Skip to main content
Top
Published in: Peer-to-Peer Networking and Applications 3/2019

16-04-2018

Multi working sets alternate covering scheme for continuous partial coverage in WSNs

Authors: Mingfeng Huang, Anfeng Liu, Ming Zhao, Tian Wang

Published in: Peer-to-Peer Networking and Applications | Issue 3/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Coverage of wireless sensor networks is a fundamental problem which has been studied for more than two decades. In duty cycle based wireless sensor networks, the nodes are sleep/wake periodic working, and the sleeping of nodes selected to achieve coverage results in a lack of network coverage, which make the coverage of the research difficult to apply in practice. In this paper, a Multi Working Sets Alternate Covering (MWSAC) scheme is proposed to achieve continuous partial coverage of the network. Firstly, a distributed algorithm is proposed to construct the maximum number of working sets, each working set is required to satisfy the partial coverage requirement of the application. Then, the sleeping time of the working nodes is scheduled, which makes the nodes belonging to the same working set wake up synchronously and nodes between multiple working sets wake up asynchronously. Thus, at any time, as long as the nodes of one working set are in waking state, the nodes of other working sets are adjusted to sleeping state to save energy. Due to multiple working sets are alternately covered under MWSAC, the workload and wake-up time of each working node is greatly reduced, which makes the energy consumption more balanced and the network lifetime longer. Both the theoretical analysis and the experimental results show that, compared with the previous continuous coverage scheme, MWSAC scheme has obvious advantages in terms of coverage, network lifetime and node utilization.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference He S, Chen J, Li X et al (2014) Mobility and intruder prior information improving the barrier coverage of sparse sensor networks. IEEE Trans Mob Comput 13(6):1268–1282CrossRef He S, Chen J, Li X et al (2014) Mobility and intruder prior information improving the barrier coverage of sparse sensor networks. IEEE Trans Mob Comput 13(6):1268–1282CrossRef
4.
go back to reference Liu X (2017) Survivability-aware connectivity restoration for partitioned wireless sensor networks. IEEE Commun Lett 21(11):2444–2447CrossRef Liu X (2017) Survivability-aware connectivity restoration for partitioned wireless sensor networks. IEEE Commun Lett 21(11):2444–2447CrossRef
5.
go back to reference Zeng D, Li P, Guo S et al (2015) Energy minimization in multi-task software-defined sensor networks. IEEE Trans Comput 64(11):3128–3139MathSciNetCrossRefMATH Zeng D, Li P, Guo S et al (2015) Energy minimization in multi-task software-defined sensor networks. IEEE Trans Comput 64(11):3128–3139MathSciNetCrossRefMATH
9.
go back to reference Xin H, Liu X (2017) Energy-balanced transmission with accurate distances for strip-based wireless sensor networks. IEEE Access 5:16193–16204CrossRef Xin H, Liu X (2017) Energy-balanced transmission with accurate distances for strip-based wireless sensor networks. IEEE Access 5:16193–16204CrossRef
11.
go back to reference Li H, Liu D, Dai Y, Luan TH (2015) Engineering searchable encryption of mobile cloud networks: when qoe meets qop. IEEE Wirel Commun 22(4):74–80CrossRef Li H, Liu D, Dai Y, Luan TH (2015) Engineering searchable encryption of mobile cloud networks: when qoe meets qop. IEEE Wirel Commun 22(4):74–80CrossRef
12.
go back to reference Liu X (2017) Node deployment based on extra path creation for wireless sensor networks on mountain roads. IEEE Commun Lett 21(11):2376–2379CrossRef Liu X (2017) Node deployment based on extra path creation for wireless sensor networks on mountain roads. IEEE Commun Lett 21(11):2376–2379CrossRef
13.
go back to reference Li H, Yang Y, Luan TH, Liang X, Zhou L, Shen XS (2016) Enabling fine-grained multi-keyword search supporting classified sub-dictionaries over encrypted cloud data. IEEE Trans Dependable Secure Comput 13(3):312–325CrossRef Li H, Yang Y, Luan TH, Liang X, Zhou L, Shen XS (2016) Enabling fine-grained multi-keyword search supporting classified sub-dictionaries over encrypted cloud data. IEEE Trans Dependable Secure Comput 13(3):312–325CrossRef
14.
go back to reference Wang T, Peng Z, Liang J et al (2014) Following targets for mobile tracking in wireless sensor networks. ACM Trans Sensor Netw 12(4):31.1–31.24 Wang T, Peng Z, Liang J et al (2014) Following targets for mobile tracking in wireless sensor networks. ACM Trans Sensor Netw 12(4):31.1–31.24
15.
go back to reference Zeng D, Gu L, Lian L et al (2016) On cost-efficient sensor placement for contaminant detection in water distribution systems. IEEE Trans Industrial Inform 12(6):2177–2185CrossRef Zeng D, Gu L, Lian L et al (2016) On cost-efficient sensor placement for contaminant detection in water distribution systems. IEEE Trans Industrial Inform 12(6):2177–2185CrossRef
16.
go back to reference Wang T, Wu Q, Wen S et al (2017) Propagation modeling and defending of mobile sensor worm in wireless sensor and actuator networks. Sensors 17(1):139CrossRef Wang T, Wu Q, Wen S et al (2017) Propagation modeling and defending of mobile sensor worm in wireless sensor and actuator networks. Sensors 17(1):139CrossRef
17.
go back to reference Karyakarte MS, Tavildar AS, Khanna R (2017) Dynamic node deployment and cross layer opportunistic robust routing for PoI coverage using WSNs. Wirel Pers Commun 96(2):2741–2759CrossRef Karyakarte MS, Tavildar AS, Khanna R (2017) Dynamic node deployment and cross layer opportunistic robust routing for PoI coverage using WSNs. Wirel Pers Commun 96(2):2741–2759CrossRef
18.
go back to reference Li H, Lin X, Yang H, Liang X, Lu R, Shen X (2014) EPPDR: an efficient privacy-preserving demand response scheme with adaptive key evolution in smart grid. IEEE Trans Parallel Distrib Syst 25(8):2053–2064CrossRef Li H, Lin X, Yang H, Liang X, Lu R, Shen X (2014) EPPDR: an efficient privacy-preserving demand response scheme with adaptive key evolution in smart grid. IEEE Trans Parallel Distrib Syst 25(8):2053–2064CrossRef
19.
go back to reference Tian D, Georganas ND (2003) A node scheduling scheme for energy conservation in large wireless sensor networks. Wirel Commun Mob Comput 3(2):271–290CrossRef Tian D, Georganas ND (2003) A node scheduling scheme for energy conservation in large wireless sensor networks. Wirel Commun Mob Comput 3(2):271–290CrossRef
22.
go back to reference Li M, Cheng W, Liu K et al (2011) Sweep coverage with mobile sensors. IEEE Trans Mob Comput 10(11):1534–1545CrossRef Li M, Cheng W, Liu K et al (2011) Sweep coverage with mobile sensors. IEEE Trans Mob Comput 10(11):1534–1545CrossRef
23.
go back to reference Slijepcevic S, Potkonjak M (2001) Power efficient organization of wireless sensor networks. IEEE international conference on. Communications 2:472–476 Slijepcevic S, Potkonjak M (2001) Power efficient organization of wireless sensor networks. IEEE international conference on. Communications 2:472–476
24.
go back to reference Cardei M, Du DZ (2005) Improving wireless sensor network lifetime through power aware organization. Wirel Netw 11(3):333−340CrossRef Cardei M, Du DZ (2005) Improving wireless sensor network lifetime through power aware organization. Wirel Netw 11(3):333−340CrossRef
25.
go back to reference Zorbas D, Glynos D, Kotzanikolaou P et al (2010) Solving coverage problems in wireless sensor networks using cover sets. Ad Hoc Netw 8(4):400–415CrossRef Zorbas D, Glynos D, Kotzanikolaou P et al (2010) Solving coverage problems in wireless sensor networks using cover sets. Ad Hoc Netw 8(4):400–415CrossRef
26.
go back to reference Yang Q, He S, Li J et al (2015) Energy-efficient probabilistic area coverage in wireless sensor networks. IEEE Trans Veh Technol 64(1):367–377CrossRef Yang Q, He S, Li J et al (2015) Energy-efficient probabilistic area coverage in wireless sensor networks. IEEE Trans Veh Technol 64(1):367–377CrossRef
27.
go back to reference Dobrev S, Durocher S, Eftekhari M et al (2015) Complexity of barrier coverage with relocatable sensors in the plane. Theor Comput Sci 579:64–73MathSciNetCrossRefMATH Dobrev S, Durocher S, Eftekhari M et al (2015) Complexity of barrier coverage with relocatable sensors in the plane. Theor Comput Sci 579:64–73MathSciNetCrossRefMATH
28.
go back to reference Zhao MC, Lei J, Wu MY et al. (2009) Surface coverage in wireless sensor networks. INFOCOM 2009, IEEE 109–117 Zhao MC, Lei J, Wu MY et al. (2009) Surface coverage in wireless sensor networks. INFOCOM 2009, IEEE 109–117
29.
go back to reference Zhang C, Bai X, Teng J et al (2010) Constructing low-connectivity and full-coverage three dimensional sensor networks. IEEE J Select Areas Commun 28(7):984–993CrossRef Zhang C, Bai X, Teng J et al (2010) Constructing low-connectivity and full-coverage three dimensional sensor networks. IEEE J Select Areas Commun 28(7):984–993CrossRef
30.
go back to reference Chakrabarty K, Iyengar SS, Qi H et al (2002) Grid coverage for surveillance and target location in distributed sensor networks. IEEE Trans Comput 51(12):1448–1453MathSciNetCrossRefMATH Chakrabarty K, Iyengar SS, Qi H et al (2002) Grid coverage for surveillance and target location in distributed sensor networks. IEEE Trans Comput 51(12):1448–1453MathSciNetCrossRefMATH
31.
go back to reference Ghosh A, Das SK (2005) A distributed greedy algorithm for connected sensor cover in dense sensor networks. DCOSS 3560:340–353 Ghosh A, Das SK (2005) A distributed greedy algorithm for connected sensor cover in dense sensor networks. DCOSS 3560:340–353
32.
33.
go back to reference Megerian S, Koushanfar F, Potkonjak M et al (2005) Worst and best-case coverage in sensor networks. IEEE Trans Mob Comput 4(1):84–92CrossRef Megerian S, Koushanfar F, Potkonjak M et al (2005) Worst and best-case coverage in sensor networks. IEEE Trans Mob Comput 4(1):84–92CrossRef
34.
go back to reference Tian D, Georganas ND (2002) A coverage-preserving node scheduling scheme for large wireless sensor networks. Proceedings of the 1st ACM international workshop on Wireless sensor networks and applications, Atlanta, p 32–41 Tian D, Georganas ND (2002) A coverage-preserving node scheduling scheme for large wireless sensor networks. Proceedings of the 1st ACM international workshop on Wireless sensor networks and applications, Atlanta, p 32–41
35.
go back to reference Sengupta S, Das S, Nasir M et al (2012) An evolutionary multiobjective sleep-scheduling scheme for differentiated coverage in wireless sensor networks. IEEE Trans Syst Man Cybern 42(6):1093–1102CrossRef Sengupta S, Das S, Nasir M et al (2012) An evolutionary multiobjective sleep-scheduling scheme for differentiated coverage in wireless sensor networks. IEEE Trans Syst Man Cybern 42(6):1093–1102CrossRef
36.
go back to reference Zhu C, Yang LT, Shu L et al (2014) Sleep scheduling for geographic routing in duty-cycled mobile sensor networks. IEEE Trans Ind Electron 61(11):6346–6355CrossRef Zhu C, Yang LT, Shu L et al (2014) Sleep scheduling for geographic routing in duty-cycled mobile sensor networks. IEEE Trans Ind Electron 61(11):6346–6355CrossRef
37.
go back to reference Liu A, Chen Z, Xiong NN (2017) An adaptive virtual relaying set scheme for loss-and-delay sensitive WSNs. Inf Sci 424:118–136MathSciNetCrossRef Liu A, Chen Z, Xiong NN (2017) An adaptive virtual relaying set scheme for loss-and-delay sensitive WSNs. Inf Sci 424:118–136MathSciNetCrossRef
39.
go back to reference Mostafaei H, Montieri A, Persico V et al (2017) A sleep scheduling approach based on learning automata for WSN partial coverage. J Netw Comput Appl 80:67–78CrossRef Mostafaei H, Montieri A, Persico V et al (2017) A sleep scheduling approach based on learning automata for WSN partial coverage. J Netw Comput Appl 80:67–78CrossRef
40.
go back to reference He S, Shin DH, Zhang J et al (2016) Full-view area coverage in camera sensor networks: dimension reduction and near-optimal solutions. IEEE Trans Veh Technol 65(9):7448–7461CrossRef He S, Shin DH, Zhang J et al (2016) Full-view area coverage in camera sensor networks: dimension reduction and near-optimal solutions. IEEE Trans Veh Technol 65(9):7448–7461CrossRef
41.
go back to reference Liu X, Liu A, Li Z et al (2017) Distributed cooperative communication nodes control and optimization reliability for resource-constrained WSNs. Neurocomputing 270:122–136CrossRef Liu X, Liu A, Li Z et al (2017) Distributed cooperative communication nodes control and optimization reliability for resource-constrained WSNs. Neurocomputing 270:122–136CrossRef
Metadata
Title
Multi working sets alternate covering scheme for continuous partial coverage in WSNs
Authors
Mingfeng Huang
Anfeng Liu
Ming Zhao
Tian Wang
Publication date
16-04-2018
Publisher
Springer US
Published in
Peer-to-Peer Networking and Applications / Issue 3/2019
Print ISSN: 1936-6442
Electronic ISSN: 1936-6450
DOI
https://doi.org/10.1007/s12083-018-0647-z

Other articles of this Issue 3/2019

Peer-to-Peer Networking and Applications 3/2019 Go to the issue

Premium Partner