Multidiscip Optim 50(5):861–882MathSciNetCrossRef
go back to reference Zegard T, Paulino GH (2015) GRAND3 – Ground Structure based topology optimization for arbitrary 3D domains using MATLAB. Struct Multidiscip Optim 52(6):1161–1184CrossRef Zegard T, Paulino GH (2015) GRAND3 – Ground Structure based topology optimization for arbitrary 3D domains using MATLAB. Struct Multidiscip Optim 52(6):1161–1184CrossRef
go back to reference Zegard T, Paulino GH (2016) Bridging topology optimization and additive manufacturing. Struct Multidiscip Optim 53(1):175–192CrossRef Zegard T, Paulino GH (2016) Bridging topology optimization and additive manufacturing. Struct Multidiscip Optim 53(1):175–192CrossRef
go back to reference Zegard T, William F, Baker F, Mazurek A, Paulino GH (2014) Geometrical aspects of lateral bracing systems: Where should the optimal bracing point be?. ASCE J Struct Eng 140(9):04014,063–1–9CrossRef Zegard T, William F, Baker F, Mazurek A, Paulino GH (2014) Geometrical aspects of lateral bracing systems: Where should the optimal bracing point be?. ASCE J Struct Eng 140(9):04014,063–1–9CrossRef
go back to reference Zhang X, Maheshwari S, Ramos AS Jr, Paulino GH (2016) Macroelement and macropatch approaches to structural topology optimization using the ground structure method. ASCE J Struct Eng 142(11):04016,090–1–14CrossRef Zhang X, Maheshwari S, Ramos AS Jr, Paulino GH (2016) Macroelement and macropatch approaches to structural topology optimization using the ground structure method. ASCE J Struct Eng 142(11):04016,090–1–14CrossRef
go back to reference Zhang X, Ramos AS Jr, Paulino GH (2017) Material nonlinear topology design using the ground structure method with a discrete filter scheme. Struct Multidiscip Optim 55(6):2045–2072MathSciNetCrossRef Zhang X, Ramos AS Jr, Paulino GH (2017) Material nonlinear topology design using the ground structure method with a discrete filter scheme. Struct Multidiscip Optim 55(6):2045–2072MathSciNetCrossRef
go back to reference Zhou S, Wang MY (2007) Multimaterial structural topology optimization with a generalized cahn–Hilliard model of multiphase transition. Struct Multidiscip Optim 33(2):89–111MathSciNetCrossRefMATH Zhou S, Wang MY (2007) Multimaterial structural topology optimization with a generalized cahn–Hilliard model of multiphase transition. Struct Multidiscip Optim 33(2):89–111MathSciNetCrossRefMATH
Metadata
Title
Multi-material topology optimization with multiple volume constraints: a general approach applied to ground structures with material nonlinearity
Authors
Xiaojia Shelly Zhang
Glaucio H. Paulino
Adeildo S. Ramos Jr.
Publication date
06-09-2017
Publisher
Springer Berlin Heidelberg
Published in
Structural and Multidisciplinary Optimization / Issue 1/2018
Print ISSN: 1615-147X
Electronic ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-017-1768-3

Other articles of this Issue 1/2018

Structural and Multidisciplinary Optimization 1/2018 Go to the issue

Premium Partners