Skip to main content
Top
Published in: Wireless Personal Communications 1/2015

01-03-2015

Multiband Detection for Spectrum Sensing: A Multistage Wiener Filter Perspective

Authors: Haobo Qing, Yuanan Liu, Gang Xie, Kaiming Liu, Fang Liu

Published in: Wireless Personal Communications | Issue 1/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the recent years, spectrum scarcity becomes an urgent issue due to the emergence of wireless services. The effective utilization of spectrum white space has gained significant research interests. Cognitive radio techniques have been paid much attention to the television white space. This paper raises a multiband spectrum sensing scheme to detect the spectrum white space which is not limited to television bands. When performing spectrum sensing, our approach operates over the total frequency bands simultaneously rather than a single band each time. By applying the idea of multistage Wiener filter to Gerschgorin disk estimator, our approach jointly makes the decision. In this way, the proposed method is able to capture the signal information and suppress the additive noise, which brings about an enhanced detection performance. Distinct from the classical methods, the proposed scheme requires neither noise power estimation nor prior knowledge of primary user signal, thereby being robust to noise uncertainty and suitable for blind detection. On the contrary, in the context of noise uncertainty, noise variance has no access to accurate estimation, inducing an imprecise decision threshold, which severely deteriorates the detection performance. Besides, our method avoids the estimation of covariance matrix as well as eigenvalue decomposition, and thus achieves a low computational complexity. This paper presents simulations under various conditions to verify the performance of the proposed scheme and the results show that it is superior to the existing sensing algorithms.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220.CrossRef Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220.CrossRef
2.
go back to reference Maharjan, S., Zhang, Y., & Gjessing, S. (2011). Economic approaches for cognitive radio networks: A survey. Wireless Personal Communications, 57(1), 33–51.CrossRef Maharjan, S., Zhang, Y., & Gjessing, S. (2011). Economic approaches for cognitive radio networks: A survey. Wireless Personal Communications, 57(1), 33–51.CrossRef
3.
go back to reference Gavrilovska, L., & Atanasovski, V. (2011). Spectrum sensing framework for cognitive radio networks. Wireless Personal Communications, 59(3), 447–469.CrossRef Gavrilovska, L., & Atanasovski, V. (2011). Spectrum sensing framework for cognitive radio networks. Wireless Personal Communications, 59(3), 447–469.CrossRef
4.
go back to reference Yucek, T., & Arslan, H. (2009). A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Communications Surveys and Tutorials, 11(1), 116–130.CrossRef Yucek, T., & Arslan, H. (2009). A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Communications Surveys and Tutorials, 11(1), 116–130.CrossRef
5.
go back to reference Rif-Pous, H., Blasco, M. J., & Garrigues, C. (2012). Review of robust cooperative spectrum sensing techniques for cognitive radio networks. Wireless Personal Communications, 67(2), 175–198.CrossRef Rif-Pous, H., Blasco, M. J., & Garrigues, C. (2012). Review of robust cooperative spectrum sensing techniques for cognitive radio networks. Wireless Personal Communications, 67(2), 175–198.CrossRef
6.
go back to reference Jiao, L. C., Chen, J., Wu, J., Wang, X., & Zhang, S. (2012). Efficient collaborative spectrum sensing with low sample rate. Wireless Personal Communications, 67(4), 923–936.CrossRef Jiao, L. C., Chen, J., Wu, J., Wang, X., & Zhang, S. (2012). Efficient collaborative spectrum sensing with low sample rate. Wireless Personal Communications, 67(4), 923–936.CrossRef
7.
go back to reference Urkowitz, H. (1967). Energy detection of unknown deterministic signals. Proceedings of the IEEE, 55(4), 523–531.CrossRef Urkowitz, H. (1967). Energy detection of unknown deterministic signals. Proceedings of the IEEE, 55(4), 523–531.CrossRef
8.
go back to reference Tandra, R., & Sahai, A. (2008). SNR walls for signal detection. IEEE Journal of Selected Topics in Siginal Processing, 2(1), 4–17.CrossRef Tandra, R., & Sahai, A. (2008). SNR walls for signal detection. IEEE Journal of Selected Topics in Siginal Processing, 2(1), 4–17.CrossRef
9.
go back to reference Zeng, Y., & Liang, Y. C. (2009). Eigenvalue-based spectrum sensing algorithms for cognitive radio. IEEE Transactions on Communications, 57(6), 1784–1793.CrossRef Zeng, Y., & Liang, Y. C. (2009). Eigenvalue-based spectrum sensing algorithms for cognitive radio. IEEE Transactions on Communications, 57(6), 1784–1793.CrossRef
10.
go back to reference Zeng, Y., Liang, Y. C., & Zhang, R. (2008). Blindly combined energy detection for spectrum sensing in cognitive radio. IEEE Signal Processing Letters, 15, 649–652.CrossRef Zeng, Y., Liang, Y. C., & Zhang, R. (2008). Blindly combined energy detection for spectrum sensing in cognitive radio. IEEE Signal Processing Letters, 15, 649–652.CrossRef
11.
go back to reference Zhang, R., Lim, T. J., Liang, Y. C., & Zeng, Y. (2010). Multi-antenna based spectrum sensing for cognitive radios: A GLRT approach. IEEE Transactions on Communications, 58(1), 84–88.CrossRef Zhang, R., Lim, T. J., Liang, Y. C., & Zeng, Y. (2010). Multi-antenna based spectrum sensing for cognitive radios: A GLRT approach. IEEE Transactions on Communications, 58(1), 84–88.CrossRef
12.
go back to reference Taherpour, A., Gazor, S., & Nasiri-Kenari, M. (2009). Invariant wideband spectrum sensing under unknown variances. IEEE Transactions on Wireless Communications, 8(5), 2182–2186.CrossRef Taherpour, A., Gazor, S., & Nasiri-Kenari, M. (2009). Invariant wideband spectrum sensing under unknown variances. IEEE Transactions on Wireless Communications, 8(5), 2182–2186.CrossRef
13.
go back to reference Qing, H., Liu, Y., & Xie, G. (2014). Smart antennas aided wideband detection for spectrum sensing in cognitive radio networks. Electronics Letters, 50(7), 490–492.CrossRef Qing, H., Liu, Y., & Xie, G. (2014). Smart antennas aided wideband detection for spectrum sensing in cognitive radio networks. Electronics Letters, 50(7), 490–492.CrossRef
14.
go back to reference Qing, H., Liu, Y., Xie, G., Liu, K., & Liu, F. (2014). Blind multiband spectrum sensing for cognitive radio systems with smart antennas. IET Communications, 8(6), 914–920.CrossRef Qing, H., Liu, Y., Xie, G., Liu, K., & Liu, F. (2014). Blind multiband spectrum sensing for cognitive radio systems with smart antennas. IET Communications, 8(6), 914–920.CrossRef
15.
go back to reference Quan, Z., Cui, S., Sayed, A. H., & Poor, H. V. (2009). Optimal multiband joint detection for spectrum sensing in cognitive radio networks. IEEE Transactions on Signal Processing, 57(3), 1128–1140.CrossRefMathSciNet Quan, Z., Cui, S., Sayed, A. H., & Poor, H. V. (2009). Optimal multiband joint detection for spectrum sensing in cognitive radio networks. IEEE Transactions on Signal Processing, 57(3), 1128–1140.CrossRefMathSciNet
16.
go back to reference Wax, M., & Kailath, T. (1985). Detection of signals by information theoretic criteria. IEEE Transactions on Acoustics, Speech, and Signal Processing, 33(2), 387–392.CrossRefMathSciNet Wax, M., & Kailath, T. (1985). Detection of signals by information theoretic criteria. IEEE Transactions on Acoustics, Speech, and Signal Processing, 33(2), 387–392.CrossRefMathSciNet
17.
go back to reference Wu, H. T., Yang, J. F., & Chen, F. K. (1995). Source number estimators using transformed Gerschgorin radii. IEEE Transactions on Signal Processing, 43(6), 1325–1333.CrossRef Wu, H. T., Yang, J. F., & Chen, F. K. (1995). Source number estimators using transformed Gerschgorin radii. IEEE Transactions on Signal Processing, 43(6), 1325–1333.CrossRef
18.
go back to reference Huang, L., Long, T., & Wu, S. (2008). Source enumeration for high-resolution array processing using improved Gerschgorin radii without eigendecomposition. IEEE Transactions on Signal Processing, 56(12), 5916–5925.CrossRefMathSciNet Huang, L., Long, T., & Wu, S. (2008). Source enumeration for high-resolution array processing using improved Gerschgorin radii without eigendecomposition. IEEE Transactions on Signal Processing, 56(12), 5916–5925.CrossRefMathSciNet
19.
go back to reference Johnson, D. H., & Dudgeon, D. E. (1993). Array signal processing: Concepts and techniques. Englewood Cliffs, NJ: Prentice-Hall.MATH Johnson, D. H., & Dudgeon, D. E. (1993). Array signal processing: Concepts and techniques. Englewood Cliffs, NJ: Prentice-Hall.MATH
20.
go back to reference Wilkinson, J. H. (1998). The algebraic eigenvalues problem. Oxford: Oxford University Press. Wilkinson, J. H. (1998). The algebraic eigenvalues problem. Oxford: Oxford University Press.
21.
go back to reference Goldstein, J. S., Reed, I. S., & Scharf, L. L. (1998). A multistage representation of the Wiener filter based on orthogonal projections. IEEE Transactions on Information Theory, 44(7), 2943–2959.CrossRefMATHMathSciNet Goldstein, J. S., Reed, I. S., & Scharf, L. L. (1998). A multistage representation of the Wiener filter based on orthogonal projections. IEEE Transactions on Information Theory, 44(7), 2943–2959.CrossRefMATHMathSciNet
22.
go back to reference You, Z., Li, X., & Liu, D. (1998). Study on the source number estimator using Gerschgorin radii. In Proceedings of the 4th international conference on signal processing (ICSP), Beijing, China, pp. 152–155. You, Z., Li, X., & Liu, D. (1998). Study on the source number estimator using Gerschgorin radii. In Proceedings of the 4th international conference on signal processing (ICSP), Beijing, China, pp. 152–155.
Metadata
Title
Multiband Detection for Spectrum Sensing: A Multistage Wiener Filter Perspective
Authors
Haobo Qing
Yuanan Liu
Gang Xie
Kaiming Liu
Fang Liu
Publication date
01-03-2015
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 1/2015
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-014-2116-1

Other articles of this Issue 1/2015

Wireless Personal Communications 1/2015 Go to the issue