Skip to main content
Erschienen in: Wireless Personal Communications 1/2015

01.03.2015

Multiband Detection for Spectrum Sensing: A Multistage Wiener Filter Perspective

verfasst von: Haobo Qing, Yuanan Liu, Gang Xie, Kaiming Liu, Fang Liu

Erschienen in: Wireless Personal Communications | Ausgabe 1/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the recent years, spectrum scarcity becomes an urgent issue due to the emergence of wireless services. The effective utilization of spectrum white space has gained significant research interests. Cognitive radio techniques have been paid much attention to the television white space. This paper raises a multiband spectrum sensing scheme to detect the spectrum white space which is not limited to television bands. When performing spectrum sensing, our approach operates over the total frequency bands simultaneously rather than a single band each time. By applying the idea of multistage Wiener filter to Gerschgorin disk estimator, our approach jointly makes the decision. In this way, the proposed method is able to capture the signal information and suppress the additive noise, which brings about an enhanced detection performance. Distinct from the classical methods, the proposed scheme requires neither noise power estimation nor prior knowledge of primary user signal, thereby being robust to noise uncertainty and suitable for blind detection. On the contrary, in the context of noise uncertainty, noise variance has no access to accurate estimation, inducing an imprecise decision threshold, which severely deteriorates the detection performance. Besides, our method avoids the estimation of covariance matrix as well as eigenvalue decomposition, and thus achieves a low computational complexity. This paper presents simulations under various conditions to verify the performance of the proposed scheme and the results show that it is superior to the existing sensing algorithms.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220.CrossRef Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220.CrossRef
2.
Zurück zum Zitat Maharjan, S., Zhang, Y., & Gjessing, S. (2011). Economic approaches for cognitive radio networks: A survey. Wireless Personal Communications, 57(1), 33–51.CrossRef Maharjan, S., Zhang, Y., & Gjessing, S. (2011). Economic approaches for cognitive radio networks: A survey. Wireless Personal Communications, 57(1), 33–51.CrossRef
3.
Zurück zum Zitat Gavrilovska, L., & Atanasovski, V. (2011). Spectrum sensing framework for cognitive radio networks. Wireless Personal Communications, 59(3), 447–469.CrossRef Gavrilovska, L., & Atanasovski, V. (2011). Spectrum sensing framework for cognitive radio networks. Wireless Personal Communications, 59(3), 447–469.CrossRef
4.
Zurück zum Zitat Yucek, T., & Arslan, H. (2009). A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Communications Surveys and Tutorials, 11(1), 116–130.CrossRef Yucek, T., & Arslan, H. (2009). A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Communications Surveys and Tutorials, 11(1), 116–130.CrossRef
5.
Zurück zum Zitat Rif-Pous, H., Blasco, M. J., & Garrigues, C. (2012). Review of robust cooperative spectrum sensing techniques for cognitive radio networks. Wireless Personal Communications, 67(2), 175–198.CrossRef Rif-Pous, H., Blasco, M. J., & Garrigues, C. (2012). Review of robust cooperative spectrum sensing techniques for cognitive radio networks. Wireless Personal Communications, 67(2), 175–198.CrossRef
6.
Zurück zum Zitat Jiao, L. C., Chen, J., Wu, J., Wang, X., & Zhang, S. (2012). Efficient collaborative spectrum sensing with low sample rate. Wireless Personal Communications, 67(4), 923–936.CrossRef Jiao, L. C., Chen, J., Wu, J., Wang, X., & Zhang, S. (2012). Efficient collaborative spectrum sensing with low sample rate. Wireless Personal Communications, 67(4), 923–936.CrossRef
7.
Zurück zum Zitat Urkowitz, H. (1967). Energy detection of unknown deterministic signals. Proceedings of the IEEE, 55(4), 523–531.CrossRef Urkowitz, H. (1967). Energy detection of unknown deterministic signals. Proceedings of the IEEE, 55(4), 523–531.CrossRef
8.
Zurück zum Zitat Tandra, R., & Sahai, A. (2008). SNR walls for signal detection. IEEE Journal of Selected Topics in Siginal Processing, 2(1), 4–17.CrossRef Tandra, R., & Sahai, A. (2008). SNR walls for signal detection. IEEE Journal of Selected Topics in Siginal Processing, 2(1), 4–17.CrossRef
9.
Zurück zum Zitat Zeng, Y., & Liang, Y. C. (2009). Eigenvalue-based spectrum sensing algorithms for cognitive radio. IEEE Transactions on Communications, 57(6), 1784–1793.CrossRef Zeng, Y., & Liang, Y. C. (2009). Eigenvalue-based spectrum sensing algorithms for cognitive radio. IEEE Transactions on Communications, 57(6), 1784–1793.CrossRef
10.
Zurück zum Zitat Zeng, Y., Liang, Y. C., & Zhang, R. (2008). Blindly combined energy detection for spectrum sensing in cognitive radio. IEEE Signal Processing Letters, 15, 649–652.CrossRef Zeng, Y., Liang, Y. C., & Zhang, R. (2008). Blindly combined energy detection for spectrum sensing in cognitive radio. IEEE Signal Processing Letters, 15, 649–652.CrossRef
11.
Zurück zum Zitat Zhang, R., Lim, T. J., Liang, Y. C., & Zeng, Y. (2010). Multi-antenna based spectrum sensing for cognitive radios: A GLRT approach. IEEE Transactions on Communications, 58(1), 84–88.CrossRef Zhang, R., Lim, T. J., Liang, Y. C., & Zeng, Y. (2010). Multi-antenna based spectrum sensing for cognitive radios: A GLRT approach. IEEE Transactions on Communications, 58(1), 84–88.CrossRef
12.
Zurück zum Zitat Taherpour, A., Gazor, S., & Nasiri-Kenari, M. (2009). Invariant wideband spectrum sensing under unknown variances. IEEE Transactions on Wireless Communications, 8(5), 2182–2186.CrossRef Taherpour, A., Gazor, S., & Nasiri-Kenari, M. (2009). Invariant wideband spectrum sensing under unknown variances. IEEE Transactions on Wireless Communications, 8(5), 2182–2186.CrossRef
13.
Zurück zum Zitat Qing, H., Liu, Y., & Xie, G. (2014). Smart antennas aided wideband detection for spectrum sensing in cognitive radio networks. Electronics Letters, 50(7), 490–492.CrossRef Qing, H., Liu, Y., & Xie, G. (2014). Smart antennas aided wideband detection for spectrum sensing in cognitive radio networks. Electronics Letters, 50(7), 490–492.CrossRef
14.
Zurück zum Zitat Qing, H., Liu, Y., Xie, G., Liu, K., & Liu, F. (2014). Blind multiband spectrum sensing for cognitive radio systems with smart antennas. IET Communications, 8(6), 914–920.CrossRef Qing, H., Liu, Y., Xie, G., Liu, K., & Liu, F. (2014). Blind multiband spectrum sensing for cognitive radio systems with smart antennas. IET Communications, 8(6), 914–920.CrossRef
15.
Zurück zum Zitat Quan, Z., Cui, S., Sayed, A. H., & Poor, H. V. (2009). Optimal multiband joint detection for spectrum sensing in cognitive radio networks. IEEE Transactions on Signal Processing, 57(3), 1128–1140.CrossRefMathSciNet Quan, Z., Cui, S., Sayed, A. H., & Poor, H. V. (2009). Optimal multiband joint detection for spectrum sensing in cognitive radio networks. IEEE Transactions on Signal Processing, 57(3), 1128–1140.CrossRefMathSciNet
16.
Zurück zum Zitat Wax, M., & Kailath, T. (1985). Detection of signals by information theoretic criteria. IEEE Transactions on Acoustics, Speech, and Signal Processing, 33(2), 387–392.CrossRefMathSciNet Wax, M., & Kailath, T. (1985). Detection of signals by information theoretic criteria. IEEE Transactions on Acoustics, Speech, and Signal Processing, 33(2), 387–392.CrossRefMathSciNet
17.
Zurück zum Zitat Wu, H. T., Yang, J. F., & Chen, F. K. (1995). Source number estimators using transformed Gerschgorin radii. IEEE Transactions on Signal Processing, 43(6), 1325–1333.CrossRef Wu, H. T., Yang, J. F., & Chen, F. K. (1995). Source number estimators using transformed Gerschgorin radii. IEEE Transactions on Signal Processing, 43(6), 1325–1333.CrossRef
18.
Zurück zum Zitat Huang, L., Long, T., & Wu, S. (2008). Source enumeration for high-resolution array processing using improved Gerschgorin radii without eigendecomposition. IEEE Transactions on Signal Processing, 56(12), 5916–5925.CrossRefMathSciNet Huang, L., Long, T., & Wu, S. (2008). Source enumeration for high-resolution array processing using improved Gerschgorin radii without eigendecomposition. IEEE Transactions on Signal Processing, 56(12), 5916–5925.CrossRefMathSciNet
19.
Zurück zum Zitat Johnson, D. H., & Dudgeon, D. E. (1993). Array signal processing: Concepts and techniques. Englewood Cliffs, NJ: Prentice-Hall.MATH Johnson, D. H., & Dudgeon, D. E. (1993). Array signal processing: Concepts and techniques. Englewood Cliffs, NJ: Prentice-Hall.MATH
20.
Zurück zum Zitat Wilkinson, J. H. (1998). The algebraic eigenvalues problem. Oxford: Oxford University Press. Wilkinson, J. H. (1998). The algebraic eigenvalues problem. Oxford: Oxford University Press.
21.
Zurück zum Zitat Goldstein, J. S., Reed, I. S., & Scharf, L. L. (1998). A multistage representation of the Wiener filter based on orthogonal projections. IEEE Transactions on Information Theory, 44(7), 2943–2959.CrossRefMATHMathSciNet Goldstein, J. S., Reed, I. S., & Scharf, L. L. (1998). A multistage representation of the Wiener filter based on orthogonal projections. IEEE Transactions on Information Theory, 44(7), 2943–2959.CrossRefMATHMathSciNet
22.
Zurück zum Zitat You, Z., Li, X., & Liu, D. (1998). Study on the source number estimator using Gerschgorin radii. In Proceedings of the 4th international conference on signal processing (ICSP), Beijing, China, pp. 152–155. You, Z., Li, X., & Liu, D. (1998). Study on the source number estimator using Gerschgorin radii. In Proceedings of the 4th international conference on signal processing (ICSP), Beijing, China, pp. 152–155.
Metadaten
Titel
Multiband Detection for Spectrum Sensing: A Multistage Wiener Filter Perspective
verfasst von
Haobo Qing
Yuanan Liu
Gang Xie
Kaiming Liu
Fang Liu
Publikationsdatum
01.03.2015
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 1/2015
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-014-2116-1

Weitere Artikel der Ausgabe 1/2015

Wireless Personal Communications 1/2015 Zur Ausgabe

Neuer Inhalt