Skip to main content
Top
Published in: Autonomous Robots 7/2019

01-02-2019

Multi-modal active perception for information gathering in science missions

Authors: Akash Arora, P. Michael Furlong, Robert Fitch, Salah Sukkarieh, Terrence Fong

Published in: Autonomous Robots | Issue 7/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Robotic science missions in remote environments, such as deep ocean and outer space, can involve studying phenomena that cannot directly be observed using on-board sensors but must be deduced by combining measurements of correlated variables with domain knowledge. Traditionally, in such missions, robots passively gather data along prescribed paths, while inference, path planning, and other high level decision making is largely performed by a supervisory science team located at a different location, often at a great distance. However, communication constraints hinder these processes, and hence the rate of scientific progress. This paper presents an active perception approach that aims to reduce robots’ reliance on human supervision and improve science productivity by encoding scientists’ domain knowledge and decision making process on-board. We present a Bayesian network architecture to compactly model critical aspects of scientific knowledge while remaining robust to observation and modeling uncertainty. We then formulate path planning and sensor scheduling as an information gain maximization problem, and propose a sampling-based solution based on Monte Carlo tree search to plan informative sensing actions which exploit the knowledge encoded in the network. The computational complexity of our framework does not grow with the number of observations taken and allows long horizon planning in an anytime manner, making it highly applicable to field robotics with constrained computing. Simulation results show statistically significant performance improvements over baseline methods, and we validate the practicality of our approach through both hardware experiments and simulated experiments with field data gathered during the NASA Mojave Volatiles Prospector science expedition.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., & Süsstrunk, S. (2012). SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Transactions on Pattern Analysis, 34(11), 2274–2282.CrossRef Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., & Süsstrunk, S. (2012). SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Transactions on Pattern Analysis, 34(11), 2274–2282.CrossRef
go back to reference Andrews, D. R., Colaprete, A., Quinn, J., Chavers, D., & Picard, M. (2014). Introducing the resource prospector (RP) mission. In Proceedings of of AIAA SPACE, p. 4378. Andrews, D. R., Colaprete, A., Quinn, J., Chavers, D., & Picard, M. (2014). Introducing the resource prospector (RP) mission. In Proceedings of of AIAA SPACE, p. 4378.
go back to reference Apostolopoulos, D. S., Pedersen, L., Shamah, B. N., Shillcutt, K., Wagner, M. D., & Whittaker, W. L. (2001). Robotic antarctic meteorite search: Outcomes. In Proceedings of IEEE ICRA, pp. 4174–4179. Apostolopoulos, D. S., Pedersen, L., Shamah, B. N., Shillcutt, K., Wagner, M. D., & Whittaker, W. L. (2001). Robotic antarctic meteorite search: Outcomes. In Proceedings of IEEE ICRA, pp. 4174–4179.
go back to reference Arora, A., Fitch, R., & Sukkarieh, S. (2017a). An approach to autonomous science by modeling geological knowledge in a Bayesian framework. In Proceedings of IEEE/RSJ IROS Arora, A., Fitch, R., & Sukkarieh, S. (2017a). An approach to autonomous science by modeling geological knowledge in a Bayesian framework. In Proceedings of IEEE/RSJ IROS
go back to reference Arora, A., Furlong, M., Fitch, R., Fong, T., Sukkarieh, S., & Elphic, R. (2017b). Online multi-modal learning and adaptive informative trajectory planning for autonomous exploration. In Proceedings of FSR Arora, A., Furlong, M., Fitch, R., Fong, T., Sukkarieh, S., & Elphic, R. (2017b). Online multi-modal learning and adaptive informative trajectory planning for autonomous exploration. In Proceedings of FSR
go back to reference Arora, A., Furlong, M., Wong Uland, F. R., & Fong, T. (2018). Sampling-based descent trajectory planning and autonomous landing site selection for icy moon lander missions. In Proceedings of iSAIRAS. Arora, A., Furlong, M., Wong Uland, F. R., & Fong, T. (2018). Sampling-based descent trajectory planning and autonomous landing site selection for icy moon lander missions. In Proceedings of iSAIRAS.
go back to reference Azman, K. (2005). Incorporating prior knowledge into Gaussian process models. In Proceedings of international Ph.D. work. Systems and control, pp. 253–256. Azman, K. (2005). Incorporating prior knowledge into Gaussian process models. In Proceedings of international Ph.D. work. Systems and control, pp. 253–256.
go back to reference Bai, H., Cai, S., Ye, N., Hsu, D., & Lee, W. S. (2015). Intention-aware online POMDP planning for autonomous driving in a crowd. In Proceedings of IEEE ICRA. IEEE, pp. 454–460. Bai, H., Cai, S., Ye, N., Hsu, D., & Lee, W. S. (2015). Intention-aware online POMDP planning for autonomous driving in a crowd. In Proceedings of IEEE ICRA. IEEE, pp. 454–460.
go back to reference Bajcsy, R. (1988). Active perception. Proceedings of IEEE, 76(8), 966–1005.CrossRef Bajcsy, R. (1988). Active perception. Proceedings of IEEE, 76(8), 966–1005.CrossRef
go back to reference Barnes, D., Pugh, S., & Tyler, L. (2009). Autonomous science target identification and acquisition (ASTIA) for planetary exploration. In Proceedings of IEEE/RSJ IROS, pp. 3329–3335. Barnes, D., Pugh, S., & Tyler, L. (2009). Autonomous science target identification and acquisition (ASTIA) for planetary exploration. In Proceedings of IEEE/RSJ IROS, pp. 3329–3335.
go back to reference Beal, M. J. (2003). Variational algorithms for approximate Bayesian inference. University of London United Kingdom Beal, M. J. (2003). Variational algorithms for approximate Bayesian inference. University of London United Kingdom
go back to reference Bender, A., Williams, S. B., & Pizarro, O. (2013). Autonomous exploration of large-scale benthic environments. In Proceedings of IEEE ICRA, pp. 390–396. Bender, A., Williams, S. B., & Pizarro, O. (2013). Autonomous exploration of large-scale benthic environments. In Proceedings of IEEE ICRA, pp. 390–396.
go back to reference Best, G., Cliff, O. M., Patten, T., Mettu, R. R., & Fitch, R. (2016). Decentralised Monte Carlo tree search for active perception. In Proceedings of WAFR. Best, G., Cliff, O. M., Patten, T., Mettu, R. R., & Fitch, R. (2016). Decentralised Monte Carlo tree search for active perception. In Proceedings of WAFR.
go back to reference Best, G., & Fitch, R. (2016) . Probabilistic maximum set cover with path constraints for informative path planning. In Proceedings of ARAA ACRA. Best, G., & Fitch, R. (2016) . Probabilistic maximum set cover with path constraints for informative path planning. In Proceedings of ARAA ACRA.
go back to reference Binney, J., & Sukhatme, G. S. (2012). Branch and bound for informative path planning. In Proceedings of IEEE ICRA, pp. 2147–2154. Binney, J., & Sukhatme, G. S. (2012). Branch and bound for informative path planning. In Proceedings of IEEE ICRA, pp. 2147–2154.
go back to reference Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of Machine Learning Research, 3, 993–1022.MATH Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of Machine Learning Research, 3, 993–1022.MATH
go back to reference Brachman, R. J., & Schmolze, J. G. (1985). An overview of the KL-ONE knowledge representation system. Cognitive Science, 9(2), 171–216.CrossRef Brachman, R. J., & Schmolze, J. G. (1985). An overview of the KL-ONE knowledge representation system. Cognitive Science, 9(2), 171–216.CrossRef
go back to reference Browne, C. B., Powley, E., Whitehouse, D., Lucas, S. M., Cowling, P. I., Rohlfshagen, P., et al. (2012). A survey of Monte Carlo tree search methods. IEEE Transactions on Computational Intelligence and AI, 4(1), 1–43.CrossRef Browne, C. B., Powley, E., Whitehouse, D., Lucas, S. M., Cowling, P. I., Rohlfshagen, P., et al. (2012). A survey of Monte Carlo tree search methods. IEEE Transactions on Computational Intelligence and AI, 4(1), 1–43.CrossRef
go back to reference Cabrol, N. A., Wettergreen, D., Warren-Rhodes, K., Grin, E. A., Moersch, J., Diaz, G. C., et al. (2007). Life in the Atacama: Searching for life with rovers (science overview). Journal of Geophysical Research: Biogeosciences, 112(G4), G04S02. https://doi.org/10.1029/2006JG000298. Cabrol, N. A., Wettergreen, D., Warren-Rhodes, K., Grin, E. A., Moersch, J., Diaz, G. C., et al. (2007). Life in the Atacama: Searching for life with rovers (science overview). Journal of Geophysical Research: Biogeosciences, 112(G4), G04S02. https://​doi.​org/​10.​1029/​2006JG000298.
go back to reference Candela, A., Thompson, D., Dobrea, E. N., & Wettergreen, D. (2017). Planetary robotic exploration driven by science hypotheses for geologic mapping. In Proceedings of IEEE/RSJ IROS. Candela, A., Thompson, D., Dobrea, E. N., & Wettergreen, D. (2017). Planetary robotic exploration driven by science hypotheses for geologic mapping. In Proceedings of IEEE/RSJ IROS.
go back to reference Cassandra, A. R. (1998). Exact and approximate algorithms for partially observable Markov decision processes. Brown University. Cassandra, A. R. (1998). Exact and approximate algorithms for partially observable Markov decision processes. Brown University.
go back to reference Castano, R., Estlin, T., Anderson, R. C., Gaines, D. M., Castano, A., Bornstein, B., et al. (2007). OASIS: Onboard autonomous science investigation system for opportunistic rover science. Journal of Field Robotics, 24(5), 379–397.CrossRef Castano, R., Estlin, T., Anderson, R. C., Gaines, D. M., Castano, A., Bornstein, B., et al. (2007). OASIS: Onboard autonomous science investigation system for opportunistic rover science. Journal of Field Robotics, 24(5), 379–397.CrossRef
go back to reference Castillo, E., Gutierrez, J. M., & Hadi, A. S. (2012). Expert systems and probabilistic network models. Berlin: Springer.MATH Castillo, E., Gutierrez, J. M., & Hadi, A. S. (2012). Expert systems and probabilistic network models. Berlin: Springer.MATH
go back to reference Chien, S., Sherwood, R., Tran, D., Cichy, B., Rabideau, G., Castano, R., & et al. (2004). The EO-1 autonomous science agent. In Proceedings of international joint conference on autonomous agents and multiagent systems. IEEE Computer Society, pp. 420–427. Chien, S., Sherwood, R., Tran, D., Cichy, B., Rabideau, G., Castano, R., & et al. (2004). The EO-1 autonomous science agent. In Proceedings of international joint conference on autonomous agents and multiagent systems. IEEE Computer Society, pp. 420–427.
go back to reference Choset, H. (2001). Coverage for robotics—A survey of recent results. Annals of Mathematics and Artificial Intelligence, 31(1), 113–126.MATHCrossRef Choset, H. (2001). Coverage for robotics—A survey of recent results. Annals of Mathematics and Artificial Intelligence, 31(1), 113–126.MATHCrossRef
go back to reference Das, J., Harvey, J., Py, F., Vathsangam, H., Graham, R., Rajan, K., & Sukhatme, G. S. (2013). Hierarchical probabilistic regression for AUV-based adaptive sampling of marine phenomena. In Proceedings of IEEE ICRA, pp. 5571–5578. Das, J., Harvey, J., Py, F., Vathsangam, H., Graham, R., Rajan, K., & Sukhatme, G. S. (2013). Hierarchical probabilistic regression for AUV-based adaptive sampling of marine phenomena. In Proceedings of IEEE ICRA, pp. 5571–5578.
go back to reference Dunbabin, M., & Marques, L. (2012). Robots for environmental monitoring: Significant advancements and applications. IEEE Robotics and Automation Magazine, 19(1), 24–39.CrossRef Dunbabin, M., & Marques, L. (2012). Robots for environmental monitoring: Significant advancements and applications. IEEE Robotics and Automation Magazine, 19(1), 24–39.CrossRef
go back to reference Dunlop, H., Thompson, D. R., & Wettergreen, D. (2007). Multi-scale features for detection and segmentation of rocks in Mars images. In Proceedings of IEEE CVPR Dunlop, H., Thompson, D. R., & Wettergreen, D. (2007). Multi-scale features for detection and segmentation of rocks in Mars images. In Proceedings of IEEE CVPR
go back to reference Estlin, T. A., Bornstein, B. J., Gaines, D. M., Anderson, R. C., Thompson, D. R., Burl, M., et al. (2012). AEGIS automated science targeting for the MER opportunity rover. ACM Transactions on Intelligent Systems and Technology, 3(3), 50.CrossRef Estlin, T. A., Bornstein, B. J., Gaines, D. M., Anderson, R. C., Thompson, D. R., Burl, M., et al. (2012). AEGIS automated science targeting for the MER opportunity rover. ACM Transactions on Intelligent Systems and Technology, 3(3), 50.CrossRef
go back to reference Foil, G., Fong, T., Elphic, R. C., & Wettergreen, D. (2016). Physical process models for improved rover mapping. In Proceedings of iSAIRAS. Foil, G., Fong, T., Elphic, R. C., & Wettergreen, D. (2016). Physical process models for improved rover mapping. In Proceedings of iSAIRAS.
go back to reference Francis, R., Estlin, T., Doran, G., Johnstone, S., Gaines, D., Verma, V., et al. (2017). AEGIS autonomous targeting for ChemCam on Mars Science Laboratory: Deployment and results of initial science team use. Science Robototics, 2(7), eaan4582.CrossRef Francis, R., Estlin, T., Doran, G., Johnstone, S., Gaines, D., Verma, V., et al. (2017). AEGIS autonomous targeting for ChemCam on Mars Science Laboratory: Deployment and results of initial science team use. Science Robototics, 2(7), eaan4582.CrossRef
go back to reference Gallant, M. J., Ellery, A., & Marshall, J. A. (2013). Rover-based autonomous science by probabilistic identification and evaluation. Journal of Intelligent and Robotic Systems, 72(3–4), 591.CrossRef Gallant, M. J., Ellery, A., & Marshall, J. A. (2013). Rover-based autonomous science by probabilistic identification and evaluation. Journal of Intelligent and Robotic Systems, 72(3–4), 591.CrossRef
go back to reference Gelly, S., Kocsis, L., Schoenauer, M., Sebag, M., Silver, D., Szepesvári, C., et al. (2012). The grand challenge of computer Go: Monte Carlo tree search and extensions. Communications of ACM, 55(3), 106–113.CrossRef Gelly, S., Kocsis, L., Schoenauer, M., Sebag, M., Silver, D., Szepesvári, C., et al. (2012). The grand challenge of computer Go: Monte Carlo tree search and extensions. Communications of ACM, 55(3), 106–113.CrossRef
go back to reference Girdhar, Y., & Dudek, G. (2016). Modeling curiosity in a mobile robot for long-term autonomous exploration and monitoring. Autonomous Robots, 40(7), 1267–1278.CrossRef Girdhar, Y., & Dudek, G. (2016). Modeling curiosity in a mobile robot for long-term autonomous exploration and monitoring. Autonomous Robots, 40(7), 1267–1278.CrossRef
go back to reference Grotzinger, J. P., Crisp, J., Vasavada, A. R., Anderson, R. C., Baker, C. J., Barry, R., et al. (2012). Mars science laboratory mission and science investigation. Space Science Reviews, 170(1–4), 5–56.CrossRef Grotzinger, J. P., Crisp, J., Vasavada, A. R., Anderson, R. C., Baker, C. J., Barry, R., et al. (2012). Mars science laboratory mission and science investigation. Space Science Reviews, 170(1–4), 5–56.CrossRef
go back to reference Hanheide, M., Gretton, C., Dearden, R., Hawes, N., Wyatt, J., Pronobis, A., & et al. (2011). Exploiting probabilistic knowledge under uncertain sensing for efficient robot behaviour. In Proceedings of IJCAI, pp. 2442–2449. Hanheide, M., Gretton, C., Dearden, R., Hawes, N., Wyatt, J., Pronobis, A., & et al. (2011). Exploiting probabilistic knowledge under uncertain sensing for efficient robot behaviour. In Proceedings of IJCAI, pp. 2442–2449.
go back to reference Heckerman, D., Geiger, D., & Chickering, D. M. (1995). Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning, 20(3), 197–243.MATH Heckerman, D., Geiger, D., & Chickering, D. M. (1995). Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning, 20(3), 197–243.MATH
go back to reference Heldmann, J., Colaprete, A., Cook, A., Roush, T., Deans, M., Elphic, R., & et al. (2015). Mojave volatiles prospector (MVP): Science and operations results from a lunar polar rover analog field campaign, Vol. 46. In Proceedings of lunar planetary science, p. 2165. Heldmann, J., Colaprete, A., Cook, A., Roush, T., Deans, M., Elphic, R., & et al. (2015). Mojave volatiles prospector (MVP): Science and operations results from a lunar polar rover analog field campaign, Vol. 46. In Proceedings of lunar planetary science, p. 2165.
go back to reference Hollinger, G. A., & Sukhatme, G. S. (2014). Sampling-based robotic information gathering algorithms. International Journal of Robotics Research, 33(9), 1271–1287.CrossRef Hollinger, G. A., & Sukhatme, G. S. (2014). Sampling-based robotic information gathering algorithms. International Journal of Robotics Research, 33(9), 1271–1287.CrossRef
go back to reference Hunter, A., & Liu, W. (2010). A survey of formalisms for representing and reasoning with scientific knowledge. The Knowledge Engineering Review, 25(02), 199–222.CrossRef Hunter, A., & Liu, W. (2010). A survey of formalisms for representing and reasoning with scientific knowledge. The Knowledge Engineering Review, 25(02), 199–222.CrossRef
go back to reference Jawaid, S. T., & Smith, S. L. (2015). Informative path planning as a maximum traveling salesman problem with submodular rewards. Discrete Applied Mathematics, 186, 112–127.MathSciNetMATHCrossRef Jawaid, S. T., & Smith, S. L. (2015). Informative path planning as a maximum traveling salesman problem with submodular rewards. Discrete Applied Mathematics, 186, 112–127.MathSciNetMATHCrossRef
go back to reference Knight, S., Rabideau, G., Chien, S., Engelhardt, B., & Sherwood, R. (2001). CASPER: Space exploration through continuous planning. IEEE Intelligent Systems, 16(5), 70–75.CrossRef Knight, S., Rabideau, G., Chien, S., Engelhardt, B., & Sherwood, R. (2001). CASPER: Space exploration through continuous planning. IEEE Intelligent Systems, 16(5), 70–75.CrossRef
go back to reference Kocsis, L., & Szepesvári, C. (2006). Bandit-based Monte Carlo planning. In Proceedings of European conference machine learning, pp. 282–293. Kocsis, L., & Szepesvári, C. (2006). Bandit-based Monte Carlo planning. In Proceedings of European conference machine learning, pp. 282–293.
go back to reference Kononenko, I. (1993). Inductive and Bayesian learning in medical diagnosis. Applied Artificial Intelligence, 7(4), 317–337.CrossRef Kononenko, I. (1993). Inductive and Bayesian learning in medical diagnosis. Applied Artificial Intelligence, 7(4), 317–337.CrossRef
go back to reference Krause, A., & Guestrin, C. (2007). Near-optimal observation selection using submodular functions. In Proceedings of AAAI, pp. 1650–1654. Krause, A., & Guestrin, C. (2007). Near-optimal observation selection using submodular functions. In Proceedings of AAAI, pp. 1650–1654.
go back to reference Lawrence, N. D. (2003). Gaussian process latent variable models for visualisation of high dimensional data. In Proceedings of the 16th international conference on neural information processing systems (pp. 329–336). MIT Press. Lawrence, N. D. (2003). Gaussian process latent variable models for visualisation of high dimensional data. In Proceedings of the 16th international conference on neural information processing systems (pp. 329–336). MIT Press.
go back to reference Leshin, L., Mahaffy, P., Webster, C., Cabane, M., Coll, P., Conrad, P., et al. (2013). Volatile, isotope, and organic analysis of Martian fines with the Mars Curiosity rover. Science, 341(6153), 1238937.CrossRef Leshin, L., Mahaffy, P., Webster, C., Cabane, M., Coll, P., Conrad, P., et al. (2013). Volatile, isotope, and organic analysis of Martian fines with the Mars Curiosity rover. Science, 341(6153), 1238937.CrossRef
go back to reference Liedloff, A., Woodward, E., Harrington, G., & Jackson, S. (2013). Integrating indigenous ecological and scientific hydro-geological knowledge using a Bayesian network in the context of water resource development. Journal of Hydrology, 499, 177–187.CrossRef Liedloff, A., Woodward, E., Harrington, G., & Jackson, S. (2013). Integrating indigenous ecological and scientific hydro-geological knowledge using a Bayesian network in the context of water resource development. Journal of Hydrology, 499, 177–187.CrossRef
go back to reference Ma, K.-C., Liu, L., Heidarsson, H. K., & Sukhatme, G. S. (2018). Data-driven learning and planning for environmental sampling. Journal of Field Robotics, 35(5), 643–661.CrossRef Ma, K.-C., Liu, L., Heidarsson, H. K., & Sukhatme, G. S. (2018). Data-driven learning and planning for environmental sampling. Journal of Field Robotics, 35(5), 643–661.CrossRef
go back to reference Marchant, R., & Ramos, F. (2014). Bayesian optimization for informative continuous path planning. In Proceedings of IEEE ICRA, pp. 6136–6143. Marchant, R., & Ramos, F. (2014). Bayesian optimization for informative continuous path planning. In Proceedings of IEEE ICRA, pp. 6136–6143.
go back to reference Murphy, K. P., Weiss, Y., & Jordan, M. I. (1999). Loopy belief propagation for approximate inference: An empirical study. In Proceedings of the uncertainty in artificial intelligence, Morgan Kaufmann Publishers Inc, pp. 467–475. Murphy, K. P., Weiss, Y., & Jordan, M. I. (1999). Loopy belief propagation for approximate inference: An empirical study. In Proceedings of the uncertainty in artificial intelligence, Morgan Kaufmann Publishers Inc, pp. 467–475.
go back to reference Nguyen, J. L., Lawrance, N. R., Fitch, R., & Sukkarieh, S. (2016). Real-time path planning for long-term information gathering with an aerial glider. Autonomous Robots, 40(6), 1017–1039.CrossRef Nguyen, J. L., Lawrance, N. R., Fitch, R., & Sukkarieh, S. (2016). Real-time path planning for long-term information gathering with an aerial glider. Autonomous Robots, 40(6), 1017–1039.CrossRef
go back to reference Patten, T., Martens, W., & Fitch, R. (2018). Monte Carlo planning for active object classification. Autonomous Robots, 42(2), 391–421.CrossRef Patten, T., Martens, W., & Fitch, R. (2018). Monte Carlo planning for active object classification. Autonomous Robots, 42(2), 391–421.CrossRef
go back to reference Pearl, J. (2014). Probabilistic reasoning in intelligent systems: Networks of plausible inference. Burlington: Morgan Kaufmann.MATH Pearl, J. (2014). Probabilistic reasoning in intelligent systems: Networks of plausible inference. Burlington: Morgan Kaufmann.MATH
go back to reference Pedersen, L. (2001). Autonomous characterization of unknown environments. In Proceedings of IEEE ICRA, pp. 277–284. Pedersen, L. (2001). Autonomous characterization of unknown environments. In Proceedings of IEEE ICRA, pp. 277–284.
go back to reference Peynot, T., Lui, S. T., McAllister, R., Fitch, R., & Sukkarieh, S. (2014). Learned stochastic mobility prediction for planning with control uncertainty on unstructured terrain. Journal of Field Robotics, 31(6), 969–995.CrossRef Peynot, T., Lui, S. T., McAllister, R., Fitch, R., & Sukkarieh, S. (2014). Learned stochastic mobility prediction for planning with control uncertainty on unstructured terrain. Journal of Field Robotics, 31(6), 969–995.CrossRef
go back to reference Post, M. A., Li, J., & Quine, B. M. (2016). Planetary micro-rover operations on Mars using a Bayesian framework for inference and control. Acta Astronautica, 120, 295–314.CrossRef Post, M. A., Li, J., & Quine, B. M. (2016). Planetary micro-rover operations on Mars using a Bayesian framework for inference and control. Acta Astronautica, 120, 295–314.CrossRef
go back to reference Potiris, S., Tompkins, A., & Goktogan, A. (2014). Terrain-based path planning and following for an experimental Mars rover. In Proceedings of ARAA ACRA. Potiris, S., Tompkins, A., & Goktogan, A. (2014). Terrain-based path planning and following for an experimental Mars rover. In Proceedings of ARAA ACRA.
go back to reference Rasmussen, C. E. (2006). Gaussian processes for machine learning. Cambridge: MIT Press.MATH Rasmussen, C. E. (2006). Gaussian processes for machine learning. Cambridge: MIT Press.MATH
go back to reference Roy, N., Gordon, G., & Thrun, S. (2005). Finding approximate pomdp solutions through belief compression. JAIR, 23, 1–40.MATHCrossRef Roy, N., Gordon, G., & Thrun, S. (2005). Finding approximate pomdp solutions through belief compression. JAIR, 23, 1–40.MATHCrossRef
go back to reference Sharif, H., Ralchenko, M., Samson, C., & Ellery, A. (2015). Autonomous rock classification using Bayesian image analysis for rover-based planetary exploration. Computers & Geosciences, 83, 153–167.CrossRef Sharif, H., Ralchenko, M., Samson, C., & Ellery, A. (2015). Autonomous rock classification using Bayesian image analysis for rover-based planetary exploration. Computers & Geosciences, 83, 153–167.CrossRef
go back to reference Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., et al. (2016). Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587), 484–489.CrossRef Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., et al. (2016). Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587), 484–489.CrossRef
go back to reference Silver, D., & Veness, J. (2010). Monte Carlo planning in large POMDPs. In Advances in neural information processing, pp. 2164–2172. Silver, D., & Veness, J. (2010). Monte Carlo planning in large POMDPs. In Advances in neural information processing, pp. 2164–2172.
go back to reference Smith, T. (2007). Probabilistic planning for robotic exploration. Ph.D. thesis, Robotics Institute, Carnegie Mellon University. Smith, T. (2007). Probabilistic planning for robotic exploration. Ph.D. thesis, Robotics Institute, Carnegie Mellon University.
go back to reference Song, Y., & Shan, J. (2008). Automated rock segmentation for Mars exploration rover imagery. In Proceedings of lunar and planetary science conference. Song, Y., & Shan, J. (2008). Automated rock segmentation for Mars exploration rover imagery. In Proceedings of lunar and planetary science conference.
go back to reference Sowa, J. F. (2014). Principles of semantic networks: Explorations in the representation of knowledge. Burlington: Morgan Kaufmann.MATH Sowa, J. F. (2014). Principles of semantic networks: Explorations in the representation of knowledge. Burlington: Morgan Kaufmann.MATH
go back to reference Tabib, W., Whittaker, R., & Michael, N. (2016). Efficient multi-sensor exploration using dependent observations and conditional mutual information. In Proceedings of IEEE SSRR, pp. 42–47. Tabib, W., Whittaker, R., & Michael, N. (2016). Efficient multi-sensor exploration using dependent observations and conditional mutual information. In Proceedings of IEEE SSRR, pp. 42–47.
go back to reference Thompson, D. R., & Castano, R. (2007). Performance comparison of rock detection algorithms for autonomous planetary geology. In Proceedings of IEEE aerospace conference. Thompson, D. R., & Castano, R. (2007). Performance comparison of rock detection algorithms for autonomous planetary geology. In Proceedings of IEEE aerospace conference.
go back to reference Thompson, D. R., & Wettergreen, D. (2008). Intelligent maps for autonomous kilometer-scale science survey. In Proceedings of iSAIRAS. Thompson, D. R., & Wettergreen, D. (2008). Intelligent maps for autonomous kilometer-scale science survey. In Proceedings of iSAIRAS.
go back to reference Thompson, D. R., Wettergreen, D. S., & Peralta, F. J. C. (2011). Autonomous science during large-scale robotic survey. Journal of Field Robotics, 28(4), 542–564.CrossRef Thompson, D. R., Wettergreen, D. S., & Peralta, F. J. C. (2011). Autonomous science during large-scale robotic survey. Journal of Field Robotics, 28(4), 542–564.CrossRef
go back to reference Van Winnendael, M., Baglioni, P., & Vago, J. (2005). Development of the ESA ExoMars rover. In Proceedings of iSAIRAS, pp. 5–8. Van Winnendael, M., Baglioni, P., & Vago, J. (2005). Development of the ESA ExoMars rover. In Proceedings of iSAIRAS, pp. 5–8.
go back to reference Wettergreen, D., Foil, G., Furlong, M., & Thompson, D. R. (2014). Science autonomy for rover subsurface exploration of the Atacama desert. AI Magazine, 35(4), 47–60.CrossRef Wettergreen, D., Foil, G., Furlong, M., & Thompson, D. R. (2014). Science autonomy for rover subsurface exploration of the Atacama desert. AI Magazine, 35(4), 47–60.CrossRef
go back to reference Woods, M., Shaw, A., Barnes, D., Price, D., Long, D., & Pullan, D. (2009). Autonomous science for an ExoMars Rover-like mission. Journal of Field Robotics, 26(4), 358–390.CrossRef Woods, M., Shaw, A., Barnes, D., Price, D., Long, D., & Pullan, D. (2009). Autonomous science for an ExoMars Rover-like mission. Journal of Field Robotics, 26(4), 358–390.CrossRef
go back to reference Yedidia, J. S., Freeman, W. T., Weiss, Y., et al. (2000). Generalized belief propagation. Advances in Neural Information, 13, 689–695. Yedidia, J. S., Freeman, W. T., Weiss, Y., et al. (2000). Generalized belief propagation. Advances in Neural Information, 13, 689–695.
go back to reference Zhang, S., Sridharan, M., & Wyatt, J. L. (2015). Mixed logical inference and probabilistic planning for robots in unreliable worlds. IEEE Transactions on Robotics, 31(3), 699–713.CrossRef Zhang, S., Sridharan, M., & Wyatt, J. L. (2015). Mixed logical inference and probabilistic planning for robots in unreliable worlds. IEEE Transactions on Robotics, 31(3), 699–713.CrossRef
Metadata
Title
Multi-modal active perception for information gathering in science missions
Authors
Akash Arora
P. Michael Furlong
Robert Fitch
Salah Sukkarieh
Terrence Fong
Publication date
01-02-2019
Publisher
Springer US
Published in
Autonomous Robots / Issue 7/2019
Print ISSN: 0929-5593
Electronic ISSN: 1573-7527
DOI
https://doi.org/10.1007/s10514-019-09836-5

Other articles of this Issue 7/2019

Autonomous Robots 7/2019 Go to the issue