Skip to main content
Top
Published in: Colloid and Polymer Science 8/2012

01-06-2012 | Invited Review

Multifunctional inorganic/organic hybrid microgels

An overview of recent developments in synthesis, characterization, and application

Author: Matthias Karg

Published in: Colloid and Polymer Science | Issue 8/2012

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This review summarizes recent research dedicated to hybrid colloids combining inorganic nanoparticles and cross-linked polymer networks. We discuss aspects of synthesis, characterization, and application of systems with different morphologies and properties. Due to the large number of works in the field of composite materials, we focus on materials with responsive polymer components, which are dispersed in aqueous media.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Daniel M-C, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346CrossRef Daniel M-C, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346CrossRef
2.
go back to reference Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102CrossRef Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102CrossRef
3.
go back to reference Murphy CJ, Sau TK, Gole AM, Orendorff CJ, Gao J, Gou L, Hunyadi SE, Li T (2005) Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B 109:13857–13870CrossRef Murphy CJ, Sau TK, Gole AM, Orendorff CJ, Gao J, Gou L, Hunyadi SE, Li T (2005) Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B 109:13857–13870CrossRef
4.
go back to reference Grzelczak M, Pérez-Juste J, Mulvaney P, Liz-Marzán LM (2008) Shape control in gold nanoparticle synthesis. Chem Soc Rev 37:1783–1791CrossRef Grzelczak M, Pérez-Juste J, Mulvaney P, Liz-Marzán LM (2008) Shape control in gold nanoparticle synthesis. Chem Soc Rev 37:1783–1791CrossRef
5.
go back to reference Sau TK, Rogach AL, Jäckel F, Klar TA, Feldmann J (2010) Properties and applications of colloidal nonspherical noble metal nanoparticles. Adv Mater 22:1805–1825CrossRef Sau TK, Rogach AL, Jäckel F, Klar TA, Feldmann J (2010) Properties and applications of colloidal nonspherical noble metal nanoparticles. Adv Mater 22:1805–1825CrossRef
6.
go back to reference Haes AJ, Van Duyne RP (2002) A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J Am Chem Soc 124:10596–10604CrossRef Haes AJ, Van Duyne RP (2002) A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J Am Chem Soc 124:10596–10604CrossRef
7.
go back to reference Kim Y, Johnson RC, Hupp JT (2001) Gold nanoparticle-based sensing of “spectroscopically silent” heavy metal ions. Nano Lett 1:165–167CrossRef Kim Y, Johnson RC, Hupp JT (2001) Gold nanoparticle-based sensing of “spectroscopically silent” heavy metal ions. Nano Lett 1:165–167CrossRef
8.
go back to reference Mucic RC, Storhoff JJ, Mirkin CA, Letsinger RL (1998) DNA-directed synthesis of binary nanoparticle network materials. J Am Chem Soc 120:12674–12675CrossRef Mucic RC, Storhoff JJ, Mirkin CA, Letsinger RL (1998) DNA-directed synthesis of binary nanoparticle network materials. J Am Chem Soc 120:12674–12675CrossRef
9.
go back to reference Lee KS, El-Sayed MA (2006) Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. J Phys Chem B 110:19220–19225CrossRef Lee KS, El-Sayed MA (2006) Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. J Phys Chem B 110:19220–19225CrossRef
10.
go back to reference Hirsch LR, Jackson JB, Lee A, Halas NJ, West JL (2003) A whole blood immunoassay using gold nanoshells. Anal Chem 75:2377–2381CrossRef Hirsch LR, Jackson JB, Lee A, Halas NJ, West JL (2003) A whole blood immunoassay using gold nanoshells. Anal Chem 75:2377–2381CrossRef
11.
go back to reference Della Gaspera E, Karg M, Baldauf J, Jasieniak J, Maggioni G, Martucci A (2011) Au nanoparticle monolayers covered with sol-gel oxide thin films: optical and morphological study. Langmuir 27:13739–13747CrossRef Della Gaspera E, Karg M, Baldauf J, Jasieniak J, Maggioni G, Martucci A (2011) Au nanoparticle monolayers covered with sol-gel oxide thin films: optical and morphological study. Langmuir 27:13739–13747CrossRef
12.
go back to reference Pazos-Pérez N, Ni W, Schweikart A, Álvarez-Puebla RA, Fery A, Liz-Marzán LM (2010) Highly uniform SERS substrates formed by wrinkle-confined drying of gold colloids. Chem Sci 1:174–178CrossRef Pazos-Pérez N, Ni W, Schweikart A, Álvarez-Puebla RA, Fery A, Liz-Marzán LM (2010) Highly uniform SERS substrates formed by wrinkle-confined drying of gold colloids. Chem Sci 1:174–178CrossRef
13.
go back to reference Rodríguez-Lorenzo L, Álvarez-Puebla RA, Pastoriza-Santos I, Mazzucco S, Stéphan O, Kociak M, Liz-Marzán LM, García de Abajo FJ (2009) Zeptomol detection through controlled ultrasensitive surface-enhanced Raman scattering. J Am Chem Soc 131:4616–4618CrossRef Rodríguez-Lorenzo L, Álvarez-Puebla RA, Pastoriza-Santos I, Mazzucco S, Stéphan O, Kociak M, Liz-Marzán LM, García de Abajo FJ (2009) Zeptomol detection through controlled ultrasensitive surface-enhanced Raman scattering. J Am Chem Soc 131:4616–4618CrossRef
14.
go back to reference Campbell, CT, Parker SC, Starr, DE (2002) The effect of size-dependent nanoparticle energetics on catalyst sintering. Science 298:811–814CrossRef Campbell, CT, Parker SC, Starr, DE (2002) The effect of size-dependent nanoparticle energetics on catalyst sintering. Science 298:811–814CrossRef
15.
go back to reference Kamat PV (2002) Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J Phys Chem B 106:7729–7744CrossRef Kamat PV (2002) Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J Phys Chem B 106:7729–7744CrossRef
16.
go back to reference Hirakawa T, Kamat PV (2005) Charge separation and catalytic activity of Ag@TiO2 core-shell composite clusters under UV-Irradiation. J Am Chem Soc 127:3928–3934CrossRef Hirakawa T, Kamat PV (2005) Charge separation and catalytic activity of Ag@TiO2 core-shell composite clusters under UV-Irradiation. J Am Chem Soc 127:3928–3934CrossRef
17.
go back to reference Carregal-Romero S, Pérez-Juste J, Hervés P, Liz-Marzán LM, Mulvaney P (2010) Colloidal gold catalyzed reduction of ferrocyanate (iii) by borohydride ions: a model system for redox catalysis. Langmuir 26:1271–1277CrossRef Carregal-Romero S, Pérez-Juste J, Hervés P, Liz-Marzán LM, Mulvaney P (2010) Colloidal gold catalyzed reduction of ferrocyanate (iii) by borohydride ions: a model system for redox catalysis. Langmuir 26:1271–1277CrossRef
18.
go back to reference Talapin DV, Lee J-S, Kovalenko MV, Shevchenko EV (2010) Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem Rev 110:389–458CrossRef Talapin DV, Lee J-S, Kovalenko MV, Shevchenko EV (2010) Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem Rev 110:389–458CrossRef
19.
go back to reference Zhao J, Zhang J, Jiang C, Bohnenberger J, Basché T, Mews A (2004) Electroluminescence from isolated CdSe/ZnS quantum dots in multilayered light-emitting diodes. J Appl Phys 96:3206–3210CrossRef Zhao J, Zhang J, Jiang C, Bohnenberger J, Basché T, Mews A (2004) Electroluminescence from isolated CdSe/ZnS quantum dots in multilayered light-emitting diodes. J Appl Phys 96:3206–3210CrossRef
20.
go back to reference Li YQ, Rizzo A, Cinogolani R, Gigli G (2006) Bright white-light-emitting device from ternary nanocrystal composites. Adv Mater 18:2545–2548CrossRef Li YQ, Rizzo A, Cinogolani R, Gigli G (2006) Bright white-light-emitting device from ternary nanocrystal composites. Adv Mater 18:2545–2548CrossRef
21.
go back to reference Caruge J-M, Halpert JE, Bulović V, Bawendi MG (2006) NiO as an inorganic hole-transporting layer in quantum-dot light-emitting devices. Nano Lett 6:2991–2994CrossRef Caruge J-M, Halpert JE, Bulović V, Bawendi MG (2006) NiO as an inorganic hole-transporting layer in quantum-dot light-emitting devices. Nano Lett 6:2991–2994CrossRef
22.
go back to reference Anikeeva PO, Halpert JE, Bawendi MG, Bulović V (2009) Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum. Nano Lett 9:2532–2536CrossRef Anikeeva PO, Halpert JE, Bawendi MG, Bulović V (2009) Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum. Nano Lett 9:2532–2536CrossRef
23.
go back to reference Mashford BS, Nguyen TL, Wilson GJ, Mulvaney P (2010) All-inorganic quantum-dot light-emitting devices formed via low-cost, wet-chemical processing. J Mater Chem 20:167–172CrossRef Mashford BS, Nguyen TL, Wilson GJ, Mulvaney P (2010) All-inorganic quantum-dot light-emitting devices formed via low-cost, wet-chemical processing. J Mater Chem 20:167–172CrossRef
24.
go back to reference Gur I, Fromer NA, Geier ML, Alivisatos AP (2005) Air-stable all-inorganic nanocrystal solar cells processed from solution. Science 310:462–465CrossRef Gur I, Fromer NA, Geier ML, Alivisatos AP (2005) Air-stable all-inorganic nanocrystal solar cells processed from solution. Science 310:462–465CrossRef
25.
go back to reference Anderson IE, Breeze AJ, Olson JD, Yang L, Sahoo Y, Carter SA (2009) All-inorganic spin-cast nanoparticle solar cells with nonselective electrodes. Appl Phys Lett 94:063101CrossRef Anderson IE, Breeze AJ, Olson JD, Yang L, Sahoo Y, Carter SA (2009) All-inorganic spin-cast nanoparticle solar cells with nonselective electrodes. Appl Phys Lett 94:063101CrossRef
26.
go back to reference Jasieniak J, MacDonald BI, Watkins SE, Mulvaney P (2011) Solution-processed sintered nanocrystal solar cells via layer-by-layer assembly. Nano Lett 11:2856–2864CrossRef Jasieniak J, MacDonald BI, Watkins SE, Mulvaney P (2011) Solution-processed sintered nanocrystal solar cells via layer-by-layer assembly. Nano Lett 11:2856–2864CrossRef
27.
go back to reference Si S, Dinda E, Mandal TK (2007) In situ synthesis of gold and silver nanoparticles by using redox-active amphiphiles and their phase transfer to organic solvents. Chem Eur J 13:9850–9861CrossRef Si S, Dinda E, Mandal TK (2007) In situ synthesis of gold and silver nanoparticles by using redox-active amphiphiles and their phase transfer to organic solvents. Chem Eur J 13:9850–9861CrossRef
28.
go back to reference Misra TK, Chen T-S, Liu CY (2006) Phase transfer of gold nanoparticles from aqueous to organic solution containing resorcinarene. J Colloid Interface Sci 297:584–588CrossRef Misra TK, Chen T-S, Liu CY (2006) Phase transfer of gold nanoparticles from aqueous to organic solution containing resorcinarene. J Colloid Interface Sci 297:584–588CrossRef
29.
go back to reference Mayya KS, Caruso F (2003) Phase transfer of surface-modified gold nanoparticles by hydrophobization with alkylamines. Langmuir, 19:6987–6993CrossRef Mayya KS, Caruso F (2003) Phase transfer of surface-modified gold nanoparticles by hydrophobization with alkylamines. Langmuir, 19:6987–6993CrossRef
30.
go back to reference Kumar A, Joshi H, Pasricha R, Mandale AB, Sastry M (2003) Phase transfer of silver nanoparticles from aqueous to organic solutions using fatty amine molecules. J Colloid Interface Sci 264:396–401CrossRef Kumar A, Joshi H, Pasricha R, Mandale AB, Sastry M (2003) Phase transfer of silver nanoparticles from aqueous to organic solutions using fatty amine molecules. J Colloid Interface Sci 264:396–401CrossRef
31.
go back to reference Kumar A, Joshi HM, Mandale AB, Srivastava R, Adyanthaya SD, Pasricha R, Sastry M (2004) Phase transfer of platinum nanoparticles from aqueous to organic solutions using fatty amine molecules. J Chem Sci 116(5):293–300CrossRef Kumar A, Joshi HM, Mandale AB, Srivastava R, Adyanthaya SD, Pasricha R, Sastry M (2004) Phase transfer of platinum nanoparticles from aqueous to organic solutions using fatty amine molecules. J Chem Sci 116(5):293–300CrossRef
32.
go back to reference Karg M, Schelero N, Oppel C, Gradzielski M, Hellweg T, Klitzing RV (2011) Versatile phase transfer of gold nanoparticles from aqueous media to different organic media. Chem Eur J 17:4648–4654CrossRef Karg M, Schelero N, Oppel C, Gradzielski M, Hellweg T, Klitzing RV (2011) Versatile phase transfer of gold nanoparticles from aqueous media to different organic media. Chem Eur J 17:4648–4654CrossRef
33.
go back to reference Das M, Zhang H, Kumacheva E (2006) Microgels: old materials with new applications. Annu Rev Mater Res 36:117–142CrossRef Das M, Zhang H, Kumacheva E (2006) Microgels: old materials with new applications. Annu Rev Mater Res 36:117–142CrossRef
34.
go back to reference Karg M, Hellweg T (2009) Smart inorganic/organic hybrid microgels: synthesis and characterisation. J Mater Chem 19:8714–8727CrossRef Karg M, Hellweg T (2009) Smart inorganic/organic hybrid microgels: synthesis and characterisation. J Mater Chem 19:8714–8727CrossRef
35.
go back to reference Karg M, Hellweg T (2009) New “smart” poly(NIPAM) microgels and nanoparticle microgel hybrids: properties and advances in characterisation. Curr Opin Colloid Interface Sci 14:438–450CrossRef Karg M, Hellweg T (2009) New “smart” poly(NIPAM) microgels and nanoparticle microgel hybrids: properties and advances in characterisation. Curr Opin Colloid Interface Sci 14:438–450CrossRef
36.
go back to reference Schmidt AM (2007) Thermoresponsive magnetic colloids. Colloid Polym Sci 285:953–966CrossRef Schmidt AM (2007) Thermoresponsive magnetic colloids. Colloid Polym Sci 285:953–966CrossRef
37.
go back to reference Pich AZ, Adler HJP (2007) Composite aqueous microgels: an overview of recent advances in synthesis, characterization and application. Polym Int 56:291–307CrossRef Pich AZ, Adler HJP (2007) Composite aqueous microgels: an overview of recent advances in synthesis, characterization and application. Polym Int 56:291–307CrossRef
38.
go back to reference Lu Y, Ballauff M (2011) Thermosensitive core-shell microgels: from colloidal model systems to nanoreactors. Prog Polym Sci 36:767–792CrossRef Lu Y, Ballauff M (2011) Thermosensitive core-shell microgels: from colloidal model systems to nanoreactors. Prog Polym Sci 36:767–792CrossRef
39.
go back to reference Agrawal M, Gupta S, Stamm M (2011) Recent developments in fabrication and applications of colloid-based composite particles. J Mater Chem, 21:615–627CrossRef Agrawal M, Gupta S, Stamm M (2011) Recent developments in fabrication and applications of colloid-based composite particles. J Mater Chem, 21:615–627CrossRef
40.
go back to reference Wu C, Zhou S, Au-yeung SCF, Jiang S (1996) Volume phase transition of spherical microgel particles. Angew Makromol Chem 240:123–136CrossRef Wu C, Zhou S, Au-yeung SCF, Jiang S (1996) Volume phase transition of spherical microgel particles. Angew Makromol Chem 240:123–136CrossRef
41.
go back to reference Pelton R (2000) Temperature-sensitive aqueous microgels. Adv Colloid Interface Sci 85:1–33CrossRef Pelton R (2000) Temperature-sensitive aqueous microgels. Adv Colloid Interface Sci 85:1–33CrossRef
42.
go back to reference Senff H, Richtering W (2000) Influence od cross-link density on rheological properties of temperature-sensitive microgel suspensions. Colloid Polym Sci 278:830–840CrossRef Senff H, Richtering W (2000) Influence od cross-link density on rheological properties of temperature-sensitive microgel suspensions. Colloid Polym Sci 278:830–840CrossRef
43.
go back to reference Kratz K, Hellweg T, Eimer W (2001) Structural changes in PNIPAM microgel particles as seen by SANS, DLS, and EM techniques. Polymer 42:6631–6639CrossRef Kratz K, Hellweg T, Eimer W (2001) Structural changes in PNIPAM microgel particles as seen by SANS, DLS, and EM techniques. Polymer 42:6631–6639CrossRef
44.
go back to reference Stieger M, Pedersen JS, Lindner P, Richtering W (2004) Are thermoresponsive microgels model systems for concentrated colloidal suspensions? A rheology and small-angle neutron scattering study. Langmuir 20:7283–7292CrossRef Stieger M, Pedersen JS, Lindner P, Richtering W (2004) Are thermoresponsive microgels model systems for concentrated colloidal suspensions? A rheology and small-angle neutron scattering study. Langmuir 20:7283–7292CrossRef
45.
go back to reference Ballauff M, Lu Y (2007) “Smart” nanoparticles: preparation, characterization and applications. Polymer 48:1815–1823CrossRef Ballauff M, Lu Y (2007) “Smart” nanoparticles: preparation, characterization and applications. Polymer 48:1815–1823CrossRef
46.
go back to reference Snowden MJ, Chowdhry BZ, Vincent B, Morris GE (1996) Colloidal copolymer microgels of N-isopropylacrylamide and acrylic acid: pH, ionic strength and temperature effects. J Chem Soc Faraday Trans 92:5013–5016CrossRef Snowden MJ, Chowdhry BZ, Vincent B, Morris GE (1996) Colloidal copolymer microgels of N-isopropylacrylamide and acrylic acid: pH, ionic strength and temperature effects. J Chem Soc Faraday Trans 92:5013–5016CrossRef
47.
go back to reference Fernández-Nieves A, Fernández-Barbero A, Vincent B, de las Nieves FJ (2000) Charge controlled swelling of microgel particles. Macromolecules 33:2114–2118CrossRef Fernández-Nieves A, Fernández-Barbero A, Vincent B, de las Nieves FJ (2000) Charge controlled swelling of microgel particles. Macromolecules 33:2114–2118CrossRef
48.
go back to reference Kratz K, Hellweg T, Eimer W (2000) Influence od charge density on the swelling of colloidal poly(N-isopropylacrylamide-co-acrylicacid) microgels. Colloids Surf A 170:137–149CrossRef Kratz K, Hellweg T, Eimer W (2000) Influence od charge density on the swelling of colloidal poly(N-isopropylacrylamide-co-acrylicacid) microgels. Colloids Surf A 170:137–149CrossRef
49.
go back to reference Hoare T, Pelton R (2004) Highly ph and temperature responsive microgels functionalized with vinylacetic acid. Macromol 37:2544–2550CrossRef Hoare T, Pelton R (2004) Highly ph and temperature responsive microgels functionalized with vinylacetic acid. Macromol 37:2544–2550CrossRef
50.
go back to reference Shibayama M, Ikkai F, Inamoto S, Nomura S, Han CC (1996) pH and salt concentration dependence of the microstructure of poly(N-isopropylacrylamide-co-acrylic acid) gels. J Chem Phys 105(10):4358–4366CrossRef Shibayama M, Ikkai F, Inamoto S, Nomura S, Han CC (1996) pH and salt concentration dependence of the microstructure of poly(N-isopropylacrylamide-co-acrylic acid) gels. J Chem Phys 105(10):4358–4366CrossRef
51.
go back to reference Fernández-Nieves A, Márquez M (2005) Electrophoresis of ionic microgel particles: from charged hard spheres to polyelectrolyte-like behavior. J Chem Phys 122(084702):084702CrossRef Fernández-Nieves A, Márquez M (2005) Electrophoresis of ionic microgel particles: from charged hard spheres to polyelectrolyte-like behavior. J Chem Phys 122(084702):084702CrossRef
52.
go back to reference Karg M, Pastoriza-Santos I, Rodriguez-González B, von Klitzing R, Wellert S, Hellweg T (2008) Temperature, pH, and ionic strength induced changes of the swelling behaviorof PNIPAM-poly(allylacetic acid) copolymer microgels. Langmuir 24:6300–6306CrossRef Karg M, Pastoriza-Santos I, Rodriguez-González B, von Klitzing R, Wellert S, Hellweg T (2008) Temperature, pH, and ionic strength induced changes of the swelling behaviorof PNIPAM-poly(allylacetic acid) copolymer microgels. Langmuir 24:6300–6306CrossRef
53.
go back to reference Hirokawa Y, Tanaka T (1984) Volume phase transition in a nonionic gel. J Chem Phys 81:6379CrossRef Hirokawa Y, Tanaka T (1984) Volume phase transition in a nonionic gel. J Chem Phys 81:6379CrossRef
54.
go back to reference Shibayama M, Tanaka T, Han CC (1992) Small angle neutron scattering study on poly(N-isopropyl acrylamide) gels near their volume-phase transition. J Chem Phys 97(9):6829–6841CrossRef Shibayama M, Tanaka T, Han CC (1992) Small angle neutron scattering study on poly(N-isopropyl acrylamide) gels near their volume-phase transition. J Chem Phys 97(9):6829–6841CrossRef
55.
go back to reference Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer-Verlag, Berlin, Germany Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer-Verlag, Berlin, Germany
56.
go back to reference Karg M, Jaber S, Hellweg T, Mulvaney P (2011) Surface plasmon spectroscopy of gold-poly-N-isopropylacrylamide core-shell particles. Langmuir 27(2):820–827CrossRef Karg M, Jaber S, Hellweg T, Mulvaney P (2011) Surface plasmon spectroscopy of gold-poly-N-isopropylacrylamide core-shell particles. Langmuir 27(2):820–827CrossRef
57.
go back to reference Zhang J, Xu S, Kumacheva E (2004) Polymer microgels: reactors for semiconductor, metal, and magnetic nanoparticles. J Am Chem Soc 126:7908–7914CrossRef Zhang J, Xu S, Kumacheva E (2004) Polymer microgels: reactors for semiconductor, metal, and magnetic nanoparticles. J Am Chem Soc 126:7908–7914CrossRef
58.
go back to reference Pich A, Karak A, Lu Y, Ghosh AK, Adler H-JP (2006) Hybrid microgels containing gold nanoparticles. e-Polymers (018):ISSN 1618–7229 Pich A, Karak A, Lu Y, Ghosh AK, Adler H-JP (2006) Hybrid microgels containing gold nanoparticles. e-Polymers (018):ISSN 1618–7229
59.
go back to reference Suzuki D, Kawaguchi H (2006) Hybrid microgels with reversibly changeable multiple brilliant color. Langmuir 22:3818–3822CrossRef Suzuki D, Kawaguchi H (2006) Hybrid microgels with reversibly changeable multiple brilliant color. Langmuir 22:3818–3822CrossRef
60.
go back to reference Contreras-Cáceres R, Sanchez-Iglesias A, Karg M, Pastoriza-Santos I, Feéez-Juste J, Pacifico J, Hellweg T, Fernández-Barbero A, Liz-Marzán LM (2009) Encapsulation and growth of gold nanoparticles in thermoresponsive microgels. Adv Mater 20(9):1666–1670CrossRef Contreras-Cáceres R, Sanchez-Iglesias A, Karg M, Pastoriza-Santos I, Feéez-Juste J, Pacifico J, Hellweg T, Fernández-Barbero A, Liz-Marzán LM (2009) Encapsulation and growth of gold nanoparticles in thermoresponsive microgels. Adv Mater 20(9):1666–1670CrossRef
61.
go back to reference Contreras-Cáceres R, Pacifico J, Pastoriza-Santos I, Pérez-Juste J, Fernández-Barbero A, Liz-Marzán LM (2009) Au@pNIPAM thermosensitive nanostructures: control over shell cross-linking, overall dimensions, and core growth. Adv Funct Mater 19:3070–3076CrossRef Contreras-Cáceres R, Pacifico J, Pastoriza-Santos I, Pérez-Juste J, Fernández-Barbero A, Liz-Marzán LM (2009) Au@pNIPAM thermosensitive nanostructures: control over shell cross-linking, overall dimensions, and core growth. Adv Funct Mater 19:3070–3076CrossRef
62.
go back to reference Jaber S, Karg M, Morfa A, Mulvaney P (2011) 2D assembly of gold-PNIPAM core-shell nanocrystals. Phys Chem Chem Phys 13:5576–5578CrossRef Jaber S, Karg M, Morfa A, Mulvaney P (2011) 2D assembly of gold-PNIPAM core-shell nanocrystals. Phys Chem Chem Phys 13:5576–5578CrossRef
63.
go back to reference Karg M, Hellweg T, Mulvaney P (2011) Self-assembly of tunable nanocrystal superlattices using poly-(NIPAM) Spacers. Adv Funct Mater 21:4668–4676CrossRef Karg M, Hellweg T, Mulvaney P (2011) Self-assembly of tunable nanocrystal superlattices using poly-(NIPAM) Spacers. Adv Funct Mater 21:4668–4676CrossRef
64.
go back to reference Fernández-López C, Pérez-Balado C, Pérez-Juste J, Pastoriza-Santos I, de Lera ÁR, Liz-Marzán LM (2012) A general LbL strategy for the growth of pNIPAM microgels on Au nanoparticles with arbitrary shapes. Soft Matter 8:4165–4170. doi:10.1039/C1SM06396K CrossRef Fernández-López C, Pérez-Balado C, Pérez-Juste J, Pastoriza-Santos I, de Lera ÁR, Liz-Marzán LM (2012) A general LbL strategy for the growth of pNIPAM microgels on Au nanoparticles with arbitrary shapes. Soft Matter 8:4165–4170. doi:10.​1039/​C1SM06396K CrossRef
65.
go back to reference Karg M, Pastoriza-Santos I, Pérez-Juste J, Hellweg T, Liz-Marzán LM (2007) Nanorod-coated PNIPAM microgels: thermoresponsive optical properties. Small 3(7):1222–1229CrossRef Karg M, Pastoriza-Santos I, Pérez-Juste J, Hellweg T, Liz-Marzán LM (2007) Nanorod-coated PNIPAM microgels: thermoresponsive optical properties. Small 3(7):1222–1229CrossRef
66.
go back to reference Karg M, Lu Y, Carbó-Argibay E, Pastoriza-Santos I, Pérez-Juste J, Liz-Marzán LM, Hellweg T (2009) Multiresponsive hybrid colloids based on gold nanorods and poly(NIPAM-co-allylacetic acid) microgels: temperature- and ph-tunable plasmon resonance. Langmuir 25:3163–3167CrossRef Karg M, Lu Y, Carbó-Argibay E, Pastoriza-Santos I, Pérez-Juste J, Liz-Marzán LM, Hellweg T (2009) Multiresponsive hybrid colloids based on gold nanorods and poly(NIPAM-co-allylacetic acid) microgels: temperature- and ph-tunable plasmon resonance. Langmuir 25:3163–3167CrossRef
67.
go back to reference Jones CD, Lyon LA (2003) Photothermal patterning of microgel/gold nanoparticle composite colloidal crystals J Am Chem Soc 125:460–465CrossRef Jones CD, Lyon LA (2003) Photothermal patterning of microgel/gold nanoparticle composite colloidal crystals J Am Chem Soc 125:460–465CrossRef
68.
go back to reference Jones CD, Serpe MJ, Schroeder L, Lyon LA (2003) Microlens formation in microgel/gold colloid composite materials via photothermal patterning. J Am Chem Soc 125:5292–5293CrossRef Jones CD, Serpe MJ, Schroeder L, Lyon LA (2003) Microlens formation in microgel/gold colloid composite materials via photothermal patterning. J Am Chem Soc 125:5292–5293CrossRef
69.
go back to reference Gorelikov I, Field LM, Kumacheva E (2004) Hybrid microgels photoresponsive in the near-infrared spectral range. J Am Chem Soc 126:15938–15939CrossRef Gorelikov I, Field LM, Kumacheva E (2004) Hybrid microgels photoresponsive in the near-infrared spectral range. J Am Chem Soc 126:15938–15939CrossRef
70.
go back to reference Das M, Sanson N, Fava D, Kumacheva E (2007) Microgels loaded with gold nanorods: photothermally triggered volume transitionsunder physiological conditions. Langmuir 23(1):196–201CrossRef Das M, Sanson N, Fava D, Kumacheva E (2007) Microgels loaded with gold nanorods: photothermally triggered volume transitionsunder physiological conditions. Langmuir 23(1):196–201CrossRef
71.
go back to reference Rodríguez-Fernández J, Fedoruk M, Hrelescu C, Lutich AA, Feldmann J (2011) Triggering the volume phase transition of core-shell Au nanorod-microgel nanocomposites with light. Nanotechnology 22:245708CrossRef Rodríguez-Fernández J, Fedoruk M, Hrelescu C, Lutich AA, Feldmann J (2011) Triggering the volume phase transition of core-shell Au nanorod-microgel nanocomposites with light. Nanotechnology 22:245708CrossRef
72.
go back to reference Hormeńo S, Bastús NG, Pietsch A, Weller H, Arias-Gonzalez JR, Juárez BH (2011) Plasmon–exciton interactions on single thermoresponsive platforms demonstrated by optical tweezers. Nano Letters 11:4742–4747CrossRef Hormeńo S, Bastús NG, Pietsch A, Weller H, Arias-Gonzalez JR, Juárez BH (2011) Plasmon–exciton interactions on single thermoresponsive platforms demonstrated by optical tweezers. Nano Letters 11:4742–4747CrossRef
73.
go back to reference Álvarez-Puebla RA, Contreras-Cáceres R, Pastoriza-Santos I, Pérez-Juste J, Liz-Marzán LM (2008) Au@pNIPAM colloids as molecular traps for surface-enhanced, spectroscopic, ultra-sensitive analysis. Angew Chem Int Ed 47:1–7CrossRef Álvarez-Puebla RA, Contreras-Cáceres R, Pastoriza-Santos I, Pérez-Juste J, Liz-Marzán LM (2008) Au@pNIPAM colloids as molecular traps for surface-enhanced, spectroscopic, ultra-sensitive analysis. Angew Chem Int Ed 47:1–7CrossRef
74.
go back to reference Contreras-Cáceres R, Pastoriza-Santos I, Álvarez-Puebla RA, Pérez-Juste J, Fernández-Barbero A, Liz-Marzán LM (2010) Growing Au/Ag nanoparticles within microgel colloids for improved surface-enhanced Raman scattering detection. Chem Eur J 16:9462–9467CrossRef Contreras-Cáceres R, Pastoriza-Santos I, Álvarez-Puebla RA, Pérez-Juste J, Fernández-Barbero A, Liz-Marzán LM (2010) Growing Au/Ag nanoparticles within microgel colloids for improved surface-enhanced Raman scattering detection. Chem Eur J 16:9462–9467CrossRef
75.
go back to reference Contreras-Cáceres R, Abalde-Cela S, Guardia-Girós P, Fernández-Barbero A, Pérez-Juste J, Álvarez-Puebla RA, Liz-Marzán LM (2011) Multifunctional microgel magnetic/optical traps for SERS ultradetection. Langmuir 27:4520–4525CrossRef Contreras-Cáceres R, Abalde-Cela S, Guardia-Girós P, Fernández-Barbero A, Pérez-Juste J, Álvarez-Puebla RA, Liz-Marzán LM (2011) Multifunctional microgel magnetic/optical traps for SERS ultradetection. Langmuir 27:4520–4525CrossRef
76.
go back to reference Jańczewski D, Tomczak N, Han MY, Vansco GJ (2009) Introduction of quantum dots into PNIPAM microspheres by precipitation polymerization above LCST. Eur Polym J 45:1912–1917CrossRef Jańczewski D, Tomczak N, Han MY, Vansco GJ (2009) Introduction of quantum dots into PNIPAM microspheres by precipitation polymerization above LCST. Eur Polym J 45:1912–1917CrossRef
77.
go back to reference Agrawal M, Rubio-Retama J, Zafeiropoulos NE, Gaponik N, Gupta S, Cimrova V, Lesnyak V, López-Cabarcos E, Tzavalas S, Rojas-Reyna R, Eychmüller A, Stamm M (2008) Switchable photoluminescence of CdTe nanocrystals by temperature-responsive microgels. Langmuir 24:9820–9824CrossRef Agrawal M, Rubio-Retama J, Zafeiropoulos NE, Gaponik N, Gupta S, Cimrova V, Lesnyak V, López-Cabarcos E, Tzavalas S, Rojas-Reyna R, Eychmüller A, Stamm M (2008) Switchable photoluminescence of CdTe nanocrystals by temperature-responsive microgels. Langmuir 24:9820–9824CrossRef
78.
go back to reference Wu W, Zhou T, Aiello M, Zhou S (2010) Construction of optical glucose nanobiosensor with high sensitivity and selectivity at physiological pH on the basis of organic-inorganic hybrid microgels. Biosens Bioelectron 25:2603–2610CrossRef Wu W, Zhou T, Aiello M, Zhou S (2010) Construction of optical glucose nanobiosensor with high sensitivity and selectivity at physiological pH on the basis of organic-inorganic hybrid microgels. Biosens Bioelectron 25:2603–2610CrossRef
79.
go back to reference Lu Y, Mei Y, Ballauff M, Drechsler M (2006) Thermoresponsive core-shell particles as carrier systems for metallic nanoparticles. J Phys Chem B 110:3930–3937CrossRef Lu Y, Mei Y, Ballauff M, Drechsler M (2006) Thermoresponsive core-shell particles as carrier systems for metallic nanoparticles. J Phys Chem B 110:3930–3937CrossRef
80.
go back to reference Lu Y, Mei Y, Drechsler M, Ballauff M (2006) Thermosensitive core-shell particles as carriers for Ag nanoparticles: modulating the catalytic activity by a phase transition in networks. Angew Chem Int Ed 45:813–816CrossRef Lu Y, Mei Y, Drechsler M, Ballauff M (2006) Thermosensitive core-shell particles as carriers for Ag nanoparticles: modulating the catalytic activity by a phase transition in networks. Angew Chem Int Ed 45:813–816CrossRef
81.
go back to reference Mei Y, Lu Y, Polzer F, Ballauff M, Drechsler M (2007) Catalytic activity of palladium nanoparticles encapsulated in spherical polyelectrolyte brushes and core-shell microgels. Chem Mater 19:1062–1069CrossRef Mei Y, Lu Y, Polzer F, Ballauff M, Drechsler M (2007) Catalytic activity of palladium nanoparticles encapsulated in spherical polyelectrolyte brushes and core-shell microgels. Chem Mater 19:1062–1069CrossRef
82.
go back to reference Lu Y, Proch S, Schrinner M, Drechsler M, Kempe R, Ballauff M (2009) Thermosensitive core-shell microgel as a “nanoreactor” for catalytic active metal nanoparticles. J Mater Chem 19:3955–3961CrossRef Lu Y, Proch S, Schrinner M, Drechsler M, Kempe R, Ballauff M (2009) Thermosensitive core-shell microgel as a “nanoreactor” for catalytic active metal nanoparticles. J Mater Chem 19:3955–3961CrossRef
83.
go back to reference Carregal-Romero S, Buurma NJ, Pérez-Juste J, Hervés P, Liz-Marzán LM (2010) Catalysis by Au@pNIPAM nanocomposites: effect of the cross-linking density. Chem Mater 22:3051–3059CrossRef Carregal-Romero S, Buurma NJ, Pérez-Juste J, Hervés P, Liz-Marzán LM (2010) Catalysis by Au@pNIPAM nanocomposites: effect of the cross-linking density. Chem Mater 22:3051–3059CrossRef
84.
go back to reference Lu Y, Yuan J, Polzer F, Drechsler M, Preussner J (2010) In situ growth of catalytic active Au-Pt bimetallic nanorods in thermoresponsive core-shell microgels. ACS Nano 4(12):7078–7086CrossRef Lu Y, Yuan J, Polzer F, Drechsler M, Preussner J (2010) In situ growth of catalytic active Au-Pt bimetallic nanorods in thermoresponsive core-shell microgels. ACS Nano 4(12):7078–7086CrossRef
85.
go back to reference Zhang F, Wang C-C (2009) Preparation of P(NIPAM-co-AA) microcontainers surface-anchored with magnetic nanoparticles. Langmuir 25:8255–8262CrossRef Zhang F, Wang C-C (2009) Preparation of P(NIPAM-co-AA) microcontainers surface-anchored with magnetic nanoparticles. Langmuir 25:8255–8262CrossRef
86.
go back to reference Sánchez-Iglesias A, Grzelczak M, Rodríguez-González B, Guardia-Girós P, Pastoriza-Santos I, Pérez-Juste J, Prato J, Liz-Marzán LM (2009) Synthesis of multifunctional composite microgels via in situ Ni growth on pNIPAM-coated Au nanoparticles. ACS Nano 3:3184–3190CrossRef Sánchez-Iglesias A, Grzelczak M, Rodríguez-González B, Guardia-Girós P, Pastoriza-Santos I, Pérez-Juste J, Prato J, Liz-Marzán LM (2009) Synthesis of multifunctional composite microgels via in situ Ni growth on pNIPAM-coated Au nanoparticles. ACS Nano 3:3184–3190CrossRef
87.
go back to reference Pich A, Bhattacharya S, Lu Y, Boyko V, Adler HJP (2004) Temperature-sensitive hybrid microgels with magnetic properties. Langmuir 20:10706–10711CrossRef Pich A, Bhattacharya S, Lu Y, Boyko V, Adler HJP (2004) Temperature-sensitive hybrid microgels with magnetic properties. Langmuir 20:10706–10711CrossRef
88.
go back to reference Bhattacharya S, Eckert F, Boyko V, Pich A (2007) Temperature-, pH-, and magnetic-field-sensitive hybrid microgels. Small 3:650–657CrossRef Bhattacharya S, Eckert F, Boyko V, Pich A (2007) Temperature-, pH-, and magnetic-field-sensitive hybrid microgels. Small 3:650–657CrossRef
89.
go back to reference Dagallier C, Dietsch H, Schurtenberger P, Scheffold F (2010) Thermoresponsive hybrid microgel particles with intrinsic optical and magnetic anisotropy. Soft Matter 6:2174–2177CrossRef Dagallier C, Dietsch H, Schurtenberger P, Scheffold F (2010) Thermoresponsive hybrid microgel particles with intrinsic optical and magnetic anisotropy. Soft Matter 6:2174–2177CrossRef
90.
go back to reference Laurenti M, Guardia P, Contreras-Cáceres R, Pérez-Juste J, Fernandez-Barbero A, Lopez-Cabarcos E, Rubio-Retama J (2011) Synthesis of thermosensitive microgels with a tunable magnetic core. Langmuir 27:10484–10491CrossRef Laurenti M, Guardia P, Contreras-Cáceres R, Pérez-Juste J, Fernandez-Barbero A, Lopez-Cabarcos E, Rubio-Retama J (2011) Synthesis of thermosensitive microgels with a tunable magnetic core. Langmuir 27:10484–10491CrossRef
Metadata
Title
Multifunctional inorganic/organic hybrid microgels
An overview of recent developments in synthesis, characterization, and application
Author
Matthias Karg
Publication date
01-06-2012
Publisher
Springer-Verlag
Published in
Colloid and Polymer Science / Issue 8/2012
Print ISSN: 0303-402X
Electronic ISSN: 1435-1536
DOI
https://doi.org/10.1007/s00396-012-2644-8

Other articles of this Issue 8/2012

Colloid and Polymer Science 8/2012 Go to the issue

Premium Partners