Skip to main content
Top
Published in: Journal of Intelligent Manufacturing 1/2017

25-09-2014

Multi-objective genetic programming approach for robust modeling of complex manufacturing processes having probabilistic uncertainty in experimental data

Authors: A. Jamali, E. Khaleghi, I. Gholaminezhad, N. Nariman-Zadeh, B. Gholaminia, A. Jamal-Omidi

Published in: Journal of Intelligent Manufacturing | Issue 1/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, a multi-objective uniform-diversity genetic programming (MUGP) algorithm deployed for robust Pareto modeling and prediction of complex nonlinear processes using some input-output data table. The uncertainties included in measured data are considered to obtain more robust models. The considered benchmarks are an explosive cutting and forming processes, in which the nonlinear behavior between the input and output of processes are detected using MUGP. For both case studies, a multi-objective modeling and prediction procedure firstly performed using deterministic data. Secondly, the same identification procedure carried out using probabilistic uncertainty in the experimental input-output data. The objective functions considered are namely, training error, prediction error and number of tree nodes (complexity of models) in the deterministic approach. Accordingly, the mean and standard deviation of training error and prediction error are considered in robust Pareto modeling and prediction of such processes. In this way, Pareto front of such modeling and prediction is first obtained for both explosive cutting and forming processes with deterministic data. Such Pareto front is then obtained using experimental input-output-data having probabilistic uncertainty in input parameters through a Monte Carlo simulation (MCS) approach. In addition, it has been shown that for both cases, the trade-off models obtained from deterministic data have significant biases when tested on data with probabilistic uncertainty. Finally, the obtained results of such multi-objective robust model identification show promising results in terms of compensating uncertainty in the experimental input-output-data.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Baker, E. L. (1993). Modeling and optimization of shaped charge liner collapse and jet formation, technical report araed-tr-92019. New Jersey: US army armament research, development and engineering center, Picatinny Arsenal. Baker, E. L. (1993). Modeling and optimization of shaped charge liner collapse and jet formation, technical report araed-tr-92019. New Jersey: US army armament research, development and engineering center, Picatinny Arsenal.
go back to reference Bi, S., Deng, Z., & Chen, Z. (2013). Stochastic validation of structural FE-models based on hierarchical cluster analysis and advanced Monte Carlo simulation. Finite Elements in Analysis and Design, 67, 22–33.CrossRef Bi, S., Deng, Z., & Chen, Z. (2013). Stochastic validation of structural FE-models based on hierarchical cluster analysis and advanced Monte Carlo simulation. Finite Elements in Analysis and Design, 67, 22–33.CrossRef
go back to reference Bieda, B. (2011). Stochastic Assessment by Monte Carlo simulation for LCI applied to steel process chain: The ArcelorMittal Steel Poland SA in Krakow, Poland case study. Innovations in Sharing Environmental Observations and Information (pp. 787–798). Bieda, B. (2011). Stochastic Assessment by Monte Carlo simulation for LCI applied to steel process chain: The ArcelorMittal Steel Poland SA in Krakow, Poland case study. Innovations in Sharing Environmental Observations and Information (pp. 787–798).
go back to reference Biwer, A., Griffith, S., & Cooney, C. (2005). Uncertainty analysis of penicillin V production using Monte Carlo simulation. Biotechnology and Bioengineering, 90(2), 167–179.CrossRef Biwer, A., Griffith, S., & Cooney, C. (2005). Uncertainty analysis of penicillin V production using Monte Carlo simulation. Biotechnology and Bioengineering, 90(2), 167–179.CrossRef
go back to reference Chan, K. Y., Kwong, C. K., Dillon, T. S., & Tsim, Y. C. (2013). Reducing overfitting in manufacturing process modeling using a backward elimination based genetic programming. Journal of Applied Soft Computing, 11, 1648–1656.CrossRef Chan, K. Y., Kwong, C. K., Dillon, T. S., & Tsim, Y. C. (2013). Reducing overfitting in manufacturing process modeling using a backward elimination based genetic programming. Journal of Applied Soft Computing, 11, 1648–1656.CrossRef
go back to reference Daehn, G. S. (2006). High-velocity metal forming. In S. L. Semiatin (Ed.), ASM handbook, Volume 14B: Metalworking: Sheet forming (pp. 405–418). doi:10.1361/asmhba0005127. Daehn, G. S. (2006). High-velocity metal forming. In S. L. Semiatin (Ed.), ASM handbook, Volume 14B: Metalworking: Sheet forming (pp. 405–418). doi:10.​1361/​asmhba0005127.
go back to reference Daehn, G. S., Altynova, M., Balanethiram, V. S., Fenton, G., Padmanabhan, M., Tamhane, A., et al. (1995). High-velocity metal forming: An old technology addresses new problems. In Sheet metal forming symposium at the TMS/ASM Materials. Week in Cleveland, Ohio. Daehn, G. S., Altynova, M., Balanethiram, V. S., Fenton, G., Padmanabhan, M., Tamhane, A., et al. (1995). High-velocity metal forming: An old technology addresses new problems. In Sheet metal forming symposium at the TMS/ASM Materials. Week in Cleveland, Ohio.
go back to reference Garg, A., Tai, K., & Savalani, M. M. (2014a). Formulation of bead width model of an SLM prototype using modified multi-gene genetic programming approach. International Journal of Advanced Manufacturing Technology, 73, 375–388.CrossRef Garg, A., Tai, K., & Savalani, M. M. (2014a). Formulation of bead width model of an SLM prototype using modified multi-gene genetic programming approach. International Journal of Advanced Manufacturing Technology, 73, 375–388.CrossRef
go back to reference Garg, A., Tai, K., Lee, C. H., & Savalani, M. M. (2013a). A hybrid M5’-genetic programming approach for ensuring greater trustworthiness of prediction ability in modelling of FDM process. Journal of Intelligent Manufacturing. doi:10.1007/s10845-013-0734-1. Garg, A., Tai, K., Lee, C. H., & Savalani, M. M. (2013a). A hybrid M5’-genetic programming approach for ensuring greater trustworthiness of prediction ability in modelling of FDM process. Journal of Intelligent Manufacturing. doi:10.​1007/​s10845-013-0734-1.
go back to reference Garg, A., Rachmawati, L., & Tai, K. (2013b). Classification-Driven model selection approach of genetic programming in modelling of turning process. International Journal of Advanced Manufacturing Technology, 69(5–8), 1137–1151.CrossRef Garg, A., Rachmawati, L., & Tai, K. (2013b). Classification-Driven model selection approach of genetic programming in modelling of turning process. International Journal of Advanced Manufacturing Technology, 69(5–8), 1137–1151.CrossRef
go back to reference Garg, A., Bhalerao, Y., & Tai, K. (2013c). Review of empirical modelling techniques for modelling of turning process. International Journal of Modelling, Identification and Control, 20(2), 121–129.CrossRef Garg, A., Bhalerao, Y., & Tai, K. (2013c). Review of empirical modelling techniques for modelling of turning process. International Journal of Modelling, Identification and Control, 20(2), 121–129.CrossRef
go back to reference Garg, A., Tai, K., Vijayaraghavan, V., & Singru, P. M. (2014b). Mathematical modelling of burr height of the drilling process using a statistical based multi-gene genetic programming approach. International Journal of Advanced Manufacturing Technology, 73, 113–126. doi:10.1007/s00170-014-5817-4.CrossRef Garg, A., Tai, K., Vijayaraghavan, V., & Singru, P. M. (2014b). Mathematical modelling of burr height of the drilling process using a statistical based multi-gene genetic programming approach. International Journal of Advanced Manufacturing Technology, 73, 113–126. doi:10.​1007/​s00170-014-5817-4.CrossRef
go back to reference Jamali, A., Motevalli, S. J., & Nariman-zadeh, N. (2013). Extracting fuzzy rules for modeling of complex processes by using neural networks. Proceedings of the institution of mechanical engineers, Part C: Journal of Mechanical Engineering Science, 227, 2861–2869. Jamali, A., Motevalli, S. J., & Nariman-zadeh, N. (2013). Extracting fuzzy rules for modeling of complex processes by using neural networks. Proceedings of the institution of mechanical engineers, Part C: Journal of Mechanical Engineering Science, 227, 2861–2869.
go back to reference Jamali, A., Nariman-Zadeh, N., & Atashkari, K. (2008). Multi-objective uniform diversity genetic algorithm (MUGA). In witoldkosinski (Eds.), Advanced in evolutionary algorithms. Vienna: IN-TECH. Jamali, A., Nariman-Zadeh, N., & Atashkari, K. (2008). Multi-objective uniform diversity genetic algorithm (MUGA). In witoldkosinski (Eds.), Advanced in evolutionary algorithms. Vienna: IN-TECH.
go back to reference Jamali, A., Nariman-zadeh, N., Darvizeh, A., Masoumi, A., & Hamrang, S. (2009). Multi-objective evolutionary optimization of polynomial neural networks for modelling and prediction of explosive cutting process. Engineering Applications of Artificial Intelligence, 22, 676–687.CrossRef Jamali, A., Nariman-zadeh, N., Darvizeh, A., Masoumi, A., & Hamrang, S. (2009). Multi-objective evolutionary optimization of polynomial neural networks for modelling and prediction of explosive cutting process. Engineering Applications of Artificial Intelligence, 22, 676–687.CrossRef
go back to reference Jamali, A., Hajiloo, A., & Nariman-zadeh, N. (2010). Reliability-based robust Pareto design of linear state feedback controllers using a multi-objective uniform-diversity genetic algorithm (MUGA). Expert Systems with Applications, 37, 401–413.CrossRef Jamali, A., Hajiloo, A., & Nariman-zadeh, N. (2010). Reliability-based robust Pareto design of linear state feedback controllers using a multi-objective uniform-diversity genetic algorithm (MUGA). Expert Systems with Applications, 37, 401–413.CrossRef
go back to reference Jamali, A., Ghamati, M., Ahmadi, B., & Nariman-zadeh, N. (2013a). Probability of failure for uncertain control systems using neural networks and multi-objective uniform-diversity genetic algorithms (MUGA). Engineering Application of Artificial Intelligence, 26(2), 714–723.CrossRef Jamali, A., Ghamati, M., Ahmadi, B., & Nariman-zadeh, N. (2013a). Probability of failure for uncertain control systems using neural networks and multi-objective uniform-diversity genetic algorithms (MUGA). Engineering Application of Artificial Intelligence, 26(2), 714–723.CrossRef
go back to reference Jamali, A., Salehpour, M., & Nariman-zadeh, N. (2013b). Robust Pareto active suspension design for vehicle vibration model with probabilistic uncertain parameters. Multi-body System Dynamics, 30, 265–285.CrossRef Jamali, A., Salehpour, M., & Nariman-zadeh, N. (2013b). Robust Pareto active suspension design for vehicle vibration model with probabilistic uncertain parameters. Multi-body System Dynamics, 30, 265–285.CrossRef
go back to reference Koza, J. (1992). Genetic programming, on the programming of computers by means of natural selection. Cambridge: MIT Press. Koza, J. (1992). Genetic programming, on the programming of computers by means of natural selection. Cambridge: MIT Press.
go back to reference Kweon, K. E., Lee, J. H., Ko, Y., Jeong, M., Myoung, J., & Yun, I. (2007). Neural network based modeling of HfO2 thin film characteristicsusing Latin Hypercube Sampling. Expert Systems with Applications, 32, 358–363.CrossRef Kweon, K. E., Lee, J. H., Ko, Y., Jeong, M., Myoung, J., & Yun, I. (2007). Neural network based modeling of HfO2 thin film characteristicsusing Latin Hypercube Sampling. Expert Systems with Applications, 32, 358–363.CrossRef
go back to reference Miller, P. C. (1981). HERF update: High energy rate forming joins the productivity race. Tooling Prod, 47(7), 90–97. Miller, P. C. (1981). HERF update: High energy rate forming joins the productivity race. Tooling Prod, 47(7), 90–97.
go back to reference Mynors, D. J., & Zhang, B. (2002). Applications and capabilities of explosive forming. Journal of Materials Processing Technology, 125–126, 1–25.CrossRef Mynors, D. J., & Zhang, B. (2002). Applications and capabilities of explosive forming. Journal of Materials Processing Technology, 125–126, 1–25.CrossRef
go back to reference Nariman-zadeh, N., & Darvizeh, A. (2002). Design of fuzzy systems for modelling of explosive cutting process of plates using singular value decomposition. Iranian Journal of Science and Technology, 26(B3), 455–464. Nariman-zadeh, N., & Darvizeh, A. (2002). Design of fuzzy systems for modelling of explosive cutting process of plates using singular value decomposition. Iranian Journal of Science and Technology, 26(B3), 455–464.
go back to reference Nariman-zadeh, N., Darvizeh, A., Darvizeh, M., & Gharababaei, H. (2002). Modelling of explosive cutting process of plates using GMDH-type neural network and singular value decomposition. Journal of Materials Processing Technology, 128, 80–87.CrossRef Nariman-zadeh, N., Darvizeh, A., Darvizeh, M., & Gharababaei, H. (2002). Modelling of explosive cutting process of plates using GMDH-type neural network and singular value decomposition. Journal of Materials Processing Technology, 128, 80–87.CrossRef
go back to reference Nariman-zadeh, N., Darvizeh, A., Jamali, A., & Moeini, A. (2005). Evolutionary design of generalized polynomial neural networks for modelling and prediction of explosive forming process. Journal of Material Processing Technology, 164–165, 1561–1571.CrossRef Nariman-zadeh, N., Darvizeh, A., Jamali, A., & Moeini, A. (2005). Evolutionary design of generalized polynomial neural networks for modelling and prediction of explosive forming process. Journal of Material Processing Technology, 164–165, 1561–1571.CrossRef
go back to reference Noland, M. C. (1967). Designing for the high velocity metalworking process. Mach Design, 39, 163–182. Noland, M. C. (1967). Designing for the high velocity metalworking process. Mach Design, 39, 163–182.
go back to reference Oakes, T., Tang, L., Landers, R. G., & Balakrishnan, S. N. (2009). Kalman filtering for manufacturing processes. Vienna, Austria: Intech.CrossRef Oakes, T., Tang, L., Landers, R. G., & Balakrishnan, S. N. (2009). Kalman filtering for manufacturing processes. Vienna, Austria: Intech.CrossRef
go back to reference Paris, A. S., Tanase, I., Tarkolea, C., & Dragomirescu, C. (2012). Applicationof the Monte Carlo simulation in the manufacturing processes. Proceedings in Manufacturing Systems, 7(4), Paris, A. S., Tanase, I., Tarkolea, C., & Dragomirescu, C. (2012). Applicationof the Monte Carlo simulation in the manufacturing processes. Proceedings in Manufacturing Systems, 7(4),
go back to reference Salem, S. A., & Al-Hassani, S. T. S. (1983). Penetration by high speed oblique jets: Theory and experiments. International Journal of Mechanical Sciences, 25(12), Salem, S. A., & Al-Hassani, S. T. S. (1983). Penetration by high speed oblique jets: Theory and experiments. International Journal of Mechanical Sciences, 25(12),
go back to reference Zanjani, M. K., Nourelfath, M., & Aït-Kadi, D. (2011). A stochastic programming approach for production planning with uncertainty in the quality of raw materials: A case in Sawmills. Journal of the Operational Research Society, 62(1), Zanjani, M. K., Nourelfath, M., & Aït-Kadi, D. (2011). A stochastic programming approach for production planning with uncertainty in the quality of raw materials: A case in Sawmills. Journal of the Operational Research Society, 62(1),
go back to reference Zernow, L. (1962). Applications of high velocity metal forming (HVMF) in short run production. In Creative Manufacturing Seminars, No. SP62-67. Detroit, MI: American Society of Tool and Manufacturing Engineers. Zernow, L. (1962). Applications of high velocity metal forming (HVMF) in short run production. In Creative Manufacturing Seminars, No. SP62-67. Detroit, MI: American Society of Tool and Manufacturing Engineers.
go back to reference Zhang, C., Recknagel, F., Guo, J., & Blanckaert, K. (2014). Adaptation and multiple parameter optimization of the simulation model SALMO as prerequisite for scenario analysis on a shallow eutrophic Lake. Ecological Modelling, 273, 109–116.CrossRef Zhang, C., Recknagel, F., Guo, J., & Blanckaert, K. (2014). Adaptation and multiple parameter optimization of the simulation model SALMO as prerequisite for scenario analysis on a shallow eutrophic Lake. Ecological Modelling, 273, 109–116.CrossRef
Metadata
Title
Multi-objective genetic programming approach for robust modeling of complex manufacturing processes having probabilistic uncertainty in experimental data
Authors
A. Jamali
E. Khaleghi
I. Gholaminezhad
N. Nariman-Zadeh
B. Gholaminia
A. Jamal-Omidi
Publication date
25-09-2014
Publisher
Springer US
Published in
Journal of Intelligent Manufacturing / Issue 1/2017
Print ISSN: 0956-5515
Electronic ISSN: 1572-8145
DOI
https://doi.org/10.1007/s10845-014-0967-7

Other articles of this Issue 1/2017

Journal of Intelligent Manufacturing 1/2017 Go to the issue

Premium Partners